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Polymorphism in the TRIM5a/TRIMcyp gene, which interacts with the lentiviral capsid, has been

shown to impact on simian immunodeficiency virus (SIV) replication in certain macaque species.

Here, in the context of a live-attenuated SIV vaccine study conducted in Mauritian-origin

cynomolgus macaques (MCM), we demonstrate upregulation of TRIM5a expression in multiple

lymphoid tissues immediately following vaccination. Despite this, the restricted range of TRIM5a

genotypes and lack of TRIMcyp variants had no or only limited impact on the replication kinetics in

vivo of either the SIVmac viral vaccine or wild-type SIVsmE660 challenge. Additionally, there

appeared to be no impact of TRIM5a genotype on the outcome of homologous or heterologous

vaccination/challenge studies. The limited spectrum of TRIM5a polymorphism in MCM appears to

minimize host bias to provide consistency of replication for SIVmac/SIVsm viruses in vivo, and

therefore on vaccination and pathogenesis studies conducted in this species.

Simian immunodeficiency virus (SIV) infection in maca-
ques represents a widely used, non-human primate model
to study pathogenic lentivirus infection and to evaluate
new therapeutic strategies against human immunodefi-
ciency virus (HIV). In live-attenuated SIV vaccination
(LAV) studies, significant levels of protection against wild-
type virus challenge can be conferred against both
homologous (Almond et al., 1995; Berry et al., 2008;
Daniel et al., 1992) and heterologous (Berry et al., 2011;
Wyand et al., 1999) virus challenge. However, levels of
protection vary between different viral challenges and
among different host species. Although a live-attenuated
HIV vaccine is unlikely ever to be employed due to safety
concerns, characterization of the mechanism of protection
could unveil novel strategies to reproduce this potent
protection safely. In the Mauritian cynomolgus macaque
(Macaca fascicularis; MCM) model, protection seems to be
acting as early as 21 days post-vaccination (Stebbings et al.,
2004; Berry et al., 2011), when adaptive responses are either
not fully matured or do not appear to be central to the
protection observed in this model (Almond et al., 1997;
Stebbings et al., 2005).

To extend these studies, we examined whether TRIM5a
expression is induced by live-attenuated SIV vaccination
and whether TRIM5a polymorphism may play a contrib-
utory role in vaccine outcome. TRIM5a is a component of
the innate immune system responsible for an intracellular
block to retroviruses (Stremlau et al., 2004; Yap et al.,
2004), as well as being a sensor for the innate immune
response (Pertel et al., 2011). In SIV/macaque studies,
polymorphisms in TRIM5a have been correlated with
differential control of SIV infection (de Groot et al., 2011;
Kirmaier et al., 2010; Lim et al., 2010), suggesting that
genotypic variation in TRIM5a and/or expression may
impact both on the ability of an attenuated SIV to replicate
in vivo and, perhaps, on subsequent protection conferred
by live-attenuated SIV vaccination. However, expression
levels of TRIM5a in tissues susceptible to SIV infection
have not been hitherto described. Here, we have measured
TRIM5a mRNA levels in a previously reported early-
pathogenesis SIV/MCM study (Li et al., 2011). Briefly, 16
MCM were inoculated intravenously with a nef-disrupted
SIV, SIVmac251/C8, which has been shown to confer
protection at 3 and 20 weeks post-infection (Berry et al.,
2011, 2008; Stebbings et al., 2004). At these and earlier time
points, macaques were sacrificed and multiple lymphoid
tissues and blood were collected.

The GenBank/EMBL/DDBJ accession number for the SIVsmE660 gag
sequence reported in this paper is JX119100.
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Viral RNA (vRNA) in plasma was detected at day 3,
increasing progressively to a peak at day 10; vRNA then
declined, but still persisted at low levels at day 125 (Li et al.,
2011). Total RNA was isolated from a range of different
tissues taken at 0, 3, 7, 10, 21 and 125 days post-inoculation,
and TRIM5a and glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH) RNA levels were quantified by SYBR Green-
based quantitative PCR, using primers TRIM5s (59-C-
GCTACTGGGTTGATGTGACAC-39) and TRIM5ns (59-
CCCTGGTGCCTGATACATTATCTG-39) or GAPDH-s (59-G-
GCTGAGAACGGGAAGCTC-39) and GAPDH-ns (59-
AGGGATCTCGCTCCTGGAA-39). TRIM5a copy number
was normalized to that of GAPDH and expressed as fold
difference in comparison to one of the naı̈ve animals (A1;
Fig. 1). Despite considerable variation across individual
tissues and between vaccinates in response to SIVmac251/C8
infection, there was a significant increase in TRIM5a mRNA
expression over days 3, 7 and 10, when all tissues were
analysed together and compared with naı̈ve, unvaccinated
macaques (P50.012, two-tailed t-test). However, beyond

the peak of virus production (day 10), TRIM5a mRNA

expression returned to the normal range between days 21

and 125, when the plasma viral RNA levels were low, and the

overall virus profile is that of a controlled infection. TRIM5a

mRNA kinetics were similar to those observed previously for

APOBEC3G in rhesus macaques (Mußil et al., 2011),

suggesting a general response to acute retroviral infection,

most likely mediated by a type 1 interferon. Whether this

increase in restriction factor expression levels influences the

antiviral state of the host is difficult to determine, as the

transient increase in TRIM5 mRNA levels was not main-

tained at these higher induction levels beyond the immediate

acute phase, and no correlation was found between TRIM5a

expression and viral load in plasma (Fig. 1). However, we

reasoned that the higher level of TRIM5a expression

observed during the peak of primary viraemia could

influence subsequent outcome of SIV infection or vaccina-

tion, the extent of which could differ in MCM with different

TRIM5a genotypes.
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Fig. 1. TRIM5a RNA expression level in tissues. Total RNA was extracted from cell-derived tissues and reverse-transcribed, and
cDNA equivalent to 20–50 ng total RNA was used in a SYBR Green-based quantitative PCR. PCR product specificity was
assessed by dissociation curves. TRIM5a copy numbers were normalized to 5�105 GAPDH copies and the naı̈ve animal A1,
used as calibrator. All experiments were run in duplicate and error bars represent the mean±SD of two independent
experiments. vRNA in plasma for each animal at the time of termination (X) was measured by quantitative RT-PCR as described
previously (Berry et al., 2008).
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In rhesus macaques (Macaca mulatta), variations in the
sequence of the TRIM5a B30.2 domain, including its
replacement with cyclophilin A, have a great impact on
lentiviral infection both in vivo and in vitro (de Groot et al.,
2011; Kirmaier et al., 2010; Lim et al., 2010; Wilson et al.,
2008). MCM display limited genetic diversity as a result of
a small founder population and geographical isolation
(Tosi & Coke, 2007), offering the potential to develop an
SIV/macaque model where the confounding effects of host
genetics can be minimized. TRIM5a genotypes in cyno-
molgus macaques of different origin have also been
recently characterized (Berry et al., 2012; de Groot et al.,
2011; Dietrich et al., 2011; Saito et al., 2012). Only three
alleles have been identified in MCM: mafa-4 (identical to
rhesus mamu-4) and cynomolgus-specific mafa-8 and
mafa-9, but to date no TRIMCyp variants (with cyclophilin

A) have been identified (Berry et al., 2012; de Groot et al.,
2011; Dietrich et al., 2011). These three alleles, in the B30.2

domain, differ only by three amino acids (M330V and
Y389C in mafa-8, and I437V in mafa-9); however, they all

share the Q339TFP polymorphism, which, in rhesus
macaques, is associated with a permissive phenotype
(Kirmaier et al., 2010; Lim et al., 2010). We extended this

genotyping of MCM as described previously (Berry et al.,
2012) to a total of 90 MCM. This confirmed the presence

of only the three previously identified alleles, with the
mafa-4/4 homozygote constituting 56.7 % of the popu-

lation, and with only four of 90 MCM not carrying the
mafa-4 allele (Fig. 2a).

We then examined the contribution of each genotype to the
level of plasma vRNA at the time of peak viraemia (10–14 days)
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Fig. 2. Lack of correlation between SIV infection and TRIM5a genotype. (a) TRIM5a genotype was characterized in 90 MCM.
(b, c) Viral load in plasma. MCM were infected intravenously with 5000 TCID50 of the 9/90 pool of SIVmacC8 (b), or with 10
(h), 100 (&), 1000 (m) or 10 000 ($) MID50 of SIVsmE660 (c). Viral load in plasma was determined at 10 (b) or 14 (c) days
post-inoculation by quantitative probe-based one-step RT-PCR. Differences between genotypes were not statistically
significantly different by one-way ANOVA, Kruskal–Wallis test. The difference between viral loads for genotypes mafa-4/4
versus mafa-4/9 (c) was significant by Dunn’s multiple comparison test (P,0.05). (d) MCM were vaccinated with
5�103 TCID50 SIVmacC8, and challenged 3 or 20 weeks post-vaccination with 10 MID50 of SIVsmE660 or SIVmac251/L28.
Six of eight animals challenged with SIVsmE660 and three of eight animals infected with SIVmac251/L28 were protected. One
of the two SIVsmE660-superinfected animals and two with SIVmac251/L28 were vaccinated for 3 weeks and the others for 20
weeks. MCM were grouped based on study outcome and compared with the whole population. Percentages of each genotype
[mafa-4/4 (black), -4/8 (white), -4/9 (grey) and -8/9 (striped)] were calculated for each group. Distribution of the genotypes
among the different groups was not found to be statistically significantly different as assessed by Fisher’s exact test.
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following intravenous infection with 5000 TCID50 of the 9/

90 pool of SIVmacC8 (Rud et al., 1994) as used in live-

attenuated SIV vaccine studies, or 10–10 000 MID50 of an

uncloned heterologous SIVsmE660 challenge stock (Berry

et al., 2011), representing a wild-type SIVsm-derived virus

(Fig. 2b, c). No major differences in viral load at the peak of

viraemia for SIVmacC8 could be associated with any of the

TRIM5a genotypes (Fig. 2b). Levels of SIVsmE660 in plasma

were also similar, regardless of the initial viral dose (Berry

et al., 2011) or TRIM5a genotype (Fig. 2c), although the

difference in the mean for the mafa-4/4 homozygotes and

the mafa-4/9 heterozygotes was significant by Dunn’s

multiple comparison test. Hence, there was no strong

impact of TRIM5a genotype on acquisition or replication
potential of SIVmac or SIVsm in vivo in MCM.

In further support of this hypothesis, we retrospectively
analysed two previously published LAV vaccination studies.
Briefly, 16 MCM were vaccinated with 56103 TCID50

SIVmacC8 and challenged with either SIVmac251/L28
(Berry et al., 2008) or SIVsmE660 (Berry et al., 2011),
representing homologous and heterologous challenges,
respectively. Taking these two vaccine populations together,
irrespective of the composition of the virus challenge, mafa-4/4
homozygotes constituted 62.5 % of the protected macaques,
50 % of the superinfected and 55.8 % of the total; mafa-4/8
heterozygotes were slightly more represented in the superinfected
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Fig. 3. Lentiviral infection in CRFK cells expressing MCM TRIM5a alleles. Feline CRFK cells were transduced using a
gammaretroviral vector to express MCM N-terminal HA-tagged TRIM5a alleles mafa-4, mafa-8 and mafa-9 or an empty vector.
(a) Cell lysates were harvested 2 weeks post-TRIM5a expression, after selection with G418, and subjected to immunoblotting
using monoclonal anti-HA.11 antibody. b-Actin was detected on the same membrane to assess protein input. (b) CRFK cells
were infected with fivefold serial dilutions of GFP-expressing lentiviruses and viral titres were determined by monitoring EGFP
expression by flow cytometry. Histograms represent the mean±SEM of three independent experiments. Only for HIV-1 was the
reduction of viral titre between empty vector (EV) and MCM TRIM5a alleles statistically significant (t-test; P,0.05).
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MCM (28.6 %) than in protected ones or the whole
population (18.6 and 18.7 %, respectively). A total of 18.7 %
of the protected macaques, 14.3 % of the superinfected and
20 % of all MCM were mafa-4/9 heterozygotes. There was just
one macaque with the genotype mafa-8/9, which was
protected from viral rechallenge, but there were insufficient
data for statistical analysis. These data suggest that distri-
bution of TRIM5a genotypes among vaccine study popula-
tions does not differ significantly between protected and
superinfected vaccinated macaques, in comparison with the
whole population (Fig. 2d), and hence TRIM5a genotype per
se has no impact on vaccine/study outcome. This would
appear to hold for both homologous and heterologous virus
challenges in such a scenario.

Finally, the three MCM TRIM5a alleles were tested in vitro
for their ability to restrict lentiviral infection. TRIM5a

genes were PCR-cloned using cDNA from animals with

genotypes mafa-4/8 and mafa-4/9 and the following

primers: sense, 59-TAGAATTCGCTTCTGGAATCCTGC-

39, and antisense, 59-TCACGTCGACTCAAGAGCTTGG-

TGAG-39 (EcoRI and SalI restriction sites underlined).

PCR products were subcloned into the gammaretroviral

vector EXN (Zhang et al., 2006), downstream and in frame

with a haemagglutinin (HA) tag using the restriction

enzymes EcoRI and SalI. Crandell–Rees feline kidney

(CRFK) cells stably expressing TRIM5a alleles were

produced as described previously (Ylinen et al., 2010).

Similar TRIM5a expression levels were assessed by Western

blotting using an anti-HA.11 antibody (Covance; dilution

1 : 1000) and anti-b-actin (Abcam; dilution 1 : 1000),

together with an HRP-conjugated anti-mouse IgG antibody

(DAKO; 1 : 3000 dilution) (Fig. 3a). TRIM5a-expressing

cells were exposed to serial dilutions of VSV-G-pseudo-

typed, lentiviral vectors derived from HIV-1 (Zufferey et al.,

1997), HIV-2 (Griffin et al., 2001) or SIVmac251 (Nègre et

al., 2000) carrying a GFP marker gene, and infectious titres

were inferred by flow-cytometry analysis. GFP/SIVsmE660 was
obtained by replacing SIVmac Gag aa 1–373 with the
equivalent residues from SIVsmE660, using XhoI and AgeI
restriction sites added to the SIVmac packaging plasmid
SIV3+ by mutagenesis. The SIVsmE660 gag sequence
(GenBank accession no. JX119100) was cloned from vRNA
purified from infected animals using the following primers:
sense, 59-TAGAGCTCGAGATGGGCGCGAGAAACTCCGT-
C-39, and antisense, 59-TCGCGACCGGTCTCAGTGCCTCT-
TTCAATGCTTC-39 (XhoI and AgeI restriction sites under-
lined). As expected, HIV-1 vector titre was reduced in cells
expressing the simian TRIM5a genes, but no significant
reduction of titre was observed for HIV-2, SIVmac251 or
SIVsmE660 (Fig. 3b). The non-restrictive phenotype of the
MCM TRIM5a alleles, which all carry a glutamine at aa 339,
concurs with previous reports (Kirmaier et al., 2010; Lim et al.,
2010; Wilson et al., 2008).

Although we cannot categorically exclude a contribution of
TRIM5a gene expression to the long-term control of SIV/
HIV-2 infection in vivo and/or vaccination in MCM, we

hypothesize that any effects will be minimal, as the only
three alleles identified in MCM do not restrict HIV-2,
SIVmac251 or SIVsmE660 (Fig. 3). In addition, no
correlation between the four different MCM TRIM5a
genotypes and outcome of SIV infection in naı̈ve or
vaccinated MCM was observed, although a larger number
of animals could improve the statistical significance of
these observations. MHC genotyping will still be required,
as it has been shown that certain MCM haplotypes have an
impact on SIV infection in MCM (Mee et al., 2009; Mühl
et al., 2002). Animals used in this study have been MHC-
genotyped and only two of them (A5 and A17) express
allele M6, associated with spontaneous control of infection.
No correlation was found with virus replication (Fig. 1).

The results presented here suggest that prerequisite TRIM5a
genotyping is of low priority in cynomolgus macaques of
Mauritian origin. Our data consolidate the MCM/SIV
system as a powerful model to study HIV/AIDS, where bias
introduced by host genetics can be reduced to a minimum
and rationalized. The replication potential of different
SIVmac/SIVsm viruses appears to be largely unimpeded by
different TRIM5 genotypes in this non-human primate
model of HIV infection and study outcomes unaffected by
predisposition to particular TRIM5 variants.
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