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Abstract

Background and Aims: Hepatitis B virus (HBV) infec-
tion is a major risk factor for cirrhosis and liver cancer, 
and its treatment continues to be difficult. We previously 
demonstrated that a dopamine analog inhibited the pack-
aging of pregenomic RNA into capsids. The present study 
aimed to determine the effect of dopamine on the expres-
sions of hepatitis B virus surface and e antigens (HBsAg 
and HBeAg, respectively) and to elucidate the underlying 
mechanism. Methods: We used dopamine-treated HBV-
infected HepG2.2.15 and NTCP-G2 cells to monitor HBsAg 
and HBeAg expression levels. We analyzed interferon-stim-
ulated gene 15 (ISG15) expression in dopamine-treated 
cells. We knocked down ISG15 and then monitored HBsAg 
and HBeAg expression levels. We analyzed the expression 
of Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT) pathway factors in dopamine-treated 
cells. We used dopamine hydrochloride-treated adeno-as-
sociated virus/HBV-infected mouse model to evaluate HBV 
DNA, HBsAg, and HBeAg expression. HBV virus was col-
lected from HepAD38.7 cell culture medium. Results: Do-
pamine inhibited HBsAg and HBeAg expression and upreg-
ulated ISG15 expression in HepG2.2.15 and HepG2-NTCP 
cell lines. ISG15 knockdown increased HBsAg and HBeAg 
expression in HepG2.2.15 cells. Dopamine-treated cells ac-

tivated the JAK/STAT pathway, which upregulated ISG15 
expression. In the adeno-associated virus-HBV murine in-
fection model, dopamine downregulated HBsAg and HBeAg 
expression and activated the JAK-STAT/ISG15 axis. Con-
clusions: Dopamine inhibits the expression of HBsAg and 
HBeAg by activating the JAK/STAT pathway and upregulat-
ing ISG15 expression.
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Introduction
Hepatitis B virus (HBV) infection is a global public health 
challenge.1 Over 350 million people worldwide have chronic 
hepatitis B virus (HBV) infection, 2.03% of whom are chil-
dren under 5 years of age.2–5 This disease causes approxi-
mately 686,000 deaths annually.6–9

Appropriate antiviral treatment can effectively prevent 
chronic complications of hepatitis B infection and improve 
survival.10 Currently available medications for the treatment 
of chronic HBV infection include nucleos(t)ide analogs (NAs) 
such as lamivudine (LAM), tenofovir (TDF) and entecavir 
(ETV); however, LAM therapy can lead to the emergence of 
NA-resistant viruses.11 Long-term high-dose TDF therapy 
(300 mg daily) can cause renal and skeletal adverse reac-
tions such as proximal tubular dysfunction, osteomalacia, 
and hypophosphatemia.12 In vitro and in vivo studies sug-
gest that ETV can completely inhibit HBV DNA replication.13 
and suppress circulating HBV DNA, but not circulating HBsAg 
and HBeAg.14

The loss of detectable hepatitis B surface antigen (HB-
sAg) is considered a functional cure of chronic hepatitis B 
infection.15 Agents such as pegylated interferon (IFN) can be 
used to attain HBsAg clearance. However, interferon-α treat-
ment can clear HBV but is limited by systemic side effects.16 
Achieving a functional cure remains challenging. HBsAg and 
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HBV e antigen (HBeAg) play critical roles in various stages of 
the viral replication cycle and are potential targets for anti-
HBV drug candidates.

We previously reported that the dopamine analogs 6-hy-
droxy-DL-DOPA and N-oleoyldopamine had specific effects 
in cell-free assays and inhibited viral replication and pack-
aging in stable HBV production (HB611) and infection sys-
tems established with sodium taurocholate co-transporting 
polypeptide-expressing HepG2 (NTCP-G2) cells.17 The 
clearance of HBV surface antigen (HBsAg) from the serum 
is a main goal of HBV infection treatment, and has been 
proposed to define the functional curing of this disease.18–20 
However, the long-term sustainability of such clearance, 
and the efficacy of HBsAg antibodies for its maintenance 
remain questionable.18

Type-I IFNs are cytokines that induce the expression of 
interferon-stimulated genes (ISGs) encoding various host-
protecting proteins, and their production can be induced by 
tissue damage and infection.21 These proteins include ISG15, 
a ubiquitin (Ub) homolog with a structure resembling that of 
di-Ub whose corresponding gene is most frequently upregu-
lated upon viral infection in humans and other species.21–24 
ISG15 has been reported to have antiviral activities25,26 and 
has been shown to generally protect against infection, as 
confirmed by the phenotypes of ISG15-deficient mice and 
humans,21 but the mechanisms underlying its action remain 
unclear. As ISG15 exists freely and is bound to other pro-
teins, these mechanisms may differ between intra- and ex-
tracellular environments.

The synthesis of mature ISG15 requires the removal of 
eight amino acids from its precursor protein’s C-terminus, 
leaving the sequence motif LRLGG, which is shared with ma-
ture Ub.23 In contrast to other Ub homologs, ISG15 has not 
been identified in lower organisms, implying that it has a 
highly specialized function in vertebrates.23 It is secreted in-
tracellularly and from monocytes and lymphocytes, and has 
cytokine-like activities such as the stimulation of natural kill-
er cell activation and dose-dependent IFN-γ production by T 
cells; it also functions as a neutrophil chemotactic factor.22–24 
Extracellular ISG15 activates peripheral blood mononuclear 
cells by triggering the lymphocyte function-associated anti-
gen 1 integrin receptor cluster of differentiation 11a, thereby 
enhancing IFN-γ and interleukin-10 secretion.27 ISG15 ex-
pression, and thus antiviral activity, is regulated by the Janus 
kinase (JAK)-signal transducer and activator of transcription 
(STAT) pathway.28–30

In this study, we aimed to determine the effect of dopa-
mine on the expressions of HBsAg and HBeAg, and to eluci-
date the underlying mechanism by exploring the key path-
ways and genes involved in the translation and expression of 
HBsAg and HBeAg.31

Methods

Cell lines, reagents, and cell treatment
The stable HBV-producing cell line HepG2.2.1532 was cul-
tured in Dulbecco’s modified Eagle medium (DMEM; Thermo 
Fisher Scientific, Waltham, MA, USA) containing 10% heat-
inactivated fetal bovine serum (FBS; Cellcook Biotechnology, 
Guangzhou, China), 1% antibiotic-antimycotic solution (So-
larbio, Beijing, China), and 0.5 mg/mL G418 disulfate (Mack-
lin, China) and kept in a humidified atmosphere containing 
5% CO2 at 37°C. HepG2.2.15 cells were seeded in 24-well 
plates with 500 µL culture medium (Nest Glass; 2,000 cells/
well) and treated with dopamine (125, 62.5, 31.25, 15.6, 
and 7.81 µM). Cells were incubated with either ETV 20 nM 

or both 125 µM dopamine and 20 nM ETV for 12 days, with 
medium refreshment every 3 days.

NTCP-G2 cells33 were maintained in a primary hepatocyte-
maintaining medium (PMM; Williams’ E medium (Sigma-Al-
drich, USA) supplemented with 10% heat-inactivated FBS, 
1% antibiotic-antimycotic solution, 50 µM hydrocortisone 
(Sigma-Aldrich), 5 µM dexamethasone, 5 µg/mL transferrin 
(Wako, Japan), 10 ng/mL epidermal growth factor (Thermo 
Fisher Scientific), 5 µg/mL insulin (Sigma-Aldrich), 5 ng/mL 
sodium selenite, 2 mM L-glutamine (Nacalai Tesque, Japan), 
and 0.5 mg/mL G418 (Nacalai Tesque) and kept in a humidi-
fied atmosphere containing 5% CO2 at 37°C. NTCP-G2 cells 
were seeded in 24-well plates (Nest Glass; 2×105 cells/well). 
The next day, they were infected with HBV from HepAD38.7 
cells (∼500 GEI) in 500 µL 4% PEG 8000 and 2% DMSO con-
taining PMM. Uninfected cell cultures were subjected to mock 
treatment. Twenty-four hours after infection, the NTCP-G2 
cells were washed twice with PMM and then treated by the 
addition of dopamine (125, 62.5, 31.25, 15.6, and 7.81 µM) 
and ETV (20 nM) to the culture medium for 9 days, with me-
dium refreshment every 3 days.

HepAD38.7 cells31 were maintained in DMEM/F12 (Nacalai 
Tesque) supplemented with 10% heat-inactivated FBS, 1% 
antibiotic-antimycotic solution (Nacalai Tesque), 0.5 mg/mL 
G418, and 400 ng/mL tetracycline and kept in a humidified 
atmosphere containing 5% CO2 at 37°C. HBV was induced in 
confluent HepAD38.7 cells via the exclusion of tetracycline 
from the culture medium, which was collected weekly for 2 
weeks, and precipitated by overnight treatment at 4°C with 
a final concentration of 6% polyethylene glycol (PEG) 8000 
(Sigma-Aldrich). The precipitate was centrifuged to obtain 
pellets, followed by dissolution in phosphate-buffered saline 
(PBS) and concentration. HBV DNA was subjected to real-
time quantitative polymerase chain reaction (qPCR), and 
HBV at the genome equivalent of infection (GEI) of 500 was 
used in subsequent experiments.31

Cell viability assay
HepG2.2.15 and NTCP-G2 cells were seeded in clear-bot-
tomed white 96-well plates (Corning, USA; 800 and 3,000 
cells/well, respectively) in 100 µL of their respective culture 
media. They were incubated with dopamine at various con-
centrations (1,000, 500, 250, 125, 62.5, 31.25, 15.6, 7.81, 
3.9, and 1.95 µM) for 12 and 9 days. NTCP-G2 cells were 
cultured in 2% dimethyl sulfoxide (DMSO) containing PMM. 
Following the addition of 100 µL Cell Counting Kit-8 solu-
tion (Promega, USA) to the culture media and incubation at 
37°C for 30 min, cell viability was assessed by measuring 
absorbance at 450 and 630 nm with a plate reader (GloMax, 
GM3000; Promega).

ISG15 silencing using small interfering RNA
An ISG15 small interfering RNA (siRNA) was designed and 
constructed by HanYi Biosciences Inc. (Guangzhou, China) 
using the following interference sequences: siRNA control, 
UUCUCCGAACGUGUCACGUTT and ACGUGACACGUUCGGAGA 
ATT; ISG15-1, GAGCAUCCUGGUGAGGAAUTT and AUUCCU-
CACCAGGAUGCUCTT; and ISG15-3, UGUCGGUGUCAGAGCUG 
AATT and UUCAGCUCUGACACCGACATT. Lipofectamine 3000 
(Thermo Fisher, USA) was employed as a transfection rea-
gent. The siRNA was used to silence ISG15 expression in 
HepG2.2.15 cells. The cells were seeded in a six-well plate 
(3×105 cells/well) for 24 h, then transduced with ISG15-spe-
cific siRNA or scramble control and incubated for an additional 
24 h. ISG15 protein expression in two ISG15-knockdown 
clones was analyzed using western blotting.
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Rescue experiment
We performed a rescue experiment to assess the role of do-
pamine in HBsAg and HBeAg inhibition via the upregulation 
of ISG15 expression. HepG2.2.15 cells were cultured in a 
six-well plate (3×105 cells/well) for 1 day, then transfected 
with scrambled control and ISG15 siRNA for 24 h. The culture 
medium was then replaced, and one group of ISG15 siRNA-
transfected and control cells were treated with dopamine 
(125 µM). The cell lysates and culture media were collected 
3 days after treatment, and HBsAg and HBeAg expression 
were examined by western blotting and ELISA, respectively. 
ISG15 protein expression in two ISG15-knockdown clones 
was analyzed using western blotting.

Mouse infection model
The Animal Care and Use Committee of South China Ag-
ricultural University approved the animal experiments 
([2020]d065). Male C57BL/6 mice aged 6–8 weeks were 
obtained from the Animal Center of the Guangdong Medical 
Laboratory. Mice were housed in the Special Pathogen-Free 
Laboratory Animal Center, with a temperature of 20–26°C, 
relative humidity of 40–70%, noise below 0 dB, nitrogen 
concentration under 14 mg/m3, over 15 air changes per 
hour, and a 12-hour cycle of light and darkness. Five to six 
mice were placed in each cage and padded twice a week. 
Mice were provided filtered drinking water from the animal 
house and fed with CO60-irradiated feed that met the na-
tional standard.

The mice were given tail-vein injections of recombinant 
virus (adeno-associated virus [AAV] 8-HBV1.3, 2.5×1011 vi-
ral genome) or vector control (AAV8 [ssAAV.CAG.WPRE.SV-
40pA]) diluted with PBS (total, 100 µL). After 4 weeks, mice 
with stable viremia were treated for 12 weeks with dopamine 
hydrochloride (10 µg/kg daily). In total, 10 mice were ran-
domly allocated to treatment and placebo (normal saline) 
groups (n=5 each). Blood was collected every 3 weeks and 
serum HBV DNA, HBsAg, and HBeAg levels were determined 
using qPCR and ELISA as described above. At week 12, the 
animals were sacrificed, and intrahepatic HBV DNA was de-
tected. Retro-orbital blood was collected at 0, 3, 6, 9, and 
12 weeks for the monitoring of serum HBV genomic DNA. 
qPCR (AmpliPrep-COBAS TaqMan [CAP/CTM] assay, 20-IU/
mL lower detection limit; Roche Molecular Systems, Branch-
burg, USA) was performed to quantify plasma HBV DNA. Se-
rum HBsAg and HBeAg expression levels were determined by 
ELISA as described above.

Intracellular and extracellular DNA extraction
Extracellular (particle-associated) and intracellular (core-
associated) HBV DNA in the treated cell supernatants were 
prepared for qPCR. To degrade DNA outside particles, the 
supernatants were incubated with 20 U/mL DNase I (Takara) 
with 5 mM MgCl2 at 37°C for 2 h, followed by the addition of 
ethylenediaminetetraacetic acid (EDTA; pH 8.0, final concen-
tration 10 mM). Virus particle precipitates were obtained with 
6% (w/v) PEG 8000 (Sigma-Aldrich); suspended in buffer 
containing 10 mM Tris-HCl (pH 7.6), 5 mM EDTA (pH 8.0), 
0.2 mg/mL proteinase K (Roche), and 0.5% sodium dodecyl 
sulfate; and incubated at 56°C for 3 h. RNase A (0.4 mg/
mL; Roche) was then added, and the solutions were further 
incubated at 65°C for 30 min. Phenol:chloroform:isoamyl al-
cohol (25:24:1) containing sonicated salmon sperm DNA (10 
µg) was used to extract complete particle (virion)-associated 
HBV DNA, which was precipitated with ethanol in 0.25 mg/
mL glycogen (Nacalai Tesque). The pellets obtained were 
suspended in 20 µL Tris-EDTA buffer (10 mM Tris-HCl [pH 

8.0], 1 mM EDTA [pH 8.0]). For the analysis of core-associat-
ed HBV DNA, harvested cells were washed with PBS and pel-
leted at 7,200 ×g and 4°C for 5 min, followed by suspension 
in a hypotonic buffer (20 mM Tris-HCl [pH 7.8], 50 mM NaCl, 
5 mM MgCl2, and 0.1% 2-mercaptoethanol) with vigorous 
vortexing. The cell debris was separated by centrifugation 
as in the previous step, and the clear lysate was taken to be 
virion-associated HBV DNA, which was suspended in 20 µL 
Tris-EDTA buffer.

Extraction of core particle-associated RNA
To assess packaged RNA, lysates from drug-treated NTCP/G2 
and HepG2.2.15 cells were processed to obtain core-associ-
ated HBV DNA samples. Subsequently, TRIzol™ (Invitrogen) 
was added to the lysate in three volumes, and RNA extrac-
tion was conducted following the manufacturer’s instruc-
tions. It is important to note that 1 µg of yeast tRNA was 
included prior to PCI extraction, and a 0.25 mg/ml glycogen 
solution (Nacalai Tesque) was introduced before isopropanol 
precipitation. The extracted RNA was then dissolved in 20 
µL TE buffer and preserved as core-associated HBV RNA in a 
−70°C freezer until required.

Enzyme-linked immunosorbent assay (ELISA)
After treatment, both cell types and culture supernatants 
were collected. HBsAg and HBeAg levels in the superna-
tants were measured by enzyme-linked immunosorbent as-
say (ELISA; Rapid-II [Beacle Inc.] and e-Antigen [Bioneovan 
Co.] kits, respectively).

Quantification of covalently closed circular HBV DNA
To study the HBV replication cycle, 2.1- and 2.4-kb mRNAs 
were transcribed from covalently closed circular (ccc) HBV 
DNA from HepG2.2.15 and NTCP-G2 cells.34–36 A fluorescent 
probe qPCR kit (Supbio Biotechnology, Guangzhou, China) 
was used to quantify cellular HBV cccDNA. DNA was extracted 
using a DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germa-
ny) according to the manufacturer’s instructions and dena-
tured at 85°C for 5 min. Relaxed circular, replicative double-
stranded, and single-stranded HBV DNA were digested using 
plasmid-safe adenosine triphosphate-dependent DNase.37 
qPCR was performed with a primer pair and probe targeting 
the gap region of the HBV genome for cccDNA quantification 
in the range of 10–1,000,000 copies/µL. To normalize the 
cccDNA quantity, qPCR was performed with a primer set and 
probe to detect the human β-globin gene.38

Analysis of mRNA expression profiles
We assessed the mRNA expression profiles of dopamine (125 
µM) and DMSO-treated HepG2.2.15 cells. After 12 days of 
culture with medium refreshment every 3 days, samples 
(n=3) were collected, and RNA was extracted using a TRI-
zol reagent kit (Invitrogen). RNA sequencing and library 
construction were performed using an Illumina HiSeq™ 
2500/4000 device (Gene Denovo Biotechnology Co., Ltd., 
Guangzhou, China). Gene expression profiles were analyzed 
using DESeq2 software.39 Enrichment pathway analyses, 
such as Gene ontology, Kyoto Encyclopedia of Genes and Ge-
nomes, and Bioinformatic analysis were performed using the 
OmicShare tools at (www.omicshare.com/tools).

qPCR and RT-qPCR
qPCR was performed with separate 20-µL solutions con-
taining 1 µL of the two HBV DNA types, respectively, using 
Fast SYBR™ Green Master Mix (Applied Biosystems/Thermo 
Fisher Scientific), S region primers (forward, 5′-CTTCATC-

http://www.omicshare.com/tools
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CTGCTGCTATGCCT-3′; reverse, 5′-AAAGCCCAGGATGATGG-
GAT-3′), and the QuantStudio™ 6 Flex system (Applied 
Biosystems by Life Technologies). The initial PCR cycle was 
performed at 95°C for 20 s, followed by 40 cycles at 95°C 
for 1 s and 60°C for 20 s and a final cycle at 95°C for 15 
s, 60°C for 1 min, 95°C for 30 s, and 60°C for 15 s. For 
reverse transcription, 10 µL core-associated HBV RNA was 
mixed with 0.5 mM deoxynucleotide triphosphates and 10 
ng random primers, denatured by heat at 65°C for 5 min, 
and then chilled rapidly on ice. The reaction mixture (20 µL) 
containing 5 mM dithiothreitol, 40 units RNasin (Promega), 
and 200 units Superscript III (Invitrogen, USA) was incu-
bated at 37°C for 30 min, 42°C for 30 min, and 50°C for 60 
min, and then at 70°C for 30 min for reverse transcriptase 
inactivation. The copy number was determined with refer-
ence to the standard copy number in a plasmid containing 
a single HBV genome.

For reverse transcription, 10 µL of core-associated HBV 
RNA was mixed with 10 ng random primers and 0.5 mM dNT-
Ps and quickly chilled on ice after heat denaturation at 65°C 
for 5 min. The solution was arranged in a 20 µL reaction mix-
ture containing 5 mM DTT, 40 units of RNasin® (Promega), 
and 200 units of SuperScript III (Invitrogen). The mixture 
was then incubated at 37°C for 30 min, 42°C for 30 min, 
and 50°C for 60 min. Finally, the mixture was incubated at 
70°C for 30 min to inactivate reverse transcriptase. A 1 µL 
aliquot of the reversely transcribed sample was subjected to 
qPCR for which primers were set at the HBV pgRNA (forward; 
5′-CTCAATCTCGGGAACCTCAATGT-3′ and reverse; 5′-TGGA-
TAAAACCTAGCAGGCATAAT−3′) , HBV total RNA (forward; 
5′-ATGGCTGCTAGGCTGTGCTGC-3′ and reverse; 5′-ACGGTG 
GTCTCCATGCGACG−3′)40 with the same condition as de-
scribed above. qPCR data are presented as means with 
standard deviations relative to the control from at least three 
replicates.

Western blotting
We evaluated the signaling molecules in the JAK-STAT path-
way to determine the mechanism underlying ISG15’s effects 
on HBV HBsAg and HBeAg expression. HepG2.2.15 cells were 
treated with dopamine (125 µM) and DMSO for 12 days. We 
then lysed the cells, and examined JAK1, STAT1, and p-STAT1 
expression by western blotting using specific antibodies. An-
tibodies used in this study included anti-ISG15 (1:1,000, 
Abcam, UK), anti-JAK1 (1:1,000, Absin, China), anti-STAT1 
(1:1,000, CST, USA), and anti-p-STAT1 (1:1,000, CST, USA), 
with anti-β-actin serving as an internal control. Antibodies 
were used for protein detection by western blotting, immu-
nofluorescence, and immunohistochemistry (IHC).

Immunohistochemical analysis
IHC was performed using a standard protocol. Paraffin-
embedded block mouse liver tissue sections (3.5 µm) were 
dewaxed, rehydrated, and incubated with 3% H2O2 for 10 
min to inactivate endogenous peroxidases. Antigens were 
retrieved with EDTA (pH 8.0) by boiling in water for 2 min in 
a pressure cooker. After cooling at room temperature for 20 
min, the sections were incubated with rabbit polyclonal anti-
HBsAg antibody (1:50, Novus, USA) diluted with 1% bovine 
serum albumin at 37°C for 1 h. They were then washed with 
PBS and incubated with horseradish peroxidase-labeled goat 
anti-rabbit secondary antibody (1:50, ServiceBio, China). 
The stained sections were viewed under an Olympus Leica 
DM4000B microscope. The expression of HBsAg, ISG15, 
STAT1, phosphorylated (p)-STAT1, and JAK1 was calculated 
by Image J (FIJI), based on the DAB-positive area observed 

under a 20-fold magnification scope in 10 randomly selected 
fields.

Statistical analysis
Five animals were used per condition in each experiment. 
Cells were treated in triplicate. Data are expressed as 
means±standard deviation (SD). Comparisons between two 
groups were conducted using the unpaired Student’s t-test, 
while comparisons among multiple groups were conducted 
using one-way ANOVA with a threshold. Differences were 
considered statistically significant at p<0.05.

Results

Dopamine inhibited HBV HBsAg, HBeAg, and DNA 
amplification, as revealed through cell-based assays
Dopamine-related cytotoxicity was evaluated. We used the 
maximum concentration, which resulted in over 90% cell 
viability (Fig. 1A). Dopamine decreased HBsAg and HBeAg 
levels in HepG2.2.15 cells dose-dependently (Fig. 1B and C). 
The combination of ETV and dopamine decreased HBsAg and 
HBeAg expression to the same levels obtained by dopamine 
monotherapy (Fig. 1D and E). Core-associated and extracel-
lular particle-associated HBV DNA levels in HepG2.2.15 cells 
decreased after dopamine treatment in a dose-dependent 
manner (Fig. 1F and G). These results suggested that do-
pamine specifically inhibits HBV transcription and DNA am-
plification processes, such as packaging and genome DNA 
synthesis.

The effects of the nominated compounds were also tested 
in an HBV infection system using NTCP/G2 cells (Fig. 2A). We 
used the maximum concentration, associated with over 90% 
viability, in the infection assay. Dopamine decreased HBsAg 
and HBeAg levels dose-dependently (Fig. 2B and C). Similar 
to the results obtained in HepG2.2.15 cells, the addition of 
ETV to dopamine did not change HBsAg and HBeAg expres-
sion levels obtained with dopamine monotherapy (Fig. 2D 
and E). Core-associated and extracellular particle-associated 
HBV DNA levels in NTCP/G2 cells decreased dose-depend-
ently following dopamine treatment (Fig. 2F and G). A wide 
range of drug concentrations was required for accurate de-
termination; nonetheless, our results confirmed that dopa-
mine inhibits HBV replication.

Dopamine decreased HBV HBsAg and HBeAg levels, 
but not cccDNA levels
To study the HBV replication cycle, 2.1 and 2.4 kb mRNAs 
were transcribed from HBV cccDNA.34–36 We analyzed the 
expression levels of cccDNA in HepG2.2.15 and HepG2-NTCP 
cells to determine whether the dopamine-mediated down-
regulation of HBsAg and HBeAg expression was caused by 
an inhibition of cccDNA formation or transcription. We found 
that cccDNA formation was unaffected by dopamine when 
compared to DMSO (Fig. 3A and B). Our investigation fo-
cused on the levels of packaged pgRNA and total RNA ex-
pressions in HBV. Dopamine-treated HepG2.1.15 and NTCP-
G2 cells exhibited decreased packaged pgRNA expression 
levels compared to DMSO-treated cells. This outcome aligns 
with our prior discoveries. Interestingly, total HBV RNA levels 
in dopamine-treated cells were marginally lower than those 
observed in DMSO-treated cells (Fig. 3C-F).

Dopamine altered mRNA profiles and increased 
ISG15 expression in cells
We assessed the mRNA expression profiles of dopamine (125 
µM) and DMSO-treated HepG2.2.15 cells to identify the cel-
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lular components responsible for the dopamine-mediated 
inhibition of HBsAg and HBeAg expression. Compared with 
DMSO-treated cells, dopamine-treated cells presented 307 
upregulated genes and 70 downregulated genes (Fig. 4A). 
The top seven mRNAs were upregulated in the dopamine-
treated-cells compared to DMSO-treated HepG2.2.15 cells 
(Fig. 4B). We focused on ISG15 because of its reported anti-
viral activities. ISG15 expression was significantly increased 
in dopamine-treated HepG2.2.15 and HepG2-NTCP cells af-
ter infection (500 GEI) compared to that of DMSO-treated 
cells (Fig. 4C and D).

ISG15 inhibited in vitro HBV HBsAg and HBeAg ex-
pression
To determine the role of ISG15 in inhibiting HBsAg and HBeAg 
synthesis during HBV replication, we silenced ISG15 expres-
sion in HepG2.2.15 cells using specific small interfering RNAs 
(siRNAs). We also confirmed the relationship between ISG15 
and HBsAg and HBeAg expression by conducting a rescue ex-
periment (Fig. 5A and B). The two ISIG15-knockdown clones 
decreased ISIG15 expression by over 50% (Fig. 5C and D). 

HBsAg and HBeAg expression levels were significantly up-
regulated in HepG2.2.15 cells when ISG15 was silenced us-
ing siRNA (Fig. 5E and F).

We performed rescue experiments to confirm that dopa-
mine inhibited HBsAg and HBeAg expression through the 
upregulation of ISG15. HepG2.2.15 cells were cultured at 
3×105 cells/well in a 6 well plate. On the following day, cells 
were transfected with siRNA (control and ISG15) and incu-
bated for 24 h. Subsequently, culture media were replaced in 
all the samples, and one sample was treated with dopamine 
(125µM). At 3 days post-treatment, cell lysates and culture 
media were collected. The results indicated that dopamine 
reversed the effect of ISG15 silencing in HepG.2.15 cells 
(Fig. 5G and H). HBsAg and HBeAg expression levels in the 
reversed cells were similar to those of controls (Fig. 5I and 
J).

Dopamine activated JAK-STAT pathway-mediated 
ISG15 upregulation in cells
Previous reports have revealed that the JAK-STAT pathway 
regulates ISG15 expression.28,29 We assessed the signaling 

Fig. 1.  Dopamine inhibits hepatitis B virus (HBV) amplification in a stable HBV-producing cell line. (A) HepG2.2.15 cell viability following dopamine treat-
ment for 12 days. (B, C) Hepatitis B virus surface and e antigen (HBsAg and HBeAg, respectively) levels after dopamine and entecavir (ETV, 20 nM, control) treatment, 
measured by enzyme-linked immunosorbent assay. (D, E) HBsAg and HBeAg expression following ETV (20 nM) and/or dopamine (125 µM) treatment. (F, G) Core- and 
extracellular particle-associated HBV DNA levels following dopamine and/or ETV treatment, determined by quantitative polymerase chain reaction. Data are presented 
as mean values with standard deviations relative to the control from at least three independent experiments. *p<0.05, **p<0.01, ***p<0.005 ****p<0.001. OD, 
optical density; DMSO, dimethyl sulfoxide; ETV, entecavir.
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molecules in the JAK/STAT pathway to determine the mech-
anism by which ISG15 inhibits HBsAg and HBeAg expres-
sion. HepG2.2.15 cells were treated with either dopamine 
(125 µM) or DMSO. After 12 days, we lysed the cells and 
investigated the expression levels of JAK1, p-JAK1, STAT1, 
and P-STAT1 via western blotting using specific antibodies. 
The expressions of STAT1, p-STAT1 (Fig. 6A–D), JAK1, and 
p-JAK1 (Fig. 6E–H) were significantly upregulated in dopa-
mine-treated cells compared to DMSO-treated cells.

Ruxolitinib inhibited the ISG15 expression level in 
cells
To measure the relationship between the JAK-STAT pathway 
and ISG15, we used Ruxolitinib, a JAK1/2 inhibitor to inhibit 
the JAK expression in the HepG2.2.15 cell line (Fig. 7A). We 
evaluated ruxolitinib-related cytotoxicity and used the maxi-
mum concentration resulting in over 90% cell viability (Fig. 
7B). Treatment with ruxolitinib significantly downregulated 
JAK1, p-JAK1, STAT1, and p-STAT1 and ISG15 expression 
levels. Moreover, the expression levels of these proteins were 
rescued by dopamine treatment (Fig. 7C and D).

Dopamine inhibited HBV HBsAg expression in mice
To assess the long-term effects of the dopamine regimen, we 
treated AAV/HBV-infected mice with 10 µg/kg dopamine hy-
drochloride daily. HBsAg and HBeAg expression levels were 
examined every three weeks until the 12 week timepoint 
(Fig. 8A). HBsAg and HBeAg levels in mouse serum were 
reduced by 80% following dopamine hydrochloride treat-
ment for 12 weeks (Fig. 8B and C). The HBV DNA level was 
reduced after dopamine hydrochloride treatment (Fig. 8D). 
Dopamine therapy did not change mouse weight during the 
12 weeks of treatment (Fig. 8E). Similarly, HBsAg expres-
sion in hepatic tissue was downregulated after 12 weeks, as 
observed by IHC (Fig. 8F). We found that after 12 weeks, 
expression levels of ISG15, STAT1, p-STAT1, and JAK1 were 
considerably higher in the dopamine hydrochloride-treated 
group than in the placebo-treated group (Fig. 8G–J).

Discussion
Despite the demonstrated efficacy of antiviral therapy in 
halting the progression of liver disease and preventing he-

Fig. 2.  Dopamine inhibits hepatitis B virus (HBV) amplification in an HBV infection system. (A) Sodium taurocholate co-transporting polypeptide-expressing 
HepG2 (NTCP-G2) cell viability following dopamine treatment for 9 days. (B, C) Hepatitis B virus surface and e antigen (HBsAg and HBeAg, respectively) levels in 
NTCP-G2 cells infected with supernatant from HepAD38 cells and treated with dopamine or entecavir (ETV; 20 nM), measured by enzyme-linked immunosorbent assay. 
(D, E) HBsAg and HBeAg expression following ETV (20 nM) and/or dopamine (125 µM) treatment. (F, G) Core- and extracellular particle-associated HBV DNA levels 
in HB-infected NTCP-G2 cells following dopamine and/or ETV treatment, determined by quantitative polymerase chain reaction. Data are presented as mean values 
with standard deviations relative to the control from at least three independent experiments. *p<0.05, **p<0.01, ***p<0.005. OD, optical density; DMSO, dimethyl 
sulfoxide; Mock, uninfected negative control; ETV, entecavir.
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patic failure in patients with chronic HBV infection, achiev-
ing a functional cure remains highly challenging due to the 
notably low success rate.41 The goal of HBV therapy is to 
eliminate circulating HBsAg.42

Available therapeutic options for the management of 
chronic HBV infection include nucleos(t)ide analogs and PE-
Gylated IFNs. Despite their administration over an extensive 
timeframe, these treatments exhibit a disappointing success 
rate (less than 10% following a 5-year evaluation) in achiev-
ing HBsAg clearance. Moreover, their inability to eliminate 
HBsAg from infected hepatocytes renders viral eradication 
unattainable.43 Therefore, various antiviral strategies are 
being investigated to increase the HBsAg loss rate.44 These 
include the use of HBV entry inhibitors and capsid assembly 

modulators. However, these drug candidates are still in pre-
clinical or early clinical stages of development.45,46

In this study, we investigated the antiviral activity of do-
pamine, a small molecule compound. Our findings demon-
strate that dopamine substantially reduced the level of HBV 
DNA, which was consistent with our previous study showing 
that dopamine reduced HBV DNA replication by inhibiting the 
binding of ε RNA with the HBV polymerase.17 Surprisingly, in 
this study, we found that dopamine decreased the production 
of HBsAg and HBeAg in HBV-infected HepG2.2.15 and Hep-
NTCP cell lines as well as the levels of HBsAg, HBeAg, and 
DNA in an AAV-HBV1.3 murine infection model.

We also explored potential mechanisms of action. We 
further found that dopamine considerably increased ISG15 

Fig. 3.  Dopamine does not inhibit covalently closed circular DNA (cccDNA) formation. cccDNA, packaged pgRNA and HBV total RNA expression in (A, C and 
E) HepG2.2.15 cells and (B, D and F) HBV-infected sodium taurocholate co-transporting polypeptide-expressing HepG2 (NTCP-G2) cells following dopamine treatment 
for 12 and 9 days, respectively, as determined by quantitative polymerase chain reaction. Data are presented as mean values with standard deviations relative to the 
control from at least three independent experiments. *p<0.05. DMSO, dimethyl sulfoxide; HBV, hepatitis B virus.
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expression in HepG2.2.15 and NTCP-G2 cells and in mice 
relative to control treatments, and that ISG15 knockdown 
increased HBsAg and HBeAg expression in HepG2.2.15 cells. 
These findings suggest that the antiviral activity of dopamine 
is related to its activation of ISG15 and regulation of HB-
sAg and HBeAg expression. In a previous study, ISG15 was 
characterized as a linear Di ubiquitin-like protein with inter-
feron-stimulated antiviral activity, which is consistent with 
our finding.47 The JAK/STAT signaling pathway induces the 
upregulation of several ISGs, such as MxA, ISG15, IFITM3, 
and ISG56, thereby inhibiting viral replication.30 In our study, 
we additionally found that JAK1, STAT1, and p-STAT1 ex-
pression were considerably upregulated following dopamine 
treatment compared with that following DMSO treatment in 
vitro. Importantly, IHC of hepatic tissue taken from our AAV/
HBV-mouse infection model demonstrated that JAK1, STAT1, 
and p-STAT1 expressions were significantly higher in the do-
pamine-treated mice than in the placebo group.

Recent studies have shown that dopamine and dopamine 
receptor D1 (DRD1) play important roles in cancer progres-
sion, and DRD1 expression is high in HepG2 cells,48 explain-
ing how dopamine entered the cells and activated the JAK/
STAT pathway in this study. Although type-I and III IFNs 

signal through the JAK/STAT pathway to induce an antiviral 
state,49 our results suggest that dopamine’s activation of this 
pathway to induce ISG15 did not involve IFNs. These findings 
suggest that dopamine can be applied as a novel research 
tool to study the HBV replication cycle.

Our study has several limitations. First, we did not test 
other druggable DRD1 receptor agonists. Because dopamine 
therapy for HBV infection is not clinically feasible, we need to 
identify and test other druggable ISG15 agonists that may be 
suitable for long-term oral administration. Second, because 
we used the AAV-HBV1.3 mouse model, we were unable 
to observe in vivo changes in HBV cccDNA and pregenom-
ic RNA, or chronic liver pathologies such as hepatitis, liver 
fibrosis, or oncogenesis. Third, this study focused only on 
hepatocytes and did not examine the effect of dopamine on 
immune effector cell function. In future studies, we plan to 
collect patient samples and construct liver-s pecific knockout 
and overexpressing mice to further elucidate the role of the 
JAK-STAT/ISG15 axis in suppressing HBV replication. Addi-
tionally, we intend to incorporate immune effector cells and a 
humanized mouse model to evaluate the effect of dopamine-
mediated upregulation of the JAK-STAT/ISG15 axis on the 
anti-HBV immune response.

Fig. 4.  Dopamine regulated interferon-stimulated gene 15 (ISG15) expression. (A) Volcano plots of differential gene expression between dimethyl sulfoxide 
(DMSO; control)- and dopamine-treated HepG2.2.15 cells. (B) Expression profiles of DMSO- and dopamine-treated HepG2.2.15 cells, determined by RNA sequenc-
ing. (C, D) ISG15 protein expression in HepG2.2.15 (left) and sodium taurocholate co-transporting polypeptide-expressing HepG2 (NTCP-G2, right) cells, determined 
by western blotting. Data are presented as mean values with standard deviations relative to the control from at least three independent experiments. ***p<0.005, 
****p<0.001. FDR, false discovery rate; FC, fold change; DMSO, dimethyl sulfoxide.
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In summary, we successfully used dopamine to inhibit HB-
sAg, HBeAg, and HBV DNA expression both in vitro and in 
vivo. We identified a potential mechanism of action in which 
dopamine binding with DRD1 activated the JAK/STAT-ISG15 
axis exerting an antiviral function, as depicted in Figure 9. Al-
though dopamine therapy for HBV infection may not be fea-
sible in the clinical context, the findings of this study increase 

the understanding of the regulatory relationship between the 
STAT/ISG15 signaling pathway and HBV replication, which 
may facilitate the discovery of therapeutic targets and inform 
the development of novel treatments for chronic HBV infec-
tion.

In conclusion, dopamine inhibits HBV DNA replication and 
the expressions of HBsAg and HBeAg, while activating the 

Fig. 5.  Interferon-stimulates gene 15 (ISG15) regulated hepatitis B virus surface and e antigen (HBsAg and HBeAg) expression. (A, B) Cell culture and 
treatment in the knockdown and rescue experiments. (C, D) ISG15 protein expression in HepG2.2.15 cells with two ISG15-knockdown clones with (+) or without (−), 
determined by western blotting. (E, F) HBsAg and HBeAg expression in the ISG15-knockdown clones, determined by enzyme-linked immunosorbent assay (ELISA). (G, H) 
ISG15 gene and protein expression in the rescue experiment, in HepG2.2.15 cells treated siISG15-1 with (+) or without (−), dopamine with (+) or without (−), siControl 
with (+) or without (−), determined by western blotting. (I, J) HBsAg and HBeAg expression in the rescue experiment, in HepG2.2.15 cells treated siISG15-1 with (+) 
or without (−), dopamine with (+) or without (−), siControl with (+) or without (−), determined by ELISA. Data are presented as mean values with standard deviations 
relative to the control from at least three independent experiments. *p<0.05, **p<0.01, ***p<0.005, ****p<0.001. siRNA, small interfering RNA; OD, optical density.
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Fig. 6.  Dopamine upregulates the expression of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway mol-
ecules. STAT1, phosphorylated (p)-STAT1 (A-D), JAK1, and phosphorylated (p)-JAK1 (E- H) protein expressions in HepG2.2.15 cells treated with dopamine or dimethyl 
sulfoxide (DMSO, control) for 12 days, determined by western blotting. Data are presented as mean values with standard deviations relative to the control from at least 
three independent experiments. *p<0.05, **p<0.01. DMSO, dimethyl sulfoxide
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Fig. 7.  ISG15 activation with JAK-STAT pathway in cells. (A) Cell culture and treatment in the ruxolitinib-treated experiments. (B) HepG2.2.15 cell viability fol-
lowing ruxolitinib treatment for 3 days. (C and D) JAK1, phosphorylated (p)-JAK1, STAT1, phosphorylated (p)-STAT1, and ISG15 expression in HepG2.2.15 cells treated 
ruxolitinib with (+) or without (−), dimethyl sulfoxide (DMSO, control) and combined dopamine with (+) or without (−) and ruxolitinib with (+) or without (−) for 3 
days, determined by western blotting. Data are presented as mean values with standard deviations relative to the control from at least three independent experiments. 
*p<0.05, **p<0.01, *** p<0.005, **** p<0.001. OD, optical density; JAK, Janus kinase; STAT, signal transducer and activator of transcription.
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Fig. 8.  Dopamine inhibits hepatitis B virus (HBV) surface antigen (HBsAg) expression in a mouse model. (A) Dopamine hydrochloride or placebo (normal 
saline; 10 µg/kg daily) treatment of adeno-associated virus (AAV)-HBV 1.3 mice. (B, C) Post-treatment HBsAg and hepatitis B virus e antigen (HBeAg) expression, 
determined by enzyme-linked immunosorbent assay. (D) Serum HBV DNA expression, determined by quantitative polymerase chain reaction. HBV DNA was quantified 
by qPCR (absolute quantification). The Y axis was adjusted to log10. (E) Mouse body weight. (F–J) HBsAg, interferon-stimulated gene 15 (ISG15), signal transducer 
and activator of transcription 1 (STAT1), phosphorylated (p)-STAT1, and Janus kinase 1 (JAK1) expression in mouse livers, determined by immunohistochemistry (IHC). 
200× magnification, scale bar=100 µm. Data are presented as mean values with standard deviations relative to the control from at least five independent experiments. 
*p<0.05, **p<0.01, ***p<0.005, ****p<0.001. PBS, phosphate-buffered saline; IP, intraperitoneal; OD, optical density; IntDen, integrated density.
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JAK-STAT pathway and upregulating the expression of sign-
aling molecules in this pathway to increase the expression 
of ISG15, which exerts antiviral activity. These findings en-
hance our understanding of targeting HBsAg and HBeAg. Al-
though dopamine is not suitable for clinical use as an antiviral 
therapeutic, our study suggests that ISG15 agonists should 
be developed for the treatment of chronic HBV infection. The 
association of dopamine with the JAK1/STAT signaling path-
way suggests its potential in regulating ISG15 activity or ex-
pression.
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