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Perceptual decision making can be described as a process of accumulating evidence

to a bound which has been formalized within drift-diffusion models (DDMs). Recently,

an equivalent Bayesian model has been proposed. In contrast to standard DDMs, this

Bayesian model directly links information in the stimulus to the decision process. Here,

we extend this Bayesian model further and allow inter-trial variability of two parameters

following the extended version of the DDM. We derive parameter distributions for the

Bayesian model and show that they lead to predictions that are qualitatively equivalent

to thosemade by the extended drift-diffusionmodel (eDDM). Further, we demonstrate the

usefulness of the extended Bayesian model (eBM) for the analysis of concrete behavioral

data. Specifically, using Bayesian model selection, we find evidence that including

additional inter-trial parameter variability provides for a better model, when the model

is constrained by trial-wise stimulus features. This result is remarkable because it was

derived using just 200 trials per condition, which is typically thought to be insufficient for

identifying variability parameters in DDMs. In sum, we present a Bayesian analysis, which

provides for a novel and promising analysis of perceptual decision making experiments.

Keywords: perceptual decision making, drift-diffusion model, Bayesian models, parameter fitting, exact input

modeling, model comparison, single-trial models

INTRODUCTION

Perceptual decision making is a critical cognitive function for everyday life. All the time we have
to make decisions about the state of the environment, for example when making a decision
whether a traffic light is red. One of the key approaches to understanding perceptual decision
making is by explaining the underlying mechanisms involved in the categorization of sensory
input (Summerfield et al., 2006). This is usually investigated using two-alternative forced choice
tasks, for example in electrophysiological experiments with animals (Shadlen and Newsome, 1996;
Hernandez et al., 2002; Roitman and Shadlen, 2002; Romo et al., 2004; Gold and Shadlen, 2007),
or in neuroimaging studies with humans (Heekeren et al., 2004, 2008; Gold and Shadlen, 2007;
Donner et al., 2009; Siegel et al., 2011; O’Connell et al., 2012; de Lange et al., 2013; Polania et al.,
2014). For example, in the widely used random dot motion task participants have to decide about
the direction into which visually presented dots move (Newsome and Pare, 1988; Britten et al.,
1992; Pilly and Seitz, 2009). Using this and similar tasks, a large body of literature established many
important findings about the brain processes involved in perceptual decision making (see Gold and
Shadlen, 2007 for review).
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On the modeling side, sequential sampling models provide
a way to explain the mechanisms of how noisy pieces of
information are accumulated until a threshold in evidence is
reached (Luce, 1986; Forstmann et al., 2016). This type of models
has been proposed to account for behavioral data collected from
perceptual decision making tasks in various experimental areas
ranging from working memory to aging and clinical applications
(Luce, 1986; Smith and Ratcliff, 2004; Gold and Shadlen, 2007;
Ratcliff and McKoon, 2008; Voss et al., 2013; Forstmann et al.,
2016; Ratcliff et al., 2016). Among such sequential sampling
models, the drift-diffusion model (DDM) is probably the most
established one that allows modeling the behavioral data of
typical perceptual decision making tasks (Ratcliff, 1978; Ratcliff
and McKoon, 2008).

The mechanism of how DDM and sequential sampling
models accumulate sensory evidence are profoundly connected
to Bayesian models of decision making (Dayan and Daw, 2008;
Deneve, 2012; Bitzer et al., 2014, 2015; Summerfield and de
Lange, 2014). Specifically, a particular formulation of such a
Bayesian model, which we here call “BM,” is formally equivalent
to a basic version of the DDM, which we call pure DDM “pDDM”
(Bitzer et al., 2014). A critical difference between the BM and the
pDDM is that the BM explicitly models how observed sensory
input is translated into evidence for the decision. We have
recently shown that this feature greatly improves fits of response
behavior in a perceptual decision making experiment (Park et al.,
2016).

In the BM, we showed equivalence only to the pure DDM. But
typically experimenters use an extended version, the extended
drift-diffusion model (eDDM). The assumption made by using
the pDDM is that parameters such as drift rate and bias are
constant across trials. The extended DDM goes beyond these
assumptions and, in addition, uses parameters such as the inter-
trial variability of the drift rate, the bias and the non-decision
time (Ratcliff, 1981; Ratcliff and Rouder, 1998; Ratcliff and
Tuerlinckx, 2002; Ratcliff and McKoon, 2008; Voss et al., 2013;
Forstmann et al., 2016). These inter-trial variabilities have been
reported to allow for different patterns of response time (RT)
distributions for both correct and error responses and for a better
fit to experimental data (Ratcliff and Rouder, 1998; Ratcliff and
Tuerlinckx, 2002; Ratcliff and McKoon, 2008; Voss et al., 2013;
Forstmann et al., 2016).

Here, we propose an extended Bayesian model (eBM) that
incorporates the inter-trial variability assumptions made in the
eDDM. The usefulness of the eBM is that it combines the
variability parameters of the eDDMwith the additional feature of
being able to model the translation of sensory input to evidence
for a decision (Park et al., 2016). To do this, we use the previously
established BM as a basis to derive the more complex eBM. To
validate the eBM, we show, using simulations, that the eBM, just
as the eDDM, can model two experimentally well-established
behavioral effects: (i) the effect of task difficulty on RT and
accuracy (Philiastides et al., 2006; Ratcliff and McKoon, 2008;
Forstmann et al., 2016) and (ii) differences in RTs between correct
and error responses (Luce, 1986; Ratcliff and Rouder, 1998;
Ratcliff and McKoon, 2008; Forstmann et al., 2016). In addition,
we demonstrate fitting of the eBM to concrete multi-subject

behavioral data (Park et al., 2016). There are two main findings.
Firstly, we find that constraining the eBMwith evidence extracted
from the stimulus provides for a better model, as already shown
for the BM (Park et al., 2016). Secondly, using this exact input
version of the eBM, we show that, with just 200 trials per
condition, the additional variability parameters as used in the
extended DDM provide for a better model for the behavioral data
of the easy conditions.

MODELS

In the following, we will describe the particular models
considered here in more detail; starting with variants of the
DDM, followed by their Bayesian versions and a description of
how one can easily change the sensory input in these Bayesian
models to improve model fits to behavioral data.

Pure Drift-Diffusion Model (pDDM)
We define the pDDM (Bogacz et al., 2006; Wagenmakers et al.,
2007) as a discretized version of a simple Wiener diffusion
process:

ydt − ydt−△t = vd△t +
√

△tsdεdt (1)

where ydt is the decision variable at the given time t, △t is the
time-step length, vd stands for the drift rate, sd is the diffusion
rate, and εdt ∼ N(0, 1) is a standard normally distributed noise
variable.

Applied to two-alternative perceptual decision making tasks,
the model describes the decision process as a random walk in

which steps have mean vd△t and variance △tsd
2
. The walk

continues until it crosses one of the bounds at ±Bd which
determines the choice and response time. For a non-biased
decision the starting point is set mid-way between the two
boundaries at 0. However, the model can also account for the
preference of participants toward one of the alternatives using
a bias parameter, zd, which shifts the starting point toward one
of the two boundaries. The values of zd should be constrained
between the upper and lower boundary values. The value of
the drift rate models the difficulty of the decision: Decreasing
the drift rate increases the number of errors and slows down
decisions, that is, small drift rates model hard decisions (Ratcliff
and McKoon, 2008; Voss et al., 2013). Furthermore, the pDDM
allows for an additional delay which may result from basic
sensory processing and motor production. This delay is modeled
as a non-decision time component, Td

nd
. An overview of pDDM

parameters is given in Table 1.

Extended Drift-Diffusion Model (eDDM)
The eDDM has mainly been developed by Ratcliff starting in
the 1970s (see Ratcliff et al., 2016 for review). The currently
most often used version adds the following inter-trial parameter
variabilities (see Table 1) to a continuous version of the pDDM:

• The drift rate is drawn from a Gaussian distribution vd ∼
N(vd, ηd) where vd is the mean drift rate, and ηd is the
variability of the drift rate.
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TABLE 1 | Model parameters for the extended Bayesian model (eBM) and the extended drift-diffusion model (eDDM).

eBM/BM eDDM/pDDM

Parameter Name Constraint Parameter Name Constraint

λb Bound – Bd Boundary –

σ̄b Mean noise level – v̄d Mean drift rate –

ηb
N
† Noise level variability – ηd† Drift variability –

p̄b0 Mean prior p̄b0 < λb z̄d Mean bias −Bd < z̄d < Bd

sb
P
† Prior variability sb

P
< 2(λb − p̄b0 )

sdz † Bias variability sdz < 2(Bd ± Zd )

Tb
nd

Mean non-decision time – Td
nd

Mean non-decision time –

sbt Non-decision time variability – sdt † Non-decision time variability –

σ̂b Internal uncertainty – – – –

πb
l

Lapse probability – – – –

πb
to Time-out lapse probability – – – –

Each row lists those two parameters which are related between the two models. The parameters indicated by † are additional to the pure models, i.e., the pure drift-diffusion model

(pDDM) and the Bayesian model (BM; see Park et al., 2016). For the exact mathematical relationships, see Equations (2–19).

• The bias is drawn from a uniform distributions zd ∼
U
(

zd − sdz/2, z
d + sdz/2

)

where sdz is the variability of bias.

Values of sdz also should be constrained so that the samples
from this uniform distribution does not exceed any of the
boundaries,±Bd.

• The non-decision time is drawn from a uniform distribution
Td
nd

∼ U
(

T
d
nd − sdt /2,T

d
nd + sdt /2

)

where sdt is variability of

non-decision time.

Variability of the drift rate can model response distributions in
which error responses are slower than correct responses while
variability in bias can explain faster errors (Ratcliff and Rouder,
1998; Ratcliff and McKoon, 2008). Variability of non-decision
time has been shown to improve model fits in the presence of
contaminant RTs (Ratcliff and Tuerlinckx, 2002).

Bayesian Model (BM)
We have previously introduced the BM as a Bayesian decision
model which is equivalent to the pure DDM (Bitzer et al., 2014).
The BM describes the decision making process as probabilistic
inference about the identity of a stimulus based on the decision
maker’s assumptions about the possible identities. The BM
captures these assumptions in probabilistic generative models
which define how likely particular sensory observations are for
each considered alternative. Consequently, one of the major
advantages of this model is that it establishes a direct link between
sensory observations and the decision process. As we have shown
before, modeling this link provides for greatly improved models
and provide for better fits to the behavioral data (see Park et al.,
2016).

The BM consists of four components: (1) a noisy sensory
input process, (2) probabilistic generative models for each
alternative, (3) an evidence accumulation process based on
Bayesian inference, and (4) a decision policy; see Figure 1 for a
schematic.

The sensory input process models the noisy stimulus features
that the brain observes. In particular, feature values are sampled

at each time point t within a trial from a Gaussian distribution

with mean µb
t and variance 1tσ b2 where 1t is the time-

step length, as before. For example, a basic, DDM-equivalent
model of a stimulus which ignores stimulus changes over time,
would set µb

t to a fixed value throughout the trial. This value
is associated with the stimulus identity in that trial. The noise
standard deviation σ b (also referred to as “noise level” in the
following) captures the amount of noise or unknown variability
in the observed stimulus features that the brain observes. The
noise level, thus, captures variability in the stimulus as well as
unspecific “neural noise.”

The generative models within the BM mirror the input
process. They, too, are Gaussian with mean µ̂b

i and variance

1tσ̂ b2 and capture the decision maker’s assumption that
observed stimulus features will be sampled from the Gaussian
corresponding to alternative i when the stimulus has identity
i. We also interpret the standard deviation σ̂ b as the internal
uncertainty of the decision maker about the association of
stimulus feature observations with decision alternatives. Note
that in the case of two-alternative forced choice tasks there are
only two alternatives, but the model itself is not limited to this
number.

Given prior beliefs of the decision maker about the
stimulus identity, p (Ai), and a sequence of observed stimulus
features, X1:t , the BM uses Bayesian inference to compute the
corresponding posterior beliefs p (Ai|X1:t) at each time point t
(see Bitzer et al., 2014 for details). For just two alternatives the
prior beliefs can be represented by a single value pb0 = p (A1) =
1− p (A2) which is the prior probability of the first alternative.

The decision policy in the BM is a criterion which makes a
decision when any of the posterior beliefs p (Ai|X1:t) first reaches
the decision bound λb. The alternative i for which this is the
case will be the selected choice. Finally, a non-decision time
component, Tb

nd
, is added to the time point identified by the

decision criterion to compute the RT.
To summarize, the principle parameters of the BM are the

noise level σ b, the internal uncertainty σ̂ b, the prior belief pb0, the
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FIGURE 1 | A schematic of the BM and its extensions. The BM consists of: (i) an input process which translates the sensory stimulus into an abstract

representation, xt, which is drawn from a Gaussian distribution with the mean µb
i
and the variance 1tσb

2
, (ii) the generative models are used to compute the

likelihood of the current observation under different alternatives, P(xt|Ai ), (iii) Bayesian inference computes recursively the posterior beliefs P(Ai |X1:t ) given the previous

beliefs, (iv) decisions are made using the policy which compares, at each time-step, for each alternative, the posterior belief with the bound. In addition, to derive the

extended BM, two specific extensions are added to incorporate the variabilities of the noise level and the prior: The noise level value for each trial is randomly

distributed according to an inverse Gaussian distribution. Consequently, the internal uncertainty value for each trial is computed using the corresponding noise level

value and Equation (6). The prior parameter for each trial is drawn from a uniform distribution (Adapted and modified with permission from Bitzer et al., 2014).

decision bound λb and the non-decision time Tb
nd

(see Table 1

for overview of parameters). The means µb
i and µ̂b

i will either
be determined from the stimulus used in an experiment, or are
set to 1 and -1 for the different alternatives. By choosing these
values we followed the original proposal in Bitzer et al. (2014).
However, this choice is arbitrary and we could have chosen other
values without changing results provided that we scale the noise
level and bound appropriately (cf. Section Internal Uncertainty
and Arbitrary Scaling of Model Parameters). Additionally, we
have previously introduced three extra parameters: variability of
non-decision time, sbt , lapse probability, π

b
l
, for modeling entirely

random lapses, and time out lapse probability, πb
to (Park et al.,

2016; see Section Methods for more details).

Extended Bayesian Model (eBM)
We will now derive the eBM from the BM by incorporating the
inter-trial variability assumptions for parameters similar to the
eDDM.

As the eDDM introduced inter-trial parameter variability
to the pDDM, we must now identify equivalent inter-trial
variabilities of BM parameters. As we will see, this is not
straightforward and requires approximations. First, we map

the eDDM parameter distributions through the equivalence
equations of Bitzer et al. (2014). These equations are:

σ̂ b2 =
∣

∣

∣

∣

∣

µb
i(r)

µ̂b
1 − µ̂b

2

(1 t)2vd

∣

∣

∣

∣

∣

(2)

σ b =
∣

∣

∣

∣

∣

sd△t

µ̂b
1 − µ̂b

2

∣

∣

∣

∣

∣

σ̂ b2 (3)

λb = eB
d

1+ eB
d

(4)

pb0 = ez
d

1+ ez
d

(5)

µb
i(r) is the mean feature value in the r-th trial, i.e., i(r) is a

function which returns the identity of the alternative from which
stimulus features were generated in trial r. Throughout this paper,
we assume that for each alternative i, we have µ̂b

i = µb
i .

These equations state that the BM prior pb0 is related to

the pDDM bias zd and that both noise level σ b and internal
uncertainty σ̂ b depend on drift vd. Specifically, Equation (3)
states that the internal uncertainty is coupled to the noise level
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when translating between pDDM and BM parameters:

σ̂ b2 = σ b

△t sd

∣

∣

∣
µ̂b
1 − µ̂b

2

∣

∣

∣
(6)

In the following, we will derive the eBM equations for the three
required variabilities of the prior, of the noise level and the non-
decision time. The variability of non-decision time in the eBM
can be directly determined from the eDDM, because both eDDM
and eBM share the same non-decision time parameters.

Translating the eDDM Bias into the eBM Prior
In the eDDM, the inter-trial variability of the bias is represented
by a random variable, Zd, with uniform distribution with mean
zd and spread sdz :

fZd
(

zd
)

=
{

1/sdz
0

(

zd − sdz/2
)

≤ zd ≤
(

zd + sdz/2
)

otherwise
(7)

We consider the random variable Zd, only in the range
(

zd − sdz/2
)

≤ Zd ≤
(

zd + sdz/2
)

. We define the random

variable Pb0 for the prior probability as the equivalent parameter
to bias in eBM:

Pb0 = u1

(

Zd
)

= eZ
d

1+ eZ
d

(8)

Note that Zd and Pb0 stand for random variables while zd and

pb0 represent their respective values. Since u1 is an invertible
function, we can write:

Zd = u
−1
1

(

Pb0

)

= log
Pb0

1−Pb0
(9)

By applying a change of variables, we obtain the exact probability
density function representing the variability of prior pb0 in the

eBM corresponding to the variability of bias zd in the eDDM:

fPb0

(

pb0

)

= fZd
(

u−1
1

(

pb0

))

.

∣

∣

∣

∣

∣

∣

du−1
1

(

pb0

)

dpb0

∣

∣

∣

∣

∣

∣

=
(

1

sdz . (p
b
0 −pb0

2
)

)

(10)

where u1
(

zd − sdz/2
)

≤ pb0 ≤ u1

(

zd + sdz/2
)

.

Translating the eDDM Drift Rate into the eBM Noise

Level
Here, we will derive how drift variability relates to variability
of the noise level. Note that as the noise level and internal
uncertainty are dependent on each other, we could have equally
derived how drift variability relates to variability of internal

uncertainty without changing the resulting predictions for choice
and RT.

In the eDDM, the inter-trial variability of the drift rate is
represented by a Gaussian distribution with mean νd > 0 and
standard deviation ηd> 0:

fV(ν
d) = 1√

2πηd
exp

(

−(νd − ν̄d)2

2ηd
2

)

(11)

We, then, define the random variable6b for the noise level as the
equivalent parameters to the drift rate in the eBM. By combining
Equations (2, 3) and assuming µ̂b

1 > µ̂b
2, we have:

6b = u2

(

Vd
)

=
∣

∣

∣

∣

∣

µb
i(r)

Vd

∣

∣

∣

∣

∣

(µ̂b
1 − µ̂b

2)

(1t)2
.

sd△t

(µ̂b
1 − µ̂b

2)

=
∣

∣

∣

∣

∣

µb
i(r)

Vd

∣

∣

∣

∣

∣

.
sd

△t
= sd

△t Vd
. µb

i(r) =
c

Vd
(12)

where c = sdµb
i(r)/△t and µb

i(r)/v
d is always positive, because

their signs both signal the identity of the stimulus associated
with the current sensory input. Again, Vd and 6b are random

variables with vd and σ b2 as their values, respectively. Inverting

u2

(

Vd
)

we get:

Vd = u
−1
2

(

6b
)

= sd

△t6b
. µb

i(r) =
c

6b
(13)

We can again apply a change of variables to determine the exact
probability density function representing the variability of the
noise level σ b in the eBM corresponding to the variability of drift
νd in the eDDM:

f6b

(

σ b
)

= fVd

(

u−1
2

(

σ b
))

∣

∣

∣

∣

∣

∣

du−1
2

(

σ b
)

dσ b

∣

∣

∣

∣

∣

∣

= fV

(

c

σ b

) |c|
σ b2

=
(

1√
2π ηd

exp

(

−
(

c

σ b
− νd

)2

/2ηd
2

))

.

( |c|
σ b2

)

(14)

where fV is the Gaussian density of Equation (11). Note that c
becomes negative for samples in which the drift is negative due
to the connection to the sensory input through µb

i(r).

Approximating eBM Parameters
Equations (10, 14) depend non-trivially on parameters of the
eDDM, such as the drift variability ηd. However, our aim is to
formulate variability of eBM parameters without reference to the
corresponding eDDM parameters and use standard probability
densities only to represent the parameter variabilities. In this way,
we can provide for variability parameters that intuitively quantify
the inter-trial variability of the corresponding parameters in the
Bayesianmodel. Therefore, we propose simple approximations of
the exact probability densities in Equations (10, 14). The resulting
eBM will have the same number of variability parameters as
the eDDM and the parameters will have the same qualitative
interpretation.
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Variability of prior
Figure 2A shows a typical example of the distribution of the
bias parameter in the eDDM (cf. Wagenmakers et al., 2007).
The corresponding exact distribution of the prior in the eBM
is shown in blue in Figure 2B. The exact distribution assigns
more probability mass to values close to 0 or 1 than to the center
values around 0.5. As the spread between these minimum and
maximum density values is moderate in relation to its average
within typical ranges of pb0, we chose to approximate the density
with a simple uniform density (cf. Figure 2B, red):

fPb0

(

pb0

)

=
{

1/sbP
0

p̄b0 − sbP/2 ≤ pb0 ≤ p̄b0 + sbP/2
otherwise

(15)

where sbP denotes the spread of the uniform distribution and pb0
represents its mean. Note that values of sbP should be constrained
in a way that the sampled prior does not exceed the model bound,
λb (see Table 1).

Variability of noise level
Figure 2C shows an example distribution of the
eDDM drift rate, νd, given typical values for νd and
ηd (cf.Wagenmakers et al., 2007). As shown here, the variability
of drift may also include values with a different sign than the sign
of the mean ν̄d. In Figure 2D we visualize the corresponding
exact distribution (blue) of the noise level given in Equation
(14), but separate the parts of the distribution that correspond
to positive and negative drift rates by plotting them on the
right- and left-hand sides of 0, respectively. In the Bayesian
model negative drift rates correspond to sampling input from
the alternative that does not represent the stimulus in that trial.
To approximate the density of Equation (14) we, therefore, need
to find a noise level variability parameter with the following
properties: (i) for large values the range of sampled noise levels
is large, (ii) the resulting density is only defined over positive
values, (iii) the resulting density has heavy tails when the
variability value is large in relation to the mean (cf. Figure 2D),
(iv) the resulting density becomes more Gaussian-like when the
variability value is small in relation to the mean, and (v) each
variability value determines a probability with which the mean
of the input is flipped to the other alternative and this probability
should approximate the corresponding probability in the exact
distribution.

Because the inverse Gaussian distribution fulfills points (i–iv),
we have based our approximation of Equation (14) on it:

f6b

(

σ b
)

= IG
(

σ̄ b, ζ b
N

)

=

√

ζ b
N

2πσ b3
. exp







−ζ b
N

(

σ b − σ̄ b
)2

2σ̄ b2σ b







(16)
where σ̄ b > 0 is the mean and ζbN > 0 is the shape parameter
of the inverse Gaussian distribution. See Figure 2D (red) for
an inverse Gaussian approximation of the corresponding exact
distribution.

The shape parameter of the inverse Gaussian distribution, ζbN ,
relates to the precision of the distribution. As we are interested in

the variability of the noise level, we define ηbN = 1/ζbN as the noise
level variability parameter in the eBM. Consequently, we re-write
Equation (16) as a function of the variability of noise level:

f6b

(

σ b
)

= IG
(

σ̄ b, 1/ηbN

)

=
√

1

2πηbNσ b3
. exp







−
(

σ b − σ̄ b
)2

2σ̄ b2σ b ηbN






(17)

To complete the approximation (point v) we need to approximate
the probability of negative drift rates for a given mean drift,
ν̄d, and drift variability, ηd. As the distribution of drift rates
is Gaussian, this probability is simply given by the Gaussian
cumulative distribution function:

PNTd = 8

(

vd = 0
)

= 1

2
( 1+ erf

(

−ν̄d

ηd
√
2

)

) (18)

where erf is the error function. Equation (18) depends on the
parameters only via the ratio ν̄d/ηd, i.e., the ratio of mean to
standard deviation of the distribution. The mean of the inverse
Gaussian distribution defined in Equation (17) is σ̄ b while its

variance is σ̄ b3ηbN . The ratio of mean to standard deviation, thus,

is equal to 1/
√

σ̄ bηbN leading to the following approximation of

the probability of a flipped input given mean noise level σ̄ band
noise level variability ηbN :

PNTb ≈ 1

2
(1+ erf

(

−
√

1

2ηbN σ̄ b

)

) (19)

Supplementary Figure 1 shows that this approximation behaves
qualitatively very similar when the corresponding parameters are
manipulated within the considered ranges.

When predicting a decision with the model, the computed
proportion represents the probability with which the sign
of input features µb

i(r) for the given trial is flipped in the

eBM. Figure 2D (red) conceptually illustrates the complete
approximation resulting from the application of this procedure to
samples from the inverse Gaussian distribution, Equation (17), in
comparison with the exact distribution derived from the eDDM
(blue), Equation (14).

Internal Uncertainty and Arbitrary Scaling of Model

Parameters
Equation (6) states that we should determine the value of the
internal uncertainty σ̂ b from the value of the noise level, when
incorporating the variability of drift in the eBM. However, the
equation also depends on the eDDM diffusion parameter sd.
Typically, this parameter is chosen to be constant in applications
of the eDDM and is arbitrarily set to sd = 0.1 (Ratcliff and
McKoon, 2008). We have argued previously that this setting is
unintuitive in the context of the BM (Bitzer et al., 2014) and use
here sd = 2.8 which leads to more intuitive bound values of
λb ≈ 0.8 instead of very small values of λb ≈ 0.52.
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FIGURE 2 | An example illustration of the distributions implementing parameter variability in the eDDM and eBM. (A) uniform distribution for the bias

parameter in the eDDM (z̄d = 0, sdz = 0.08) which is translated into (B) the exact distribution for the prior parameter in the eBM (blue curve). We approximate this

distribution with a uniform distribution (red curve) (p̄b0 = 0.5, sb
P
= 0.508). (C) The Gaussian distribution for the drift rate parameter in the eDDM

(ν̄d = 0.133, ηd = 0.12) which is translated into (D) the exact distribution over the noise level in the eBM (blue curve). We approximate this distribution with an inverse

Gaussian distribution (red curve) (σ̄b = 16.5, ηb
N
= 0.023). The values on the left-hand side of 0 represent the noise values for the “flipped input” whereas the noise

values on the right-hand side of 0 stand for “original input.”

Coupling the internal uncertainty σ̂ b to the noise level σ b

through Equation (6) deviates from our previous approaches of
letting σ̂ b vary freely (Bitzer et al., 2014), or fixing it to a constant,
stimulus-derived value (Park et al., 2016). Coupling σ̂ b to σ b

is necessary in the eBM to implement the effect of slow errors,
that is, the effect that errors are slower than correct responses
(cf. Figure 6). This is necessary, because varying the noise level
alone induces more errors and makes responses overall faster or
reduces errors while making responses overall slower, but it is
not possible to simultaneously reduce errors and make responses
faster by changing the noise level. This latter effect, however, is
needed to induce slow errors: Allowing inter-trial variability of
drift in the eDDMmixes response distributions with many errors
and slow responses (small drift) with response distributions with
few errors and fast responses (large drift; Ratcliff and McKoon,
2008). This mixing results in a response distribution with slow
errors. By coupling internal uncertainty to noise level in the eBM,
as in Equation (6), we achieve the same effect.

Exact Input Models
One advantage of translating various versions of the DDM to a
Bayesian formulation is that the Bayesian model describes how
sensory input features are translated to evidence. This means that
one can model the trial-wise stimulus and improve model fits
profoundly (Park et al., 2016).

Specifically, the Bayesian model defines a sensory input
process (green parts in Figure 1) together with a mechanism
which prescribes how this sensory input needs to be interpreted
with respect to the decision (through the generative models,
orange parts in Figure 1). We can directly link the sensory input
process in the model to the stimulus presented in any given
trial by equating the sensory input at a particular time point
within the trial with a feature value extracted from the stimulus.
For example, in the study of Park et al. (2016) the stimulus
consisted of a single white dot which jumped around one of two
targets (see Park et al., 2016; Figure 1). Consequently we used the
changing dot location as mean input feature valuesµb

i and set the
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properties of the internal generative models to the corresponding
values of the distributions which generated the stimulus. We
called the resulting model the exact input model (EXaM).

We here use the same modeling strategy in the extended
exact input model (eEXaM). The resulting eEXaM is exactly the
same as the eBM except for the mechanism of representing the
sensory stimuli: The eBM uses only average information about
the stimulus in a trial, as the standard eDDM, whereas the eEXaM
uses the particular sequence of stimulus features (dot positions)
shown in single trials to predict responses. Therefore, the eEXaM
combines both the inter-trial variability in parameters and the
within-trial variability of stimulus feature values.

Summary
In the present study, we propose two novel Bayesian models
for perceptual decision making in addition to two previously
proposed Bayesian models (Bitzer et al., 2014; Park et al., 2016).
Figure 3 shows the resulting four models with the eBM and the
eEXaM as extensions of the previously proposed pure models
BM and EXaM. Similarly, the exact input models EXaM and
eEXaM add the processing of trial-wise stimulus features to the
DDM-equivalent models BM and eBM.

RESULTS

Here, we validate and demonstrate the basic properties of the
eBM, its close relationship to the eDDM and its usefulness for
the analysis of behavioral data. In particular, we present the
following results: First, we validate the theoretically-derived exact
distributions of noise level and prior (Equations 10, 14) and
show that the eDDM and eBM make equivalent predictions.
Second, we demonstrate that the eBM with the approximate
distributions still predicts the behavioral effects captured by the
eDDM, specifically, the effect of task difficulty and differences in
response speed between errors and correct responses. Third, we

FIGURE 3 | The 2× 2 factorial structure of model space used in this

study. The first dimension differentiates the models in terms of inter-trial

variability assumptions; the pure models (red boxes) assume that the

parameters are constant across trials (BM and EXaM). Adding inter-trial

variability parameters leads to the extended models (blue boxes) in which the

noise level and prior parameters vary across trials (eBM and eEXaM). The

second dimension is about the sensory input: the DDM-equivalent models (BM

and eBM) in the first row use the average information about the stimulus plus

noise whereas the exact input models (EXaM and eEXaM) in the 2nd row use

exact input information (see Park et al., 2016).

fit the eBM to responses recorded in a previous experiment (Park
et al., 2016), replicate the findings from the corresponding study
and show in addition that the exact input variant of the eBM, the
eEXaM, explains the recorded behavior better than BM, eBM, or
EXaM when the perceptual decision task is easy.

Equivalence between eDDM and eBM
Using Exact Distributions
Equations (2–5, 10, 14) define the exact equivalence relation
between eDDM and eBM. To validate specifically the exact
distributions of Equations (10, 14) numerically we sampled
eDDM parameters and transformed them to eBM parameters
using Equations (2–5; see Section Methods for details).
Figures 4A,B exemplarily shows that the exact distributions of
prior and noise level, as defined in Equations (10, 14), closely
match the corresponding numeric distributions.

We further validated that the eBM generates the same
predictions as the eDDM when using translated eDDM
parameters. To do this, we selected six previously reported
parameter sets of the eDDM which only differed in the value
of mean drift ν̄d (Ratcliff and McKoon, 2008). For each of these
parameter sets we sampled 100,000 trials for which the particular
values of drift, prior and non-decision time varied according
to the corresponding distributions defined by the eDDM. For
each of these trials we then computed a predicted response from
the eDDM producing a response time distribution from which
we extracted RT quantiles for errors and correct responses. We
equally produced predictions for the eBM by transforming the
sampled eDDM parameters to eBM parameters using Equations
(2–5) and then using our implementation of the eBM to produce
RT distributions. As Figure 4C shows, the RT quantiles produced
by both models coincide, as expected.

Modeling Experimental Phenomena with
the eBM
Here, we show that the eBM can be used as a stand-alone model
to capture the same experimentally established phenomena that
are typically captured well by the eDDM. To do this, we
chose two well-established effects: (i) in the eDDM, behavioral
differences due to task difficulty differences across conditions
(e.g., coherence level in the random dot motion task) are
naturally represented by differences in the mean drift rate and
with a fixed drift variability. We will demonstrate that this effect
can also be captured using the eBM by adjusting the mean
noise level and fixing its variability. (ii) There are empirically
observed patterns of relative speed of correct and error RTs, e.g.,
so-called slow or fast errors (Ratcliff, 1981; Ratcliff and Rouder,
1998). In the eDDM, this is typically captured by introducing a
combination of the inter-trial variability of the drift rate and the
inter-trial variability of the bias (Ratcliff, 1981). We will show
that the combination of the equivalent parameters in the eBM,
variability of noise level and variability of prior, can reproduce
the same effects.

Modeling the Effect of Task Difficulty
With the eDDM, the effect of task difficulty is normally reflected
by the mean drift rate (ν̄d) which represents the speed of
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FIGURE 4 | Validity of exact equivalence equations (Equations 2–5, 10, 14). (A) An example histogram of σb translated from the sampled eDDM νd values (for

ν̄d = 0.133) along with the theoretical probability density function as indicated by Equation (14). Format as in Figure 2D, (B) the example histogram of pb0 translated

from sampled eDDM zd values (for ν̄d = 0.133) along with exact probability density function as indicated by Equation (10), (C) Quantile probability plot (quantiles: 0.1,

0.3, 0.5, 0.7, and 0.9) showing predicted response distributions from eDDM (crosses) and eBM (circles) based on 6 parameter sets taken from Ratcliff and McKoon

(2008). RT quantiles for correct responses are shown in blue and RT quantiles for errors are shown in red. The solid lines connect the same quantile across conditions.

The predictions of both models strongly agree, validating our implementations.

information uptake and is often interpreted as a measure of task
performance (Philiastides et al., 2006; Ratcliff andMcKoon, 2008;
Voss et al., 2013; Forstmann et al., 2016). In particular, the fits of
eDDM to the behavioral data for a random dot motion task show
that across difficulty level (coherence percentage of random dot
motion stimuli), only mean drift rates vary while the variability
of the drift rate and the variability of bias have moderately large
values (Ratcliff and McKoon, 2008). The equivalence equations
of the eBM indicate that different noise levels should achieve the
same effect as the mean drift rate in the eDDM. To show that

this is the case with the approximations, we systemically varied

the parameters σ̄ b and ηbN in the range (25 < σ̄ b < 2500) and

(0.0001 < ηbN < 0.01). To assess the effect of these parameters,
we computed the proportion correct (accuracy) and median RT
for each dataset (see Section Methods for more details). We
find that proportion correct (Figure 5A) varies from 0.55 to 1.0
while median RT (Figure 5B) varies between 450 and 720ms.

As expected, by increasing σ̄ b and fixing ηbN , the proportion

correct decreases and median RT increases. Increasing ηbN has

a less dramatic effect on both quantities; with ηbN > 0.005 and

σ̄ b > 50, the proportion correct decreases and median RT
decreases and stays within a range of 475–600ms. These effects
are also observed qualitatively in the eDDM (see Supplementary
Figure 2).

To exemplarily demonstrate how changes in task difficulty
affect the response time distributions generated by the eBM, we
chose six exemplary σ̄ b values (168, 222, 308, 564, 986, 2075)
while fixing the ηbN to a relatively large value (0.0005). The
quantile probability plot in Figure 5C shows the RT distributions
across all six datasets (100,000 trials) generated from these
parameters sets. As shown in the figure, the shape of the
quantile plot follows what is typically observed in corresponding
experiments (see Ratcliff and McKoon, 2008 for an example)
where accuracy increases with decreasing difficulty level. This
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FIGURE 5 | Modeling the effect of task difficulty with the eBM. (A) log-log plot of proportion correct and (B) median RT. The red filled dots indicate the

exemplary combinations of (σ̄b, ηb
N
) selected to illustrate the effect of task difficulty using the eBM. Each of the dots represents one difficulty condition in the

experiment conducted by Ratcliff and McKoon (2008), (C) quantile probability plot for the effect of task difficulty reproduced by the eBM: there are six conditions with

correct RT quantiles (blue circles) and error RT quantiles (red circles). The solid lines connect the same quantile across conditions. As typically also found with the

eDDM, as the difficulty level increases the accuracy decreases and RTs become slower. For both correct and error responses, the quantiles with long RTs are more

spread out across RT.

is equivalent to decreasing the mean noise level, σ̄ b, in eBM
and increasing the mean drift rate, ν̄d, in the eDDM. As the
difficulty level increases, the median RT increases and tails of the
RT distributions (the highest quantile) are spread out while there
is little variation in the lowest RT quantiles, across conditions.
This is in line with the general finding that changing ν̄d of the
eDDM will result in only a small change in the position of the
lowest quantile whereas it makes a large change in the position of
the highest quantile (Ratcliff and Tuerlinckx, 2002).

Modeling the Effect of Slow and Fast Errors
The eDDM can explain RT distributions in which errors are
slower than correct responses (slow errors) by using a large
variability of drift rate, ηd, whereas using a large variability of
bias, sdz , can generate RT distributions with fast errors (Ratcliff
and Rouder, 1998; Ratcliff and McKoon, 2008; Forstmann et al.,
2016). Consequently, we expect that for relatively large values of
the noise variability, ηbN , the eBM can account for slow errors,

while using relatively large values for the prior variability, sbP, will
lead to fast errors. In order to test this, we systematically varied
the two parameters ηbN and sbP in the range (0.0001 < ηbN < 0.01)

and (0 < sbP < 0.36), while fixing the remaining parameters.

We calculated the difference between the median RTs for correct
and error responses (Figure 6A, see Section Methods for more
details). For the used parameter ranges, the median RT difference
(correct-error responses) varies from−40 to 30mswhich is in the
same order of magnitude as the previously reported experimental
effect (Ratcliff and McKoon, 2008). As expected, the highest
median RT difference (fast errors) is obtained when we have large
sbP and low ηbN (0.0001 < ηbN < 0.0003, 0.3 < sbP < 0.3584), while

lower values of sbP combined with relatively large ηbN (0.0006 <

ηbN < 0.002, 0 < sbP < 0.19) will lead to the lowest median RT

differences (slow errors). With higher ηbN > 0.001, the median

RT difference is negative for all possible values of sbP. A similar
effect is observed with the eDDM (see Supplementary Figure 3).

We exemplarily show how the relative speed of errors and
correct RT distributions are generated by the eBM, by choosing
three exemplary pairs of sbP and ηbN values. For generating slow

errors we chose a relatively high value for ηbN ≈ 0.001 and a

low value for sbP ≈ 0.014 whereas we used a relatively small

value for ηbN ≈ 0.0001 and a high value for sbP ≈ 0.35 for
generating fast errors. Also, we used a baseline parameter-set
with no variability of noise and prior (ηbN = 0, sbP = 0)
which should generate no difference in RTs between error and
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FIGURE 6 | The eBM accounts for slow and fast errors. (A) lin-log plot of median RT difference between correct and error responses. The two red dots indicate

the example parameter values chosen for demonstrating the slow and fast errors effect in (B) quantile-quantile plot which shows how the eBM captures either slow or

fast errors. The three dotted lines depict correct and error RT percentiles (up to 100 dots per line, each dot corresponds to one of the percentiles from 1st to 100th,

excluding the percentiles with very long RT) from three datasets generated by varying the values of ηb
N
and sb

P
. The gray dotted line represents zero variability in the

noise level and prior: correct and error RTs are equal. The red-yellow dotted line above the dashed diagonal line shows the effect of fast errors (using η
b
N
≈ 0.0001,

sb
P
≈ 0.35) where the majority of error RT percentiles are faster than the ones for correct response. The blue-green dotted line below the diagonal line shows the effect

of slow errors (using η
b
N
≈ 0.001, sb

P
≈ 0.014). For all three lines, a few percentiles representing very long RTs (>1,200 ms, above 95th percentile) are not shown in

the plot.

correct responses. Figure 6B shows a quantile-quantile plot for
RTs of correct responses in comparison to errors. In this plot,
up to 100 RT percentiles (excluding only the highest percentiles
with RT exceeding 1,200ms) for correct responses are plotted
against the respective percentiles for error responses to provide
more detailed information on the comparison between error
and correct response than the median RT provides. For those
percentiles which stay above the diagonal line, the error RTs
are faster than the correct RTs (cf. red-yellow line for large sbP).
Similarly, percentiles below the diagonal line indicate slow errors
(cf. blue-green line for large ηbN). The slow errors effect increases
for increasing percentiles. For example, the difference between
the error and correct 90th percentiles (error RT: ∼970ms vs.
correct RT:∼870ms) is considerably larger than that between the
30th percentiles (error RT: 550ms vs. correct RT: 530ms). This
is indicated by the deviation of the blue-green line downwards
from the diagonal line. In contrast, the size of the fast errors effect
does not strongly depend on the RT percentile. For example,
the difference between correct and error 90th percentiles (error
RT: ∼880ms vs. correct RT: ∼900ms) is similar to that of the
30th percentiles (error RT: ∼520ms vs. correct RT: ∼540ms).
Similar effects are qualitatively observed in eDDM responses (see
Supplementary Figure 3).

Inference Based on Behavioral Data
After validating the eBM, we will now focus on how we can use
the eBM in practice to infer model parameters and to identify
model versions which best explain real multi-subject behavioral
data. Specifically, we will investigate to what extent the inclusion
of parameter variability (extended models) and sensory input
features (exact input models) can improve model fits to data (cf.
Figure 3 for an overview over the considered models).

We have previously shown that the corresponding EXaM
explains participant responses better than the DDM-equivalent
BM (Park et al., 2016). Here, our aim is to demonstrate how
the eBM can similarly benefit from exact input modeling as
implemented by the eEXaM.

In particular, we focus on two model comparison questions:
(1) Can we replicate the major finding of Park et al. (2016) and
show that the family of exact input models (EXaM and eEXaM)
can explain the behavioral data better than the family of DDM-
equivalent models (BM and eBM)? and (2) Within the exact
input models family, is the eEXaM a better model of participant
responses than the EXaM? Especially, this second question is
relevant for perceptual decision making studies, because the
literature suggests that 200 trials per condition, as in our case,
is insufficient to reliably infer about the variability parameters
of the eDDM (Voss et al., 2013; Ratcliff and Childers, 2015).
However, as our technique of exact input modeling has allowed
us to infer about model parameters with higher precision before
(Park et al., 2016), it appears reasonable to expect that 200 trials
may be sufficient to draw informative conclusions.

To address these two questions, we re-analyzed the responses
of participants from an experiment with a two-alternative forced
choice task in which participants had to decide about the mean
location of a single dot that jumped randomly around two targets
(Park et al., 2016). The task difficulty was varied by manipulating
the distance between the two targets.

We considered four models: BM, eBM, EXaM, and eEXaM.
For each model, we estimated the model parameters from the
behavioral data (choice and response time for each single trial) for
each participant and each of four difficulty levels. For parameter
inference we used EP-ABC—a Bayesian data analysis method
based on simulating responses with the model and comparing
them to the participant responses (Barthelmé and Chopin,
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2013). EP-ABC computed the posterior parameter distribution
and marginal likelihoods which we used to perform model
comparison with Bayesian model selection (see Section Methods
for more details).

Differences in Parameter Values
To compare the estimated model parameters across four
difficulty levels for 24 participants, we computed the means of
the posterior parameter distributions (see Tables 2, 3). We found
two main differences when comparing the parameters fitted by
the four models: The exact input models (EXaM and eEXaM)
had (i) a significantly higher bound and (ii) a significantly higher
variability of the non-decision time than the DDM-equivalent
models. Additionally, the mean noise level, σ̄ b, and the mean
prior, p̄b0, of the exact input models were significantly lower than
those of the corresponding DDM-equivalent models in the two
easiest conditions (D3 and D4).

Model Comparison
To address the question whether exact input models better
explain participant responses than the DDM-equivalent models
we conducted family model inference (Penny et al., 2010;
Daunizeau et al., 2014) for comparing the family of exact input

models (EXaM and eEXaM) and the family of DDM-equivalent
models (BM and eBM). Model comparison was performed by
computing the protected exceedance probabilities and model
frequencies (i.e., posterior model probabilities; Stephan et al.,
2009; Daunizeau et al., 2014; Rigoux et al., 2014) based on the
marginal likelihoods returned by EP-ABC. Addressing our first
question, we found strong evidence that exact input models
(EXaM, eEXaM) better explain the participants’ responses than
DDM-equivalent models (BM, eBM): The family protected
exceedance probability was ∼1.00 for all difficulty levels
(Figure 7A) which means that the belief that the exact input
models are more likely than the DDM-equivalent models is
nearly 100%. The family model frequency was on average above
75% (Figure 7B) which means that the probability that the
exact input models generated the data for any randomly chosen
participant is above 75%. These results are in congruence with
the findings by Park et al. (2016) that modeling the exact input
presented to the participants leads to a better model than using
the average input information in the DDM-equivalent models.

To investigate our second question we conducted a 2-
way model comparison between the EXaM and the eEXaM.
Figures 7C,D shows that neither of these two models wins
across all conditions. Rather, EXaM outperforms eEXaM in the

TABLE 2 | Means of posterior parameter distributions of BM and EXaM over the four difficulty levels for 24 participants.

Parameter BM EXaM

D1 (Hard) D2 D3 D4 (Easy) D1 (Hard) D2 D3 D4 (Easy)

λb 0.77 (0.01) 0.78 (0.01) 0.81 (0.01) 0.83 (0.01) 0.82** (0.01) 0.84** (0.02) 0.87** (0.01) 0.87** (0.01)

σ̄b 300.89 (17.90) 245.63 (12.73) 282.45 (14.00) 265.21 (10.64) 339.53 (20.71) 236.83 (13.97) 239.02** (14.22) 224.26** (13.09)

p̄b0 0.47 (0.01) 0.47 (0.01) 0.48 (0.01) 0.48 (0.01) 0.46* (0.01) 0.46 (0.01) 0.45** (0.01) 0.46** (0.01)

Tb
nd

0.55 (0.06) 0.47 (0.05) 0.43 (0.04) 0.38 (0.04) 0.55 (0.05) 0.47 (0.04) 0.42 (0.03) 0.41* (0.04)

sbt 0.41 (0.06) 0.33 (0.04) 0.27 (0.04) 0.22 (0.04) 0.51** (0.05) 0.45** (0.04) 0.40** (0.03) 0.36** (0.03)

πb
l

0.03 (0.01) 0.03 (0.01) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.03 (0.01) 0.02 (0.00) 0.03 (0.01)

πb
to 0.34 (0.03) 0.32 (0.03) 0.35 (0.02) 0.28 (0.02) 0.36 (0.02) 0.28 (0.03) 0.36 (0.03) 0.30 (0.03)

Shown are the means over participants and the corresponding standard error in parentheses. The bound (λb ) and the prior mean (p̄b0 ) are both in terms of probabilities (ranging from 0

to 1). A prior mean of 0 indicates a complete bias toward the right choice and 1 a complete bias toward the left one. Asterisks indicate a significant difference between EXaM and BM

parameters for each condition (*p < 0.05, **p < 0.01, based on a paired t-test over 24 participants). See also Table 1 for the meaning of parameters.

TABLE 3 | Means of posterior parameter distributions of eBM and eEXaM.

Parameter eBM eEXaM

D1 (Hard) D2 D3 D4 (Easy) D1 (Hard) D2 D3 D4 (Easy)

λb 0.77 (0.01) 0.79 (0.01) 0.82 (0.01) 0.84 (0.01) 0.82** (0.01) 0.85** (0.02) 0.88** (0.01) 0.88** (0.01)

σ̄b 320.56 (21.82) 249.12 (13.39) 273.18 (15.84) 256.04 (11.29) 331.77 (22.47) 224.82 (14.98) 231.46* (13.59) 205.72** (12.36)

ηb
N

0.0028 (0.0022) 0.0009 (0.0003) 0.0006 (0.0004) 0.0004 (0.0001) 0.0004 (0.0002) 0.0005 (0.0002) 0.0003 (0.0001) 0.0005 (0.0001)

p̄b0 0.47 (0.01) 0.46 (0.01) 0.48 (0.01) 0.47 (0.01) 0.46* (0.01) 0.46 (0.01) 0.46** (0.01) 0.46** (0.01)

sb
P

0.06 (0.01) 0.05 (0.00) 0.05 (0.00) 0.05 (0.01) 0.05 (0.01) 0.05 (0.00) 0.05 (0.01) 0.05 (0.00)

Tb
nd

0.56 (0.06) 0.48 (0.05) 0.43 (0.04) 0.39 (0.04) 0.55 (0.05) 0.47 (0.04) 0.42 (0.03) 0.42* (0.04)

sbt 0.42 (0.06) 0.34 (0.04) 0.28 (0.04) 0.23 (0.04) 0.51* (0.05) 0.46** (0.04) 0.40** (0.03) 0.36** (0.03)

πb
l

0.03 (0.01) 0.03 (0.00) 0.02 (0.00) 0.02 (0.00) 0.02 (0.00) 0.03 (0.00) 0.02 (0.00) 0.02 (0.01)

πb
to 0.38 (0.03) 0.34 (0.02) 0.40 (0.02) 0.33 (0.02) 0.36 (0.02) 0.30 (0.02) 0.37 (0.02) 0.34 (0.03)

Format as in Table 2, see also Table 1 for the meaning of parameters.
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FIGURE 7 | Results of random-effects Bayesian model comparison across four difficulty conditions for 24 participants, (A) protected family exceedance

probability and (B) family model frequency for family inference between exact input models and DDM-equivalent models. (C) Protected exceedance probability and

(D) model frequency for model comparison between EXaM and eEXaM. Protected exceedance probability is the estimated probability that the given family of models

wins the model comparison in the population of participants. For (A,C) the red dashed line represents the threshold indicating very strong evidence for a model (0.95).

The model frequency refers to the probability that a randomly selected participant behaves according to the considered family of models. For (B,D), the red dashed

line indicates chance level and error bars indicate the posterior standard deviation of the estimated model frequencies.

most difficult condition (D1) whereas the reverse is true in the
easiest condition (D4). Specifically, the protected exceedance
probability (Figure 7C) is nearly 85% for EXaM in D1, and
above 88% for eEXaM in D4. Similarly, the model frequency
(Figure 7B) shows the same effect: In D1 the model frequency
for EXaM is above 87% and in D4 the model frequency for
eEXaM is above 86%. Furthermore, exceedance probabilities and
model frequencies reach intermediate values in the intermediate
difficulty conditions (D2 and D3) indicating that the two models
cannot be discriminated clearly in these conditions. Across
all conditions, Figures 7C,D suggests that there is a gradual
relationship between the usefulness of parameter variabilities
in explaining participant responses and the difficulty of the
decisions: As decisions become easier the eEXaM becomes more
likely.

In addition, we investigated whether we find the same trend of
results when conducting a 2-way model comparison between the

DDM-equivalent models (BM and eBM). However, the results
look very different: the protected exceedance probability is above
89% for the BM in the D1 to D3 conditions (Supplementary
Figure 4A), and nearly 74% for the D4 condition. In analogy,
the model frequency is above 75% for BM in all conditions
(Supplementary Figure 4B). These results show that when not
using the exact input, there is not much evidence, given these
data, for additional inter-trial parameter variability. This finding
is in stark contrast to what we found for the exact input models
and may hint at why the literature suggests that variability
parameters cannot be determined reliably, see Discussion.

DISCUSSION

We have derived an eBM for perceptual decision making by
translating commonly used extensions of the DDM to an
equivalent Bayesian formulation. Specifically, we have shown
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how the inter-trial variability of the parameters “noise level”
and “prior” in a Bayesian model can emulate the corresponding
variability of “drift” and “bias” parameters in the extended
drift diffusion model. To mathematically simplify the resulting
extended Bayesian (eBM) model we proposed approximations
for the derived parameter distributions and showed that the
resulting model reproduces key behavioral effects reported in the
literature, such as the effect of task difficulty, and differences
in response time of correct responses and errors. We further
demonstrated the practicality of the eBM for the analysis of
experimentally observed response behavior by re-analyzing a
dataset from recent work (Park et al., 2016). Crucially, for
the analysis of this dataset, we provided the known trial-wise
spatiotemporal details of the stimulus to the eBM. Similar to
previous findings (Park et al., 2016), our results showed that this
exact input model provides for a better model. Only when using
exact input models, we found support for the additional inter-
trial variability of the eBM. This was not the case when not using
exact input models: in this case we found that the best model is
the pure DDM-equivalent model, without using the additional
variability parameters.

The here presented exact input models extend the line of work
on including spatiotemporal details of the stimulus into model-
based analyses of decision making behavior (Brunton et al., 2013;
Park et al., 2016). In accordance with previous results (Park
et al., 2016), group-level model comparison (Figure 7) indicated
that the exact input models (EXaM and eEXaM) explain choice
and response times better than the DDM-equivalent models
without such exact input (BM and eBM). Furthermore, the
fitted values for the “bound” parameter were significantly higher
in the exact input models compared to the DDM-equivalent
models (Tables 2, 3). This suggests that the exact input models
explained a larger portion of response times using the evidence
accumulation mechanism as compared to the DDM-equivalent
models, because with a larger bound decisions tend to be slower
and a smaller portion of the participant’s response times remains
to be explained as non-decision time. Both findings together
strongly suggest that the exact input models are better models of
the decision making process than the DDM-equivalent models.

Using exact input models not only lead to a general increase
in the explanatory power of the models, but also increased the
sensitivity of model comparison between pure and extended
models. Using the stimulus features as input to the models,
we found evidence that the extended EXaM (eEXaM), which
includes inter-trial parameter variability, explains participant
responses better than the EXaM, which uses constant parameters,
when decision are easy (Figure 7). In contrast, we did not find
corresponding evidence with the DDM-equivalent models which
only use average stimulus information as input (Supplementary
Figure 4): The BM by far outperforms the eBM in all conditions.

The observed increase in sensitivity of the exact input models
for using additional variability parameters demonstrates the
power of including within-trial changes of stimulus information
into perceptual decision making models. Especially, it has
previously been reported that inter-trial variability parameters of
the eDDM can only be identified from large datasets (Voss et al.,
2013; Ratcliff and Childers, 2015). With the eEXaM, however, we

find evidence for inter-trial parameter variability in amoderately-
sized dataset with 200 trials per participant and condition. This
improvement of explanatory power over the standard DDM
may be crucial for differentiating the computational mechanisms
underlying perceptual decision making behavior (Brunton et al.,
2013; Park et al., 2016). This explanatory power may also enable
novel model-based neuroimaging studies for studying the neural
basis of perceptual decision making and related underlying
mechanisms (Philiastides et al., 2006; Frank et al., 2015; Turner
et al., 2015).

Note that the evidence for variability parameters in exact
input models is based on model comparison and is not
necessarily related to the ability to identify particular values for
these parameters. In fact, we found that the inferred posterior
distributions over variability parameters are almost as wide as the
corresponding priors suggesting that these parameters could not
be identified well (see Figure 8 for an example). However, using
model comparisonwe can state that some parameter variability in
the considered ranges is beneficial for modeling the responses for

FIGURE 8 | Visualization of parameter distributions. (A) Prior densities for

each parameter in Table 4, (B) example (marginal) posterior parameter

densities of the eBM for participant 17, condition 40.
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TABLE 4 | Inferred parameters in the models with their prior distributions.

Parameter Prior Prior Parameters

Mean Std

λb Uniform 0 1

σ̄b Log-normal 5 1

ηb
N
† Log-normal −10 3

p̄b0 Uniform 0 1

sb
P
† (cf. Figure 8A) −2 1

Tb
nd

Log-normal −1.5 1

sbt Log-normal −2 1

πb
l

(cf. Figure 8A) −1 1

πb
to Uniform 0 1

The parameters indicated by † are the ones specific to the extended models (eBM and

eEXaM).

easy decisions, but we cannot reliably pin down a specific amount
of parameter variability that would best fit to the responses.

Enriching decision models with spatiotemporal details of the
stimulus is not limited to Bayesian decision models. Brunton
et al. (2013) demonstrated how a DDM can be used to model
stimulus fluctuations in the form of brief pulses. The equivalence
between the DDM and a corresponding Bayesian model (Bitzer
et al., 2014) suggests that more general, continuous stimulus
fluctuations can also be incorporated into DDMs. In fact,
Equation (13) states that the drift rate of a DDM depends on the
mean stimulus feature value currently presented to the subject
(µb

i(r)). For the single dot task considered here, this prescribes

that the drift of a corresponding DDM should equal to the scaled
x-position of the currently presented dot, as pointed out by
one of our reviewers. Similarly, stimulus features may modulate
energy landscapes of attractor models (see Wang, 2002; Insabato
et al., 2014). The additional advantage of a Bayesian formulation
is that it provides for a formally rigorous connection between
raw stimulus features and updates of a decision variable and,
thus, provides the not necessarily intuitive computation for how
spatiotemporal details of the stimulus affect the decision, also for
potentially more complex stimuli such as multi-sensory stimuli.

We found that the eEXaM became increasingly the better
model than the EXaM in explaining participant responses as the
decisions became easier (Figures 7C,D). Although, striking, we
can only speculate about a possible cause for this finding: one
possible reason might be that the additional inter-trial parameter
variabilities in the eEXaM equip the model with the ability to
vary the strength with which a stimulus affects the decision
across trials. That is, in one trial a participant may follow the
stimulus quite closely while in another only casually and the
eEXaM can capture this by allowing the noise level to vary across
trials. This mechanism, however, appears to interact with the
difficulty of the decision as it only appears to be important for
easy decisions. We speculate that this is because in hard decisions
the model already has to use relatively high noise levels to explain
responses such that the additional variability of the noise level
does not significantly contribute to explaining the responses. This
is supported by our parameter inference results (Tables 2, 3)

where we found that the mean noise level decreased from hard
to easy decisions in the EXaM and eEXaM while the particular
values were similar between both models for any given difficulty.

We demonstrated the applicability of the eEXaM to a two-
alternative forced choice paradigm which is based on a specific
single dot stimulus (Park et al., 2016), but the model also
applies to other paradigms. For example, the model can be
easily modified to include multi-alternative decisions by adding
internal generative models (cf. Figure 1) for each additional
decision alternative. The eEXaM may also be applied to any
stimulus for which a sequence of feature values can be extracted
which describes the evolution of the stimulus within a trial. For
the common random dot motion stimuli such feature values may
be the so-called motion energy (Kiani et al., 2008) at a given
time point. Further extension of the model for multidimensional
stimuli, for example, comprising of an auditory and a visual
dimension are conceivable as well. Allowing for different noise
levels and internal uncertainties in the different dimensions
would then enable one to study dynamic effects of multi-sensory
integration in response time distributions.

We provided approximations for exact probability
distributions Equations (10, 14) to make the eBM formulation
independent from the eDDM parameters. Despite our efforts
to make the eBM equivalent to the eDDM, there are conditions
in which we expect our approximations to introduce slight
deviations from the eDDM (i.e., the approximated distributions
deviate from exact distributions). Specifically, when the
distribution of the prior in the eBM is wide or the mean
prior is far from 0.5, the approximated distribution of the
prior (Equation 15) deviates more strongly from the exact
distribution (Equation 10). Also, the approximated distribution
of the noise level (Equations 17, 19) differs more from the
corresponding exact distribution (Equation 14), when the
skewness of the inverse Gaussian becomes larger i.e., when
there is large variability of noise level in relation to its mean.
However, we expect that these deviations do not lead to relevant
differences in behavioral predictions of eBM and eDDM in
typical experimental conditions, because the behavioral effects
of parameter variability are small and it has been previously
found that the eDDM is relatively robust against changes
in the precise shape of the parameter distributions (Ratcliff,
2013).

In the present work we have chosen to relate drift rate
variability in the DDM to noise level variability in the
BM based on Equations (2–5). However, we have previously
also presented an alternative parameterization of the BM
in which drift relates to the mean input instead to the
noise level (Bitzer et al., 2014, Equations 16–19). Our main
motivation for not using this parameterization is that it does
not correspond well to the situation in the single dot task
experiment (Park et al., 2016). In particular, we assume that
the mean input µb is constrained by the actual dot positions
and we did not want to mix this effect with subject-specific
decision making properties. Consequently, we chose the present
parameterization in which DDM-drift translates to a subject-
specific modulation of the noise around the stimulus-driven
(exact) mean input.
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The core decision making mechanism implemented by the
DDM rests upon two effective parameters which are often
chosen to be drift and bound while the diffusion coefficient is
arbitrarily fixed. In the BM we also use 2 effective parameters:
noise level (σ b) and bound while fixing the internal uncertainty
(σ̂ b), to a value derived from σ b (Equation 6). We included the
remaining parameters (related to lapses, non-decision time and
bias), because we have found in previous work that they improve
fits of the model to behavioral data (Park et al., 2016).

Note that the work proposed here differs from Bayesian
schemes which have been used to estimate the parameters of
the DDM from behavioral data (Wiecki et al., 2013) as it uses
Bayesian inference to model the actual decision mechanisms
opposed to using Bayesian inference just for data analysis. The
eBM is proposed in line with other models that formalize the
perceptual decision making process as noisy accumulation of
sensory observations (Dayan and Daw, 2008; Drugowitsch et al.,
2012). The eBM conceptually connects to predictive coding
(Rao and Ballard, 1999) by interpreting the decision making
process as comparison of top-down predictions to the observed
sensory input (Summerfield et al., 2006; Bitzer et al., 2014,
2015; Summerfield and de Lange, 2014). Further, the eBM
quantifies decision making behavior using an estimate of the
subjective, internal uncertainty of the decision maker about his
or her sensory observations. These properties of the eBM and
other Bayesian models have been found beneficial in developing
computational descriptions of brain function (Friston, 2010;
Pouget et al., 2013).

METHODS

The Bayesian Model (BM)
In this section, we will briefly describe the Bayesian model (BM)
used as the core of eBM in this paper (Bitzer et al., 2014). The
BM consists of (1) sensory input process, (2) generative models
for each alternative, (3) the evidence accumulation process with
Bayesian inference, (4) decision policy. The first component is the
input model while the remaining three components implement
the decision model.

The Sensory Input Process
The decision making process in the BM is based on encoding
the time-dependent features of the sensory input that are used
to compute the evidence for each alternative (Figure 1i). The BM
can use the exact information about the stimulus as input to the
decisionmodel (Bitzer et al., 2014; Park et al., 2016). For example,
this information can be the location of dots on the screen. In
the BM, the sensory stimulus is represented by the feature values
xt which are assumed to be distributed according to a Gaussian
distribution:

xt ∼ N(µb
i(j),1tσ b2 I) (20)

where µb
i(j) refers to the mean feature values for the i-th

alternative and j-th trial, I is the identity matrix, and 1tσ b2 is
the variance of the input noise. Note that the BM can incorporate
sensory features with a dimension higher than one.

The Generative Models
The generative models (Figure 1ii) in the BM are used to
compute the internal belief of the decision maker about the
observed stimulus. For each alternative, Ai, there exists a
generative model that maps the abstracted observation, xt ,
to a probability density value of that observation given that
alternative, p(xt |Ai) as a Gaussian density function:

p(xt|Ai) = N(µ̂b
i , ∆tσ̂ b2 I) (21)

where µ̂b
i is the mean feature value for the i-th alternative and

σ̂ b is the internal uncertainty of the sensory observations. Note
that σ̂ b is determined by the sensory input noise, σ b, based on
Equation (6).

The Evidence Accumulation Process
The model accumulates the evidence for an alternative by using
Bayesian inference recursively (Figure 1iii). This process starts
from a prior probability of each alternative, p(Ai). At each time-
step t, the model computes the posterior belief, p(Ai|X1:t), that
each alternative is true given the sensory inputs over time:

p(Ai | X1:t) =
p(xt|Ai) p(Ai|X1:t−1)

∑M
j = 1 p(xt|Aj) p(Aj|X1:t−1)

(22)

whereM is the number of alternatives and X1:t = {x1, x2, . . . , xt}
is a set of sequentially determined sensory observations up to the
current time-step.

The Decision Policy
The decision policy uses the computed posterior belief p(Ai|X1:t),
as the decision variables of the model, to account for decision
criteria (Figure 1iv). In the BM, a decision is made when
one or more of these posterior beliefs reach a set bound,
λb. Consequently, the selected alternative is the one with the
maximum posterior belief that exceeds the bound:

max
i

p(Ai|X1:t) ≥ λb (23)

Modeling Lapses
In previous work (Park et al., 2016), we equipped the BM with
the ability to explain a response as random lapse. This makes
the model robust against outliers during fitting of data. We
followed similar approaches in the literature (Drugowitsch et al.,
2012) and modeled lapses as responses with random choice and
uniform response time distribution U(0,maxrtb) where maxrtb

is the maximum allowed response time. The model selects a
trial as a lapse trial with “lapse probability,” πb

l
. To model

lapses in which the response of the participant is timed out the
model additionally selects lapses which become timed-out with
a probability πb

to. Therefore, the model will produce a timed-out

lapse trial with probability πb
l
∗πb

to.

Parameter Sweeps
To demonstrate how the eBM captures the task difficulty and
slow and fast errors, we used parameter sweeps over the
selected eBM parameters. For modeling the task difficulty effect
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(Figures 5A,B), we varied the two parameters σ̄ b and ηbN in the

range (25 < σ̄ b < 2500, 0.0001 < ηbN < 0.01) while fixing

the remaining parameters (λb = 0.8, p̄b0 = 0.5, sbP = 0.2,

Tb
nd

= 0.4, sbt = 0.2, πb
l
= 0, πb

to = 0). For modeling the slow
and fast errors effect (Figure 6A), we varied the two parameters
ηbN and sbP parameters in the range (0.0001 < ηbN < 0.01, 0 <

sbP < 0.3584), while fixing the remaining parameters (λb = 0.8,

σ̄ b = 222.5538, p̄b0 = 0.5, Tb
nd

= 0.4, sbt = 0.2, πb
l

= 0,

πb
to = 0). For both parameter sweeps, we set the eBM mean

feature values toµb
1 = 25 andµb

2 = −25 and used1t = 0.05.We
simulated a dataset with 100,000 decisions for each parameter-
set. The responses with RT bigger than 5,000ms were marked
as timed-out trials. Finally, we calculated the proportion correct
and median RT (for task difficulty, see Figures 5A,B), and the
difference between median RT for correct and error responses
(for slow and fast errors, see Figure 6A).

Data of Park et al. (2016)
The experiment used a novel behavioral paradigm for studying
perceptual decision making. This paradigm consists of a two-
alternative forced choice task with four difficulty conditions (200
trials each) presented in a randomized order. In each trial, after a
random fixation period (300–500ms), two yellow targets, left and
right from the screen center, appeared on the screen (for 700ms).
After this target presentation period, a white dot started jumping
randomly around the two targets. The location of the white dot
changed every 93.2ms and was shown until the participant made
a decision up or until a maximum of 25 iterations (2.33 s) after
which the response was timed out. The task had four difficulty
levels in which the horizontal location of the target positions
differed: Targets were either 55 (easy), 40, 25, or 10 (hard) pixels
left or right, respectively, from the center of the screen. The
visual stimuli were generated before the experiment and every
participant was presented with the same set of rendered dots
although in a different, randomized order of presentation. The
time-dependent positions of the dots were stored and used for
fitting the exact input models.

Inference over Models Given Behavioral
Data
We used EP-ABC (Barthelmé and Chopin, 2013) for Bayesian
inference of model parameters and estimation of the marginal
likelihood for subsequent model comparison. This method
combines a Monte-Carlo approach to inference (ABC) with
a variational Gaussian approximation of parameter posterior
distributions (EP). Specifically, EP-ABC does not require an
analytic definition of the likelihood of the model and instead only
relies on simulations from the considered model. For details of
this method see Barthelmé and Chopin (2013).

For our analyses here we used a Python implementation of
EP-ABC that is available at http://github.com/sbitzer/pyEPABC.
We independently ran EP-ABC for each of the four models (BM,
eBM, ExaM, and eEXaM), for each condition (D1:Hard, D2, D3,
and D4:Easy) and each of the 24 participants, leading to 384
runs of EP-ABC in total. The data set in each run comprised
of the choices and RTs for the 200 trials of the particular

chosen participant and condition. We used seven free parameters
for the basic models with two extra variability parameters for
the extended models (Table 4). For each participant and each
difficulty level, the behavioral data (RT and choice responses) are
used to estimate the parameters.

Being a Bayesian method, EP-ABC requires the definition
of a prior distribution over model parameters. Specifically, our
implementation of EP-ABC assumes a multivariate Gaussian
prior and returns a multivariate Gaussian posterior. To
allow non-Gaussian distributions, especially, distributions
which are restricted to certain value ranges, we used two
parameter transformations as in Park et al. (2016): (1)
exponential transformation, and (2) uniform transformation.
The exponential transformation maps a real value to a positive
real value. Thus, it transforms a Gaussian distribution into a
log-normal distribution. The uniform transformation maps a
real value through the cumulative Gaussian density function
and then scales and shifts the values further. Thus, it transforms
a standard normal distribution to a uniform distribution in a
desired range, but can implement biases toward certain regions
in this range when the transformation is applied to a different
Gaussian distribution.

We assume that the parameters are a priori uncorrelated and,
consequently, set the covariance of parameters in the prior to 0.
Each parameter prior is then defined by a univariate Gaussian
distribution potentially together with a transformation. The
particular parameter prior settings we used in our analyses are
shown in Table 4 and the resulting univariate prior distributions
are depicted in Figure 8A.

EP-ABC itself has parameters which trade off the
computational burden of the method with the quality of
the approximate Bayesian inferences. For our analysis we
selected parameters focusing on the quality of the inference. We
set the acceptance threshold to ε = 0.05 which means that a
sampled response was accepted when it had the same choice as
the participant in that trial and the RTs differed by no more than
0.05 s. The minimum number of accepted samples was 2,000,
the maximum number of samples per trial was 6,000,000, alpha
was 0.5, veps was 0.2 and we passed through the data twice. See
Barthelmé and Chopin (2013) and the documentation of EP-
ABC at http://github.com/sbitzer/pyEPABC for interpretation of
these parameters.

The output of EP-ABC is a multivariate Gaussian posterior
distribution as well as the marginal likelihood of the model. To
get parameter values in their original space defined by the model,
we sample from the posterior distribution and transform the
samples through the associated functions. The reported posterior
means (Tables 2, 3) are the means of the transformed samples.
An example of univariate slices of the full posterior probability
density is illustrated in Figure 8B.

Bayesian Model Selection
To formally compare the models, we used the random-effect
Bayesian model selection (RFX-BMS) procedure (Stephan et al.,
2009; Daunizeau et al., 2014; Rigoux et al., 2014) which computes
the protected exceedance probability and model frequency(on
family level or 2-way model comparison) based on the marginal
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log-likelihood of produced by EP-ABC method. The RFX-
BMS procedure was applied using the Variational Bayesian
Analysis (VBM) toolbox, as available at: http://sites.google.com/
site/jeandaunizeauswebsite/code/rfx-bms.
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