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Abstract: Phenylethanoid glycosides (PhGs) are widely distributed in traditional Chinese medicines
as well as in other medicinal plants, and they were characterized by a phenethyl alcohol (C6-C2)
moiety attached to a β-glucopyranose/β-allopyranose via a glycosidic bond. The outstanding activity
of PhGs in diverse diseases proves their importance in medicinal chemistry research. This review
summarizes new findings on PhGs over the past 10 years, concerning the new structures, their
bioactivities, including neuroprotective, anti-inflammatory, antioxidant, antibacterial and antivirus,
cytotoxic, immunomodulatory, and enzyme inhibitory effects, and pharmacokinetic properties.
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1. Introduction

Phenylethanoid glycosides (PhGs) are a class of water-soluble compounds widely distributed in
traditional Chinese medicines (TCMs), as well as other medicinal plants. They have been detected
in roots, stems, leaves, flowers, fruits and seeds without organ selectivity, while their concentrations
in each organ may vary a lot [1,2]. As their names suggest, PhGs are characterized by a phenethyl
alcohol (C6-C2) moiety attached to a β-glucopyranose/β-allopyranose via a glycosidic bond. The core
structures are often abundantly decorated with substituents such as aromatic acids (e.g., caffeic acid,
coumaric acid, cinnamic acid, ferulic acid, and isoferulic acid) and various saccharides (e.g., rhamnose,
xylose, apiose, glucose, lyxose, allose and arabinose) through ester or glycosidic linkages, respectively.
The outstanding activity of PhGs in diverse diseases proves their importance in medicinal chemistry
research. Several reviews on PhGs regarding their isolation and purification, structure elucidation,
chemotaxonomy and biotransformations, and pharmacological activities have been reported [3,4].
Recently, interest in PhGs has been growing, with a significantly increasing volume of literature
describing PhGs1 novel structures, diverse bioactivities, and evident roles in the prevention and
treatment of various human diseases as well as their pharmacokinetics having been reported. Such rich
information prompted us to review papers on novel PhG structures, their pharmacological activities
and pharmacokinetics published in the last decade.

2. Phytochemistry

Since a 2008 review [4], more than 100 new PhGs have been isolated and identified.
Compared with the known PhGs reported in [4], some of the new ones differed in their core structures,
while others differed in the number and/or position of the substituents. The new PhGs with a typical
phenethyl alcohol (C6-C2) moiety attached to a β-glucopyranose/β-allopyranose are listed in Table 1.
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Table 1. The new phenylethanoid glycosides with typical phenethyl alcohol moieties attached to a β-glucopyranose/β-allopyranose.
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Table 1. Cont.

No. Compounds R1 R2 R3 R4 R5 R6 R7 Source Bioactivity Reference

1 Acanmontanoside OH OH H H 4-O-Syringoyl-Rha Caffeoyl H Acanthus
montanus - a [5]

2 Kansanoside A H H H Gal H H Xyl Asclepias syriaca - a [6]

3 Bacomoside A OH OH =O p-hydroxy-benzoyl H H H Bacopa monniera - b [7]

4 Bacomoside B1/B2 OH OH OCH3 Caffeoyl H H H B. monniera Inhibitory effects on
Aβ42 aggregation [7]

5 Himaloside A OCH3 OH H Acetyl Glc(1Ñ4)Rha Caffeoyl H Boschniakia
himalaica

Antibacterial
activity [8]

6 Himaloside B OH OH H H H H cis-Caffeoyl B. himalaica Antibacterial
activity [8]

7 Z-Tubuloside D OH OH H Acetyl 2,3,4-tri-O-Acetyl-Rha Coumaroyl Glc Cistanche violacea - a [9]

8 Cistanoside J OCH3 OH H Acetyl Rha H Feruloyl C. deserticola Anti-inflammatory
activity [10]

9 Cistanoside K OCH3 OH H Acetyl Rha H Caffeoyl C. deserticola Anti-inflammatory
activity [10]

10 Cistanoside L OCH3 OCH3 H H Rha H Feruloyl C. deserticola - b [10]

11 Cistanoside M OCH3 OH H H Rha H Coumaroyl C. deserticola Anti-inflammatory
activity [10]

12 Cistanoside N OCH3 OH H Acetyl Rha H 3-O-Glc-Caffeoyl C. deserticola Anti-inflammatory
activity [10]

13 Kankanoside J1/J2 OH OH OCH3 Acetyl Rha Caffeoyl H C. tubulosa - a [11]

14 Kankanoside K1/K2 OH OH OCH3 H Rha Caffeoyl Glc C. tubulosa Hepatoprotective
activity [11]

15 Kankanoside H1/H2 OH OH H Acetyl Rha trans/cis-Coumaroyl Glc C. tubulosa - a [12]

16 Kankanoside I H H H H Rha Caffeoyl Glc C. tubulosa - a [12]

17 Cistansinenside B OH OCH3 H Acetyl Rha Caffeoyl Rha C. sinensis - a [13]

18 Bunginoside A H OH H 5-O-glycosmisyl-Api H H H Clerodendrum
bungei - a [14]

19 3”,4”-di-O-acetylmartynoside OH OCH3 H H 3,4-di-O-Acetyl-Rha Feruloyl H C. bungei - b [14]

20

β-D-Glucopyranoside,1”-O-(7S)-
7-(3-methoxyl-4-hydroxy-phenyl)-7-
methoxyethyl-3”-α-L-rhamn-
opyranosyl-4”-[(8E)-7-(3-metho-
xyl-4-hydroxy-phenyl)-8-propenoate]

OCH3 OH OCH3 H Rha Feruloyl H Cirsium setosum - b [15]

21

β-D-Glucopyranoside,1”-O-(7S)-
7-(3-methoxyl-4-hydroxy-phenyl)-7-
methoxyethyl-3”-α-L-rhamn-
opyranosyl-4”-[(8E)-7-(4-
hydrox-yphenyl)-8-propenoate]

OCH3 OH OCH3 H Rha Coumaroyl H C. setosum Hepatoprotective
effect [15]

22 Peiioside B OH OH H H Rha H Api Callicarpa peii -a [16]

23 Purpureaside D OH OH H H H Feruloyl Rha Digitalis purpurea Antioxidant activity [17]

24 Purpureaside E OH OH H H Glc Feruloyl Rha D. purpurea Antioxidant activity [17]

25 Forsythenside K OH OH H H H Coumaroyl Rha Forsythia
suspensa Antiviral activity [18]



Molecules 2016, 21, 991 4 of 25

Table 1. Cont.

No. Compounds R1 R2 R3 R4 R5 R6 R7 Source Bioactivity Reference

26 Lianqiaoxinside A OH OH H H Caffeoyl H Rha F. suspensa Antibacterial
activity [19]

27

2-(3,4-Dihydroxyphenyl)-2-oxo-
ethyl-O-α-L-hamnopyranosyl-
(1Ñ6)-(4-O-caffeoyl)-
β-D-glucopyranoside

OH OH =O H H Caffeoyl Rha F. suspensa - b [20]

28 Forsythoside A
41-O-β-D-glucopyranoside OH OH H H H 4-O-Glc-Caffeoyl Rha F. suspensa - b [20]

29 Isoforsythoside OH OH H H Caffeoyl H Rha F. suspensa Antioxidant and
antibacterial effects [21]

30 Forsythoside H OH OH H Caffeoyl H H Rha F. suspensa - a [22]

31 Forsythoside I OH OH H H Caffeoyl H Rha F. suspensa - a [22]

32 Forsythoside J OH OH H Caffeoyl H H Xyl F. suspensa - a [22]

33 Calceolarioside
A-21-α-L-rhamnopyranoside OH OH H Rha H Caffeoyl H Fraxinus

mandschurica - a [23]

34 3111-O-Methylcampneoside I OH OH OCH3 H Rha Feruloyl H Incarvillea
compacta

Hepatoprotective
and antioxidant

effects
[24]

35 61-O-(cis-1,4-Dihydroxycyclohex-
nacetyl) acteoside OH OH H H Rha Caffeoyl cis-1,4-Dihydroxy-

cyclohexanacetyl Jacaranda caucana Antioxidant capacity [25]

36 61-O-(1-Hydroxy-4-oxo-
cyclohexanacetyl) acteoside OH OH H H Rha Caffeoyl 1-Hydroxy-4-oxo-

cyclohexanacetyl J. caucana Antioxidant capacity [25]

37 Fucatoside A OH OH H Api H Caffeoyl H Lantana fucata - b [26]

38 Fucatoside B OH OH H Xyl Api Caffeoyl H L. fucata - b [26]

39 Fucatoside C OH OH H Api Api Caffeoyl H L. fucata Anti-inflammatory
effect [26]

40 Raduloside OH OH H H Api Caffeoyl Api(1Ñ4)Xyl L. radula - b [27]

41 Leonoside E OCH3 OH H H Ara(1Ñ2)Rha H H Leonurus
japonicus

Hepatoprotective
activity [28]

42 Leonoside F OCH3 OH H H Rha H Glc L. japonicus Hepatoprotective
activity [28]

43

β-(4-Hydroxyphenyl)
ethyl-4-O-E-caffeoyl-O-[β-D-
apiofuranosyl-(1Ñ2)]-β-
D-glucopyranoside

H OH H Api H Caffeoyl H Lepisorus
contortus Cytotoxity [29]

44

β-(3,4-Dihydroxyphenyl)
ethyl-6-O-E-caffeoyl-O-[β-D-
apiofuranosyl-(1Ñ2)]-β-
D-glucopyranoside

OH OH H Api H H Caffeoyl L. contortus Cytotoxity [29]

45

β-(3,4-Dihydroxyphenyl)
ethyl-4-O-E-caffeoyl-O-[β-D-
apiofuranosyl-(1Ñ2)]-β-
D-glucopyranoside

OH OH H Api H Caffeoyl H L. contortus - b [29]
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Table 1. Cont.

No. Compounds R1 R2 R3 R4 R5 R6 R7 Source Bioactivity Reference

46

β-(3,4-Dihydroxyphenyl)
ethyl-3-O-E-caffeoyl-O-[β-D-
apiofuranosyl-(1Ñ2)]-β-
D-glucopyranoside

OH OH H Api Caffeoyl H H L. contortus Cytotoxity [29]

47

β-(4-Hydroxyphenyl)
ethyl-3-O-E-caffeoyl-O-[β-D-
apiofuranosyl-(1Ñ2)]-
β-D-glucopyranoside

H OH H Api Caffeoyl H H L. contortus - b [29]

48 Lagotiside A OH OH H H 4-O-CH3-Xyl Caffeoyl H Lagotis brevituba - a [30]

49 Yulanoside A OH OH H Rha Rha Caffeoyl Glc(1Ñ4)Glc Magnolia
salicifolia - a [31]

50 Yulanoside B OH OH H H Rha Caffeoyl Glc(1Ñ4)Glc M. salicifolia - a [31]

51 21-Rhamnoechinacoside OH OH H Rha Rha Caffeoyl Glc M. salicifolia
α-Glucosidase

inhibitory effect and
cytotoxicity

[31,32]

52 Magnoloside D OH OH H Rha H H Caffeoyl M. officinalis

Antioxidant activity,
α-glucosidase

inhibitory effect and
cytotoxicity

[32,33]

53 Magnoloside E OH OH H Api H H Caffeoyl M. officinalis

Antioxidant activity,
α-glucosidase

inhibitory effect and
cytotoxicity

[32,33]

54 Magnoloside F OH OH H Rha H Caffeoyl Glc M. officinalis
α-Glucosidase

inhibitory effect and
cytotoxicity

[32]

55 Magnoloside G OH OH H Api H Caffeoyl Glc M. officinalis Cytotoxicity [32]

56 Magnoloside H OH OH H Api Caffeoyl H Glc M. officinalis
α-Glucosidase

inhibitory effect and
cytotoxicity

[32]

57 Magnoloside I OH OH H Api Coumaroyl H Glc M. officinalis α-Glucosidase
inhibitory effect [32]

58 Magnoloside J OH OCH3 H Rha Caffeoyl H Glc M. officinalis Cytotoxicity [32]

59 Magnoloside K OH OH H Rha Feruloyl H Glc M. officinalis
α-Glucosidase

inhibitory effect and
cytotoxicity

[32]

60 Magnoloside L OH OH H Api Caffeoyl H H M. officinalis Cytotoxicity [32]

61 Magnoloside M OH OH H Rha H Caffeoyl H M. officinalis - a [32]

62 Magnoloside N OH O-Glc H Rha Caffeoyl H Glc M. officinalis - a [32]

63 Magnoloside O OH OH H H H H Glc(1Ñ4)
Rha(1Ñ4)-Syringoyl M. officinalis Cytotoxicity [32]

64 Magnoloside P OH OH H H H H Glc(1Ñ4)
Rha(1Ñ4)-Vanilloyl M. officinalis Cytotoxicity [32]

65 Savaside A OH OH OH Rha H H Caffeoyl Monochasma
savatieri

Anticomplement
activity [34]
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Table 1. Cont.

No. Compounds R1 R2 R3 R4 R5 R6 R7 Source Bioactivity Reference

66 Savaside B OH OH OH Rha H Caffeoyl H M. savatieri Anticomplement
activity [34]

67 Savaside C OH OH OH Rha H Feruloyl H M. savatieri Anticomplement
activity [34]

68 Savaside D OH OH OH Rha H H Coumaroyl M. savatieri Anticomplement
activity [34]

69 Savaside E OH OH OH Rha H H Feruloyl M. savatieri Anticomplement
activity [34]

70 Rashomoside A OH OH H H Xyl Caffeoyl Glc Meehania
urticifolia - b [35]

71 Tazettoside D H OCH3 H H H H Glc Narcissus tazetta
var. chinensis

Melanogenesis
inhibitory activity [36]

72

3-Hydroxy-4-methoxy-β-
phenylethoxy-O-[2,3-di-acetyl-α-L-
rhamnopyranosyl-(1Ñ3)]-4-O-cis-
feruloyl-[β-D-apiofuranosyl-(1Ñ6)]-
β-D-glucopyranoside

OH OCH3 H H 2,3-di-O-Acetyl-Rha cis-Feruloyl Api Phlomis umbrosa - a [37]

73 3111-Acetyl-O-betonyoside D OH OCH3 H H 3-O-Acetyl-Rha Feruloyl Api P. umbrosa Cytotoxic activity [38]

74 2111, 3111-Diacetyl-O-betonyoside D OH OCH3 H H 2,3-di-O-Acetyl-Rha Feruloyl Api P. umbrosa Cytotoxic activity [38]

75 3111,4111-Diacetyl-O-betonyoside D OH OCH3 H H 3,4-di-O-Acetyl-Rha Feruloyl Api P. umbrosa Cytotoxic activity [38]

76 Stewartiiside OH OH H H Api(1Ñ4)Rha Caffeoyl Rha P. stewartii α-Glucosidase
inhibitory activity [39]

77
2-(3-Hydroxy-4-methoxyphenyl) ethanol
1-O-[α-L-rhamnopyranosyl-(1Ñ2)-
β-D-glucopyranoside]

OH OCH3 H Rha H H H Plantago depressa - a [40]

78
2-(3,4-Dihydroxyphenyl) ethyl 3-O-
β-D-allopyranosyl-6-O-caffeoyl-β-
D-glucopyranoside

OH OH H H All H Caffeoyl P. asiatica Antioxidative effect [41]

79 Isocassifolioside OH OH H Rha Rha H Caffeoyl Ruellia tuberosa Antioxidant activity [42]

80 Lavandulifolioside B OCH3 OH H H Ara(1Ñ2)Rha 4-O-CH3-Feruloyl H Stachys
lavandulifolia - b [43]

81 Poliumoside B OH OH H H Ara(1Ñ2)Rha Caffeoyl Rha Teucrium polium Antioxidant activity [44]

82

1-(3,4-Dihydroxyphenylethyl)-O-
α-L-lyxopyranosyl-(1Ñ2)-α-L-
hamnopyranosyl-(1Ñ3)-6-O-
transferuloyl-β-D-glucopyranoside

OH OH H H Lyx(1Ñ2)Rha H Feruloyl T. chamaedris Antioxidant activity [45]

83 Chionoside A OH OH H Ara Glc Feruloyl H Veronica
thomsonii - a [46]

84 Chionoside B OH OCH3 H Ara Glc Feruloyl H V. thomsonii - a [46]

85 Chionoside C OH OH H Ara 6-O-Feruloyl-Glc Caffeoyl H V. thomsonii - a [46]

86 Chionoside D OH OH H Ara Glc Caffeoyl Glc V. thomsonii - a [46]

87 Chionoside E OH OH H Ara Glc Feruloyl Glc V. thomsonii - a [46]

88 Chionoside F OH OH H Ara Glc Caffeoyl Rha V. thomsonii - a [46]

89 Chionoside G OH OCH3 H Glc Glc Caffeoyl H V. pulvinaris - a [46]
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Table 1. Cont.

No. Compounds R1 R2 R3 R4 R5 R6 R7 Source Bioactivity Reference

90 Chionoside I OH OCH3 H Glc Glc Feruloyl H V. thomsonii and
V. pulvinaris - a [46]

91 Isochionoside J OH OH H H Glc(1Ñ2)Glc H Caffeoyl V. thomsonii - a [46]

92 Isoaragoside OH OH H Ara Glc H Caffeoyl V. thomsonii - a [46]

93 Isochionoside K OH OCH3 H Ara Glc H Caffeoyl V. thomsonii - a [46]

94 Isochionoside A OH OH H Ara Glc H Feruloyl V. thomsonii - a [46]

95 Isochionoside G OH OCH3 H Glc Glc H Caffeoyl V. pulvinaris - a [46]

96 Isochionoside I OH OCH3 H Glc Glc H Feruloyl V. thomsonii and
V. pulvinaris - a [46]

97 Helioside A OH OH H Ara Glc Caffeoyl Xyl V. lavaudiana - a [47]

98 Helioside B OH OH H Ara 6-O-Caffeoyl-Glc Caffeoyl Xyl V. lavaudiana - a [47]

99 Helioside C OH OH H Ara Glc Feruloyl Xyl V. lavaudiana - a [47]

100 Helioside D OH OH H Ara 6-O-Coumaroyl-Glc Caffeoyl H V. raoulii - a [48]

101 Helioside E OH OH H Ara 6-O-Caffeoyl-Glc Caffeoyl H V. raoulii - a [48]

102 Helioside F OH OH H Xyl Glc Caffeoyl Glc V. hulkeana - a [48]

a Not determined; b Show no activities at the given pharmacological models.
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In the table references for the first reports on specific PhGs as new compounds are given, and the
plant sources and biological activities reported for the specific PhGs are also included. Most of the
isolated new PhGs were glucopyranosides, and the allopyranosides, which are rarely found in the
plant kingdom, were mainly isolated from Magnolia officinalis [32]. Generally, glucose, galactose, xylose,
apiose, arabinose and rhamnose were the most frequently occurring saccharides, while lyxose only
appeared in compound 82 from Teucrium chamaedris [45]. Aside from the most frequently occurring
substituents at C-3/4/7 of the phenylethyl moiety, which were hydroxy and methoxy groups, a glucose
moiety occurred at the C-4 of aglycone of compound 62 from M. officinalis [32]. Additionally, the
most frequently occurring aromatic acids that form esters with the glucose/allose were caffeic, ferulic,
coumaric, vanillic and syringic acids.

Figure 1 illustrates the new PhGs having varied core structures or special substituents. PhGs with
a 7,2’-epoxy moiety are rare in the plant kingdom, e.g., compound 103 from Forsythia suspensa
which is reported to possess antioxidant as well as antimicrobial activities [49], and compound
104 from Tarphochlamys affinis which was shown to have antioxidant as well as anti-HBV activities [50].
Compound 105 from Jacaranda mimosifolia with antioxidant activity is an example of a PhG with a
substituent at C-8 [51]. Compound 106 with melanogenesis inhibitory activity as well as compounds
107 and 108 from Narcissus tazetta var. chinensis are examples of PhGs with substituents at C-2 [36].
Compounds 109 and 110 from F. suspensa are examples of PhGs with substituents at C-2 and C-5 of
the phenylethyl moiety [20]. There were also adducts of other kinds of compound units fused to
PhGs. Compounds 111–114 from F. suspensa with neuroprotective effects are four unusual adducts of a
flavonoid unit fused to a phenylethanoid glycoside through a pyran ring or carbon-carbon bond [20].
Compounds 115 and 116 from Strobilanthes cusia are adducts of an indole alkaloid group fused to a
phenylethanoid glycoside [52].
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Table 2. Cont.

No. Compounds R1 R2 R3 R4 R5 R6 R7

134 Decaffeoylacteoside OH OH H H Rha H H
135 Teucrioside OH OH H H Lyx(1Ñ2)Rha Caffeoyl H
136 Lamiuside A OH OH H H Gal(1Ñ2)Rha Caffeoyl H
137 21-Acetylacteoside OH OH H Acetyl Rha Caffeoyl H
138 Plantamajoside OH OH H H Glc Caffeoyl H
139 Tubuloside B OH OH H Acetyl Rha H Caffeoyl
140 Tyrosol galactoside H OH H H H H H

3.1. Neuroprotective Effects

Parkinson’s disease is characterized by a selective degeneration of dopaminergic neurons in
the substantia nigra pars compacta and consequently a reduction in striatal dopamine levels [53].
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known to cause Parkinsonism in rodents and
non-human primates [54,55]. It can cause a partial lesion of the substantia nigra and a significant
reduction in striatal dopamine levels [56], and the toxicity of MPTP depends on its biotransformation
to its active metabolite 1-methyl-4-phenylpyridinium (MPP+) [57]. The potential neuroprotective and
behavioral rescue effects of echinacoside (117) were evaluated in a mouse model of MPTP-induced
dopaminergic neuronal damage. In which, an HPLC analysis was conducted to monitor the changes in
the levels of striatal dopamine and its metabolites. The results showed that the reductions in the levels
of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) were partially prevented by pre-treatment
of 117 (20 mg/kg) (dopamine, 0.86 ˘ 0.05 ng/mg tissue, p < 0.01; DOPAC, 0.93 ˘ 0.06 ng/mg tissue,
p < 0.05). Tyrosine hydroxylase is the rate-limiting enzyme in dopamine biosynthesis. Immunostaining
of the substantia nigra using an anti-tyrosine hydroxylase antibody demonstrated pre-treatment
of 117 (20 mg/kg) for 15 days significantly reduced MPTP-induced tyrosine hydroxylase-positive
dopaminergic neuron loss (p < 0.05). In addition, the pre-treatment with 117 can significantly reduce
caspase-3 and caspase-8 activation induced by MPP+ in cerebellar granule neurons, which was
regarded to be a possible mechanism on neuroprotection of 117 [58].

Pedicularioside A (118), leucosceptoside A (119), isoacteoside (120), acteoside (121), and
arenariside (122) were studied to assess their effects on MPP+-induced cell death in rat mesencephalic
neurons [59]. Compound 118 had the greatest neuroprotective effect among the five tested compounds.
The pre-treatment with 118 inhibited MPP+-induced loss and death of dopaminergic neurons, and the
immunohistochemistry results indicated that 118 inhibited expression of caspase-3 gene and cleavage
of poly (ADP-ribose) polymerase in cultures exposed to MPP+. All suggested that the inhibition of
caspase-3 gene expression of 118 protected mesencephalic neurons from MPP+-induced cell death.

Considerable evidence supported that oxidative stress worked as a common pathogenetic
mechanism in Alzheimer’s disease (AD) [60,61]. In AD, oxidative stress was suspected to be mainly
generated by β-amyloid peptide (Aβ) [62], and heme oxygenase-1 (HO-1) was a crucial factor in
the response to oxidative injury, protecting neurons against Aβ-induced injury. Wang studied the
neuroprotective mechanisms of 121 against Aβ25-35-induced cell death in PC12 cells. It showed that
121 was an activator of NF-E2-related factor 2 (Nrf2) and inducer of HO-1 expression. Compound 121
attenuated Aβ25-35-induced neurotoxicity by induction of HO-1 via extracellular regulated kinase
(ERK) and PI3K/Akt signaling [63]. Similarly, the neuroprotective effects of salidroside (123) following
traumatic brain injury were mediated, at least in part, through activation of the PI3K/Akt signaling
pathway [64]. In another study, the neuroprotective effect of 121 on Aβ25-35-induced neurotoxicity in
SH-SY5Y cells was investigated. A 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl- tetrazolium bromide
(MTT) reduction assay showed that 20 and 30 µg/mL of 121 significantly blocked cytotoxic effects
of Aβ25-35 on cell viability and the result was also confirmed by calcein-AM staining assay through
analysis of morphological nuclear changes and DNA fragmentation. Meanwhile, pretreatment with
20 µg/mL of 121 decreased the number of apoptotic cells and scavenged reactive oxygen species
(ROS). The result indicated that 121 could protect SH-SY5Y cells against Aβ25-35-induced cell injury
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by attenuating ROS production and modulating apoptotic signal pathway through Bcl-2 family,
cytochrome c, and caspase-3 [65]. Peng et al. [66] investigated the effects of 121 in improving learning
and memory using a mouse model of senescence induced by a combination of D-galactose and AlCl3.
Compound 121 was administered intragastrically at doses of 30, 60 and 120 mg/kg/day for 30 days
after AD was induced. The results showed that the latency of step down was shortened in AD model
mice and the number of errors decreased after treatment with all doses of 121. Neurons and Nissl
bodies in the hippocampus were increased significantly with higher doses (60 and 120 mg/kg/day)
of 121. The content of nitric oxide (NO), the activity of nitric oxide synthase and the expression of
caspase-3 protein were decreased by 120 mg/kg/day of 121 compared with that in the AD model
group [66]. In a previous study, anti-amnesic activities of 121 using scopolamine-induced amnesic mice
with both passive avoidance and Morris water maze test were examined. In both tests, the prolonged
oral treatment of 121 (0.1 and 1.0 mg/kg body weight respectively for 10 days) significantly improved
the memory deficits, while, the acute treatment of 121 (1.0 and 2.5 mg/kg body weight for 1 day)
showed positive effect only in the passive avoidance test [67].

As reported, the anti-apoptotic action of 117 was partially dependent on its anti-oxidative
effects [68,69]. Kuang’s experiment indicated that 117 increased cell viability and decreased the
apoptotic ratio by reducing ROS generation in H2O2-injured rat PC12 cell. In addition, compound 117
prevented H2O2-induced increase of the Bax/Bcl-2 ratio by down-regulating Bax protein expression
and up-regulating Bcl-2 protein expression. The result suggested that 117 showed significant
neuroprotective effects on H2O2-injured PC12 cell through the mitochondrial apoptotic pathway [70].
Similarly, the antioxidant property and neuroprotective effects of isocampneoside II (131) were studied
on H2O2-induced oxidative injury in PC12 cells. Compound 131 inhibited cell apoptosis by decreasing
the level of superoxide anion radical, inhibiting Bax/Bcl-2 ratio, and attenuating the decrease of
superoxide dismutase (SOD) and catalase activity [71].

3.2. Antioxidant Activity

ROS are inevitably generated during the normal metabolism of living organisms, but excessive
production leads to oxidative stress damage to cellular structures [72]. Oxidative stress is associated
with the etiology of a wide range of chronic and acute disease such as malignant tumors, inflammation,
cataracts, Parkinson’s and Alzheimer’s disease, hypertension, diabetes, atherosclerosis, cardiovascular
diseases, cell death, and some immune disorders and the aging process [72,73]. PhGs have been
reported to possess antioxidant properties. Forsythoside B (125), leucosceptoside B (126) and 121
were isolated from Verbascum xanthophoeniceum and exhibited potent antioxidant activities in 2,
21-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORACFL), hydroxyl radical
averting capacity (HORACFL), ferric-reducing antioxidant power (FRAP) and superoxide anion radical
scavenging assays [1]. In another study, Harput et al. reported calceorioside A (127) as well as 121
showed strong radical scavenging effects against DPPH, NO and superoxide anion radical comparable
to that of known antioxidants [74]. Recently, DPPH¨ scavenging, anti-LP assays, ABTS+¨ scavenging,
OH scavenging, superoxide anion radical scavenging, Cu2+-chelating and FRAP assays were used
to evaluate the antioxidant activities of poliumoside (128), alyssonoside (129), brandioside (130),
121, 125 and their derivatives, and the tested compounds were all screened out as antioxidants [75].
The structure-activity relationship between PhGs and their antioxidant activities indicated that the
ortho-dihydroxyphenyl group was the important group, and the steric hindrance, the number as well
as the position of phenolic hydroxyl were also thought to play an important effect [76].

3.3. Anti-Inflammatory Effect

Pseudomonas aeruginosa is the major pathogen implicated in sepsis and pneumonia [77,78].
Total phenylethanoid glycosides (TPG) from Monochasma savatieri prolonged survival rate of mice with
P. aeruginosa or Staphylococcus aureus infection-induced sepsis in vivo. Meanwhile, TPG could reduce
the bacterial colony-forming units in lung tissue in mice model. In addition, TPG (60–180 mg/kg)
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had significantly reduced xylene-induced ear edema and cotton pellet-induced granulomat formation
at a dose-dependent manner. Furthermore, the treatment of TPG (1.5 g/kg) for 15 days did not
cause any death of rat and no organic toxicity at the dose equal to approximately 284 times of
clinical dose used [79]. It was reported that compound induced HO-1 in macrophages through
p38 mitogen-activated protein kinase (MAPK)/Nrf2 signaling and decreased the release of high
mobility group box 1 (HMGB1) in lipopolysaccharide (LPS)-stimulated Raw264.7 cells and in cecal
ligation and puncture (CLP)-induced septic mice. In vitro, compound 121 not only inhibited the
release of HMGB1, the production of inducible nitric oxide synthase and NO, but also induced HO-1
expression in a concentration-dependent manner; in vivo, it increased survival and decreased the
HMGB1 levels of serum and lung in CLP-induced sepsis [80]. In another study, the anti-inflammatory
activity, the anti-nociceptive activity, and the wound healing activity of 121 were studied using
a carrageenan-induced hind paw edema model in vivo, a p-benzoquinone-induced abdominal
constriction test, and incision and excision models in vivo, respectively [81]. It was previously reported
that 121 was more active than ibuprofen in the writhing test (67.6% and 50.0% at equimolar doses)
and showed similar effects in the tail flick (topic and oral) at equivalent dose to ibuprofen [82].
Moreover, compound 121 was found to be active in a carrageenan-induced hind paw edema model
and in p-benzoquinone-induced writhing in mice [83]. Penido et al., revealed that 121 exhibited a
potent inhibitory effect on LPS-induced total leucocyte, neutrophil and eosinophil accumulation in
the pelural cavity along with a potent antiulcerogenic activity against diclofenac-induced gastric
ulcers at 100 mg/kg [84]. Meanwhile, the histological scores indicated that treatment with 121
ameliorated intestinal inflammation in both acute and chronic dextran sulphate sodium-induced
colitis in vivo through inhibition of oxidative burst activity [85]. Cell adhesion molecules (CAMs) play
a role in the pathogenesis of atherosclerosis and inflammation. Compounds and 6-O-acetyl-acteoside
(132) inhibited IL-1β-activated expression of intercellular CAM-1 and vascular CAM-1 (VCAM-1) in
human umbilical vein endothelial cells (HUVECs). Compounds 121 and dose-dependently inhibited
VCAM-1 gene promoter activity in IL-1β-activated HUVECs and their inhibition on IL-1β-activated
expression of CAMs was manifested by decreased phosphorylation of ERK and c-Jun N-terminal
kinase (JNK) [86]. Georgiev et al., studied anti-inflammatory properties of and forsythoside (124)
towards human keratinocytes. Compounds 121 and 124 were both equally effective inhibitors of
IL-8 release at 50 mM, with more than 90% reduction of IL-8 at spontaneous levels. Meanwhile, they
significantly and dose-dependently impaired the release of IFN-γ-induced MCP-1 and IP-10 as well
as significantly reduced background and IFN-γ-induced levels of IL-8 mRNA [87]. In addition, the
protective effect of 123 on ethanol-induced acute gastric ulcer and H2O2-induced gastric epithelial
cell damage were investigated. Intragastrical treatment with 123 inhibited the overproduction of
pro-inflammatory cytokines (interleukin-6, interleukin-1β and tumor necrosis factor-α), enhanced
antioxidant activity and alleviated acute gastric ulcer as well as gastric epithelial cell damage through
the MAPK/NF-κB pathway [88].

3.4. Antibacterial and Antivirus Activity

The antimicrobial activity of TPG from M. savatieri was studied in vivo and in vitro. In vitro,
TPG showed significant bacteriostatic properties against S. aureus, P. aeruginosa, Escherichia coli,
Enterococcus faecalis, and Streptococcus pneumoniae at a concentration between 0.0625 and 16 mg/mL [79].
The anti-influenza virus effect of TPG from Ligustrum purpurascens was reported in vivo and in vitro.
In vivo, C57BL/6J mice were given oral administration of TPG once daily for five successive days.
TPG significantly decreased the mouse lung index (p < 0.05), alleviated influenza-induced lethality
and clinical symptoms, and subsequently enhanced mouse survival (p < 0.05). In vitro, TPG inhibited
influenza A virus H1N1 infection of MDCK cells in a hemagglutination assay [89]. Besides, many
pure PhGs also possessed potent antibacterial activity. Compounds 121 and 125 showed considerable
antibacterial activities against all strains of S. aureus with the minimum inhibitory concentration (MIC)
values ranging from 64 µg/L to 256 µg/L. Particularly, the activities of 121 (MIC = 2.1 ˆ 10´4 and
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4.1 ˆ 10´4 M) and 125 (MIC = 3.4 ˆ 10´4 M) against SA 1199B (NorA) and XU 212 (TetK/MecA),
respectively, were comparable to those of the positive control, norfloxacin (MIC = 1.0 ˆ 10´4 and
2.5 ˆ 10´5 M) [90]. In addition, 4111-O-acetylacteoside (133) and 121 possessed significant inhibition of
the formation of bacterial biofilms by E. coli UTI89 [91]. The antifungal/antimicrobial effect of PhGs
may be largely due to the presence of phenolic hydroxyls which have high affinity with proteins [92].

3.5. Anti-Tumor Activity

The effects of 123 on the growth of human breast cancer in vitro and in vivo were evaluated, and
it was found that 123 inhibited the proliferation of breast adenocarcinoma (MCF-7) cells with half
maximal inhibitory concentration (IC50) value of 19.48 µM, and promoted the apoptosis of MCF-7 cells
in a dose-dependent manner by increasing the activity of caspase, up-regulating the Bax expression,
and down-regulating the Bcl-2 expression. In addition, compound 123 significantly diminished not
only the weight but also the volume of tumor (p < 0.05) in a nude mouse mode. Compound 123
inhibited the intracellular ROS formation and MAPK pathway activation, which may contribute to
the inhibition of tumor growth [93]. Compound 121 was reported to be a potent anti-cancer drug
in the treatment of fibrosarcoma metastasis. It inhibited phorbol-12-myristate-13-acetate-induced
matrix metalloproteinase-9 expression via Ca2+-dependent calmodulin-dependent protein kinase
(CaMK)/ERK and JNK/nuclear factor-κB (NF-κB)-signaling pathways [94]. Cytotoxic activities of
121 and 127 against human larynx epidermoid carcinoma, human rhabdomyosarcoma and human
MCF-7 cell lines were determined with the IC50 from 36.24 µg/mL to 64.6 µg/mL, and apoptotic cell
death was observed in histological analysis [74]. In another study, compounds 119, 120, 121, 125, 129,
and decaffeoyl-acteoside (134) from Marrubium thessalum were assayed by MTT and 3H-thymidine
incorporation assays, and 120 and 121 showed tumor toxicity, while, they also showed low toxicity
against peripheral blood mononuclear cells [95].

3.6. Immunomodulatory Effect

Autoimmune hepatitis (AIH) is a severe form of hepatitis. Studies have indicated that
inflammatory cytokines and T lymphocytes play important roles in the pathogenesis of AIH [96,97].
Concanavalin A-induced hepatitis in a mouse model was regarded as the immune-mediated liver
injury that resembles AIH occurring in human [98]. Hu et al., reported the intravenous (i.v.) injection of
123 dramatically reduced the levels of alanine aminotransferase and aspartic transaminase in the above
mentioned mouse model, and partly suppressed the secretion of proinflammatory cytokines through
downregulating the activity of NF-κB. Meanwhile, compound 123 altered the distribution of CD4+ and
CD8+ T lymphocyte in the liver and spleen through regulating CXCL-10 and decreased the severity
of liver injuries [99]. Song extracted TPG from L. purpurascens and tested the immune enhancement
effect of the TPG using serum hemolysin antibody, phagocytosis, splenocyte antibody production, and
NK cells activity assays. Mice treated with TPG showed an increase in the haemagglutination titre,
the antibody production of spleen cells, MΦ phagocytosis of chicken RBCs and NK cell activity [100].
Huang et al., established a screening model of immunological activity by using dendritic cells as target
cells to investigate the effects of 120 and 121 on the phenotypic and functional maturation of dendritic
cells. Expressions of major histocompatibility complex (MHC) class II and costimulatory molecules
were used as indicators of successful maturation, and dendritic cells treated with 120 and 121 expressed
high level of class II MHC and costimulatory molecule CD86 (B7-2). In addition, increased naïve
T cell stimulatory activity and decreased endocytosis further confirmed the functional maturation of
dendritic cells [101].

3.7. Enzyme Inhibitory Activity

Prescott et al. found that 121, teucrioside (135) and lamiuside A (136) (caffeoyl phenylethanoid
glycosides) were direct calcineurin inhibitors when assayed both in the presence and absence of
calmodulin using p-nitrophenyl phosphate as substrate [102]. In Georgiev’s study, compound 125
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and the phenylethanoid fractions from the Devil’s claw cultures showed higher butyrylcholinesterase
inhibitory activity than that of galanthamine [103]. Compound 131 was found to significantly inhibit
recombinant human aldose reductase with an IC50 value of 9.72 µM. Furthermore, it inhibited sorbitol
formation in a rat lens incubated with a high concentration of glucose [104]. Meanwhile, the effect of
pure PhG on improving glucose tolerance was also performed in vivo and in vitro. Compounds 117
and 121 inhibited the increase in postprandial blood glucose levels in starchloaded mice at doses
of 250–500 mg/kg p.o. and also significantly improved glucose tolerance in starchloaded mice after
2 weeks of continuous administration at doses of 125 and/or 250 mg/kg/day p.o. without producing
significant changes in body weight or food intake. In vitro, nine of pure PhGs demonstrated potent
rat lens aldose reductase inhibitory activity. In particular, 21-acetyl-acteoside (137) (0.071 µM) was
similar to that of epalrestat (0.072 µM), a clinical aldose reductase inhibitor [105]. In an alloxan-induced
diabetic mice model, compound 123 significantly reduced fasting blood glucose, total cholesterol,
triglyceride and methane dicarboxylic aldehyde levels, and at same time increased serum insulin
levels, SOD, glutathione peroxidase and catalase activities [106].

3.8. Other Pharmacological Effects

The effect of 121 on a 42-mer amyloid β protein aggregation was examined by using
the thioflavin-T assay, transmission electron microscopy, and circular dichroism spectroscopy.
Compound 121 strongly inhibited the aggregation of 42-mer amyloid β protein in a dose-dependent
manner [107]. In another study, compound 121 appeared an inhibitory effect on DHT-induced secretion
of both free and total prostate-specific antigen at all tested concentration in an in vitro model of human
prostate epithelium [108]. He et al. studied the vasorelaxant activity of 117 and the results highlighted
that 117 could evoke a significant endothelium-dependent vasorelaxation action mediated through the
NO-cGMP pathway in an isolated rat thoracic aorta ring [109].

4. Pharmacokinetics

4.1. Pharmacokinetics of Echinacoside (117) and Acteoside (121)

Compounds 117 and 121 are the major PhGs in Herba Cistanchis, and 117 is widely present in
plants. 117 contained additional glucose linking to C-6 of core saccharide compared with 121, and both
of them exhibited good bioactivities [58,59,64,65]. In Caco-2 cell monolayer model, compounds 117,
120 and 121 were primarily transported via poorly absorbed passive diffusion down a concentration
gradient without efflux [110], which was consistent with the result that the caffeic acid conjugates
permeated poorly through the Caco-2 monolayers [111]. Though the absorption of 117 was poor,
it was significantly increased when 117 was combined with verapamil and clove oil both in situ and
in vitro [112].

PhGs were characterized by low intestinal absorption due to their physicochemical characteristics
such as molecular sizes, degrees of polymerization and solubilities [113], but it is a growing
recognition that not only the absorbed PhGs but also their metabolites may contribute to their
pharmacological activities [114,115]. For example, the hydrolyzing metabolites of 117 and 121, such
as hydroxytyrosol (HT) and 3-hydroxyphenylpropionic acid (3-HPP), possessed antioxidant [116,117],
neuroprotective [118–120], and anti-inflammatory activities [121,122]. Identification of 117’s
metabolites produced by human intestinal bacteria, biliary metabolites as well as urinary and fecal ones
was reported. Eight phase II metabolites of parent compound (methyl ethers, glucuronides, and minor
sulfates) were isolated and identified unambiguously from rat bile sample after i.v. administration
of 117 [123]. Unlike the metabolites in rat bile, besides the phase II metabolites of parent compound,
the degradation products and their glucuronic acid, sulfate, and methyl conjugations were identified
in rat urine and feces [124]. PhGs were reported to be transformed by the intestinal bacteria before
being absorbed into blood [125]. Compound 117 was found to be stable in simulated gastric juice
and intestinal juice, whereas it could be metabolized by intestinal bacteria. Thirteen metabolites
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of compound 117 and five possible metabolic pathways, including hydroxylation, dehydroxylation,
reduction, deglycosylation, and acetylation were identified using UPLC-quadrupole time-of-flight
mass spectrometry (UPLC-Q-TOF-MS) with MSE technology and MetaboLynx software. In addition,
HT and 3-HPP were found to be bioactive metabolites of 117. The fact that HT and 3-HPP possessed
biological functions similar to those of 117, could potentially explain that 117 has prominent bioactivity
but poor bioavailability [126].

Up to thirty-five metabolites were observed in the urine samples of rats orally administered
with compound 121, through processes of oxidization, glucuronidation, sulfation, and methylation.
Interestingly, the metabolism of 121 occurred much quickly than those of the degradation products,
while the concentrations of metabolites from the degradation products were much higher than that
of 121 [127]. The metabolic profiles of 121 produced by human or rat intestinal bacteria or intestinal
enzyme in vitro were also reported. 3-HPP (56.13%), HT (24.77%) and reduction 121 or its isomers
(18.07%) were the main products of 121 produced by the action of human bacteria, while 3-HPP
(55.75%) and 134 (36.31%) were the main products of 121 produced by rat bacteria. The content of
metabolite produced by intestinal enzyme was lower than that produced by intestinal bacteria, which
indicated that intestinal bacteria had more impact on the absorption and metabolism of 121 than that
of intestinal enzyme [128,129].

Further pharmacokinetic study was also reported to offer suitable references in PhGs’ clinical
applications. Compound 121 was absorbed fast with low peak area, and the integral area under drug
concentration-time curve (AUC) was small, which indicated few 121 were absorbed into the circulatory
system. Its moderate elimination made less possibility of organ injury [130,131]. Interestingly, double
peaks were seen from concentration-time curve of 121 in rat plasma [131,132]. And its absolute
bioavailability was 0.12% [133]. The absorption of 117 was also fast with lower peak area, and
elimination was faster than that of 121, but the absolute bioavailability of 117 with a value of 0.83%
was a bit higher than that of 121 [134]. The different results of 117 and 121 may be ascribed to their
structural difference, i.e., more than one glucose existed in the C-6 of 117, which meant that 117 was
easier to be hydrolyzed and resulted in lower peak area as well as faster elimination. Another issue
was that the value of Tmax of 117 obtained from the study performed by Yang [135] was prolonged to
90 min compared to Jia’s study [134]. Jia’s study was conducted in three groups of rats collected to
develop a full pharmacokinetic profile whereas in Yang’s study the full pharmacokinetic profile was
obtained from a group of rats.

With the development of analysis and extraction technology, more and more sensitive and specific
methods were reposted. What’s more, simultaneous determination of more than one chemical marker
and their pharmacokinetic studies were also reported. The microemulsion liquid chromatography
(MELC) method [136] and the two-phase hollow fiber liquid phase microextraction coupled with a
magnetofluid technique [137] for simultaneous determination of 117, 120, 121 and tubuloside B (139)
in rat plasma after oral administration of Cistanche salsa extract by HPLC were developed. In the
MELC method, the calibration curve for the four PhGs was linear in the range of 10–1000 ng/mL
with the correlation coefficients greater than 0.9994. The RSDs of intra-day and inter-day precision
were below 8.64% and the limits of detection (LOD) for the four PhGs were 0.4–1.3 ng/mL (S/N = 3).
Under the MELC method, the calibration curve for PhGs was linear in the range of 0.1–100 ng/mL
with correlation coefficients greater than 0.9996. The RSDs of intra-day and inter-day precision were
below 8.74% and the LOD for the four PhGs were 8–15 pg/mL (S/N = 3).

4.2. Pharmacokinetics of Salidroside (123) and p-Tyrosol

Guo et al. [138] established an HPLC-tandem mass spectrometry method to determine 123
and its aglycone metabolite p-tyrosol in rat plasma after i.v. (50 mg/kg) and intragastric gavage (i.g.)
(100 mg/kg) administration of 123 to rats. Both 123 and p-tyrosol were detected after i.v. administration,
the T1/2 of elimination phase was prolonged 1.34 fold to 1.64 ˘ 0.30 h for p-tyrosol, comparing with
that of 0.70 ˘ 0.21 h for 123. According to AUC0-8 data, about 2% of 123 was present as the aglycone
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metabolite, p-tyrosol, in plasma. On the other hand, only 123 was detected after i.g. administration,
with T1/2 value at 1.32 ˘ 0.22 h. It indicated that 123 was eliminated quickly after both i.v. and i.g.
administrations in vivo. In addition, 123 may metabolize to p-tyrosol after i.g. administration, whereas
it may be further metabolized to other metabolites, and resulted in undetectable p-tyrosol in the plasma
sample [138]. The speculation was verified by Hu’s experiment, in which 123 and its deglycosylation
phase I metabolite p-tyrosol were further metabolized to glucuronidation and sulfation products and
mainly excreted through the urine excretion pathway [139]. Later, Guo’s research team studied the
metabolism of 123 and p-tyrosol in liver tissues after i.v. administration of 123 (50 mg/kg) to rats, in
which T1/2 values were 0.54 ˘ 0.06 h and 0.92 ˘ 0.03 h for 123 and p-tyrosol, respectively. In addition,
the higher mean residence time and clearance (CL) values of p-tyrosol suggested that p-tyrosol was
eliminated more slowly than 123 in liver tissues [140]. These differences in the pharmacokinetics
parameters of 123 and p-tyrosol might be attributed to their chemical properties. Compound 123 is
made up of aglycone p-tyrosol and a glucopyranose through glycosidic linkage, which makes it more
water-soluble and consequently leads to a more rapid elimination than its aglycone [141]. The same
goes for the deconjugation of flavonoid glucuronides, which could also lead to prolonged circulation
and enhanced bioactivity in in vitro studies [141,142]. The elimination of 123 in rats was fast but slow
(T1/2, 120.0 min) in beagle dogs after a single i.v. at a dose of 75 mg/kg [143], which indicated species
difference existed in metabolism of 123. In addition, different dosages and administrative patterns
might affect the bioavailability of 123. The bioavailability of 123 was calcaluted as 51.97% at dosages
of 100 mg/kg i.g. and 50 mg/kg i.v. administration [138], 32.1% at dosages of 12 mg/kg oral and i.v.
administration [144] and 98.0% at dosages of 25 mg/kg oral and 5 mg/kg i.v. administration [145].

4.3. Pharmacokinetics of Forsythoside (124)

It was found that 124 was rapidly absorbed into the circulation system and reached its peak
concentration (Cmax, 122.2 ˘ 45.4 ng/mL) at around 20 min following oral administration (100 mg/kg)
in rats. Similarly, its absolute bioavailability was also quite low with a value of 0.5% [146]. The potential
hydrolysis in the gastrointestinal tract, poor permeability through the intestinal epithelial membrane
and first-pass effect in the liver might be responsible for the low bioavailability of 124. Though the
low permeability of 124 leads to low oral bioavailability of 124 [147,148], water-soluble chitosan at
dosage of 50 mg/kg improved the bioavailability of 124 and the antioxidant activity in vivo [149].
Meanwhile, the metabolism and bioactivity studies of 124 also showed that its metabolites HT and
dihydrocaffeic acid exhibited more potent anti-complement, antimicrobial and antiendotoxin effects
than itself [150].

The pharmacokinetic characteristics of 124 in dogs after i.v. administration of 5, 10 or 20 mg/kg of
124, respectively, were also reported. The AUC and Cmax increased proportionally with the increasing
doses, but CL and T1/2 were not dose-dependence. The result that 124 was eliminated quickly and
its T1/2 was short, clued to that 124 should be given by continuous i.v. infusion to maintain clinical
effect. Meanwhile, the relative large values of distribution volume (Vd, 1.10–1.90 L/kg) suggested that
124 was easily to distribute into tissues, which was beneficial to the treatment of infectious diseases in
tissues [151]. It’s worth noting that T1/2 and Vd of 124 in dogs were different from those in rats [152],
the species difference existed and deep reason needed further investigation.

The pharmacokinetics and hepatobiliary excretion of 124 in rats were also reported. The results
indicated that hepatobiliary excretion was an important excretion path for 124. Furthermore, the
disposition of 124 in blood and bile suggested that there was rapid exchange and equilibration
between the blood and hepatobiliary systems [153].

A comparative pharmacokinetic study of 124 in rats after administration of Shuang-huang-lian
(SHL) solutions via i.v., peroral or intratracheal routes was reported [154]. The plasma concentration of
124 reached the peak at 45 min with Cmax of 35.0 ˘ 7.1 ng/mL after oral administration of 1000 mg/kg
SHL solutions. The absolute bioavailability was determined to be 0.72% for 124. Whereas, the
intratracheal delivery produced the peak plasma concentration within 5 min, and the absolute
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bioavailability of 124 via pulmonary route was determined to be 25.8%. The absorption characteristic
of 124 from the respiratory tract was distinct from that via the peroral route. Compared to peroral
administration, pulmonary delivered chemical markers more rapidly and thoroughly absorbed.

4.4. Pharmacokinetics of Other PhGs

Plantamajoside (138) was a unique compound that characterizes Plantago asiatica. The mean
plasma concentration-time profile of 138 in rats after oral administration of 10 g/kg (dry herb
weight equivalent) was reported. The pharmacokinetic results showed 138 was quickly absorbed
in rats with the time of 16.7 min to maximum plasma concentration (Cmax, 172.3 ˘ 35.1 ng/mL).
The elimination rate constants was 0.28 ˘ 0.01 L/h and T1/2 was 2.46 ˘ 1.0 h [132]. Pharmacokinetics
of tyrosol galactoside (140) following oral and i.v. administration both at a dose of 60 mg/kg were
performed [155]. The oral bioavailability of 140 was about 27.9%, which was similar to that of
compound 123 calculated at dosages of 12 mg/kg oral and i.v. administration [144].

5. Conclusions

The structural diversity of PhGs and the resulting biological properties, including neuroprotective,
anti-inflammatory, antioxidant, anti-aging, memory enhancement, antibacterial, antivirus, cytotoxic,
immunomodulatory, and enzyme inhibitory effects are attractive to those engaged in drug discovery.
Pure PhGs and herbs rich in PhGs have been shown to possess multiple medical functions in vitro and
in vivo. The poor permeability through the intestinal epithelial membrane, hydrolysis by enzymes in
the gastrointestinal tract, and interaction with the enriched intestinal bacteria are the three possible
reasons for the poor bioavailability of PhGs. Metabolic studies revealed that PhGs could be presumed
to act as prodrugs, which were easily hydrolyzed in vivo and mainly metabolized into degradation
products. There is a growing recognition that not only the absorbed parent PhGs, but also their
metabolites may have the potential to be the effective ingredients, while most pharmacokinetic studies
have focused on prototype compounds rather than their metabolites, so intensive studies of metabolite
pharmacokinetics are required to shed light on the mechanisms underlying their systemic health effects
of these compounds and confirm their clinical potential.
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