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Analysis of allele-specific gene expression (ASE) is a powerful approach for studying gene regulation, particularly when sample

sizes are small, such as for rare diseases, or when studying the effects of rare genetic variation. However, detection of ASE

events relies on accurate alignment of RNA sequencing reads, where challenges still remain, particularly for reads containing

genetic variants or those that align to many different genomic locations. We have developed the Personalised ASE Caller

(PAC), a tool that combines multiple steps to improve the quantification of allelic reads, including personalized (i.e., diploid)

read alignment with improved allocation of multimapping reads. Using simulated RNA sequencing data, we show that PAC

outperforms standard alignment approaches for ASE detection, reducing the number of sites with incorrect biases (>10%) by

∼80%and increasing the number of sites that can be reliably quantified by∼3%.Applying PAC to real RNA sequencing data

from 670 whole-blood samples, we show that genetic regulatory signatures inferred fromASE data more closely match those

from population-based methods that are less prone to alignment biases. Finally, we use PAC to characterize cell type–specific

ASE events that would be missed by standard alignment approaches, and in doing so identify disease relevant genes that may

modulate their effects through the regulation of gene expression. PAC can be applied to the vast quantity of existing RNA

sequencing data sets to better understand a wide array of fundamental biological and disease processes.

[Supplemental material is available for this article.]

Allele-specific expression (ASE) is the imbalanced expression of the
two alleles of a gene. Whereas many genes are expressed equally
from both alleles, gene regulatory differences driven by genetic
changes (i.e., regulatory variants) frequently cause the two alleles
to be expressed at different levels, resulting in allele-specific
expression patterns.With RNA sequencing (RNA-seq) data, the ex-
pression from the two alleles can be distinguished and quantified,
but this analysis remains susceptible tomany technical challenges,
despite improved analytical methods (Castel et al. 2015; van de
Geijn et al. 2015). To date, ASE analysis has largely been performed
in the context of expression quantitative trait loci (eQTL) studies,
as an alternativemethod to identify and characterize effects of reg-
ulatory variants on gene expression (Lappalainen et al. 2013; The
GTEx Consortium 2020). In these studies, large sample sizes help
mitigate the effects of technical biases (Panousis et al. 2014). How-
ever, the power of ASE analysis lies in its applicability to individual
samples, particularly in the context of rare diseases and other cases
where looking at combined haplotypic effects of multiple variants
is necessary. Numerous studies have now leveraged the power of
ASE in detecting genetic effects on gene regulation (Kumasaka
et al. 2016; Findley et al. 2021) and identifying regulatory dysfunc-
tion in rare disease samples (Cummings et al. 2017; Mohammadi
et al. 2019). In order to draw conclusions about individual samples
and loci, the accuracy of ASE calling becomes paramount.

One of the main sources of bias in ASE analysis is the align-
ment of sequencing reads. When short reads are aligned to the ref-
erence genome, reads carrying alleles that match to the reference
sequence frequently map better than those carrying alternative al-
leles, leading to false ASE effects (‘reference allele bias’). This effect
can be particularly problematic in areas containing a large number
of single nucleotide polymorphisms or insertion/deletion events,
which can mean that certain regions of the genome are not fully
characterized. Similarly, reads that align to multiple locations in
the genome can also influence the accuracy of allele counts at het-
erozygous sites. In the absence of better approaches, such difficult-
to-map reads are typically discarded from the analysis (van de
Geijn et al. 2015), and consequently sets of genes that contain sim-
ilar sequences (e.g., within gene families)may suffer fromartificial-
ly low sequencing coverage and lack of power to detect the effects
of genetic regulation.Diploid genomemapping (i.e., use of person-
alized genome references) has been proposed as a solution to align-
ment-related artifacts in ASE analysis (Rozowsky et al. 2011; Dobin
et al. 2013), but these approaches do not deal with all potential
causes of bias, such as differences in the uniquely mappable ge-
nome between parental haplotypes (van de Geijn et al. 2015),
and they have not been widely adopted, likely due to the lack of
a comprehensive pipeline to handle personalized genome coordi-
nates in downstream analysis. Collectively, these problems can in-
hibit the detection of genes that are under the influence of
perturbed or altered regulatory regimes, whichmay be particularly
limiting when trying to understand the underlying etiology of
disease.
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Here, we address some of the remaining challenges in ASE
analysis and describe the Personalised ASE Caller (PAC) tool that
integrates a series of existing and novel methods to improve the
detection of genuine ASE events in short read RNA-seq data. PAC
deals with the issues outlined above by implementing parental ge-
nome mapping to limit the effects of genetic variation on read
alignment and reallocating multimapping reads based on unique-
ly mapped read coverage to limit the removal of informative se-
quencing reads. PAC also uses improved read-based phasing
approaches to ensure that alleles at heterozygous sites are on the
correct genetic background, further improving our ability to accu-
rately align data across these regions, and PAC compares alignment
scores between parental genomes for each read, minimizing prob-
lems that may arise from aligning data to two different genomes.
Finally, these steps are applied within an easy-to-use workflow sys-
tem that produces allele counts at the single site (converted back to
reference genome coordinates) and gene level, which can be easily
used in downstream analyses.

Results

In general, PAC implements the following series of steps for each
RNA-seq sample to detect and quantify ASE events (Fig. 1A). First,
PAC uses phASER (Castel et al. 2016) with read-aware mode to im-
prove variant phasing, particularly for rare variants, before creating
parental genomes for the individual with the AlleleSeq software

(Rozowsky et al. 2011). RNA-seq reads are aligned to each genome
individuallywith STAR (Dobin et al. 2013), retaining only properly
paired and uniquelymapped reads, followed by a realignment step
with RSEM (Li and Dewey 2011), which allows for the retention of
multimapped reads through the implementation of an expecta-
tion-maximization algorithm. For each pair of reads, PAC then se-
lects the best location across the two parental genomes with
custom scripts, before site-level and gene-level (phASER) allele
counts are extracted genome-wide (see Methods). Throughout
the development of PAC, we tested the effects of different read
trimming and alignment parameters before arriving at the final
optimized pipeline (see Supplemental Materials).

To compare the performance of PACwith other approaches to
quantify allelic expression, we generated simulated RNA-seq data
where we knew the exact allele counts at each heterozygous site
of a single individual (NA12877). To do this, we used high-quality
genotype data from the Platinum Genomes Project (Eberle et al.
2017). First, whole-genome sequencing data were simulated using
these variants, which were subsequently aligned to the reference
genome before variant calling was performed with GATK (Van
der Auwera et al. 2013), followed by phasing with SHAPEIT2 (see
Methods; Delaneau et al. 2013). In this way, we generated a realis-
tic set of variant calls that could be used for ASE analysis. Second,
we generated simulated RNA-seq data for the individual using
RSEM. To do this, we simulated RNA-seq data for each parental
haplotype inherited by the offspring (based on real RNA-seq data
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Figure 1. Overview of the PAC pipeline. (A) A schematic describing the main steps, features, and outputs of PAC. (B) Correlation of reference allele ratios
(RARs) between the three different methods (standard alignment, WASP-filtered alignment, PAC) and the ground truth data. Genome-wide Pearson cor-
relation coefficients (R2) are shown (P<0.05 for all comparisons). (C ) Site-level summary statistics for the different analysis methods. Statistics are reported
for sites with at least 20× coverage in all three methods. Panel A was created with BioRender (https://biorender.com).

Saukkonen et al.

1566 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276296.121/-/DC1
https://biorender.com
https://biorender.com
https://biorender.com


for the parents), before merging and calculating the ‘ground truth’
allele count for each allele at each heterozygous variant position
identified in the GATK output (Supplemental Fig. 1). This ground
truth data was used as the baseline to which the accuracy of ASE
calls obtained using different parameters and methods was com-
pared. In total, the simulated RNA-seq data consisted of ∼69 mil-
lion read pairs and had a coverage of at least 20× at 13,211
unique heterozygous sites (including 499 rare variants with <1%
minor allele frequency in the CEU population from the 1000
Genomes data), 1359 of which (10.3%) showed ASE under a
standard binomial test (P<0.05, corrected for 13,211 tests)
(Supplemental Fig. 2). Simulated data also contained 1237 indels
(>1 bp) with at least 20× coverage.

Simulated RNA-seq reads were then aligned to the reference
genome using three approaches: (1) standard alignment using
STAR (to obtain a baseline set of ASE calls when using one of the
most commonly used haploid alignment methods); (2) PAC (dip-
loid alignment); and (3) WASP (van de Geijn et al. 2015), a com-
monly used tool to correct for reference bias in ASE analysis.
WASP incorporates a number of features to identify sites under
ASE, and althoughwe cannot directly compare these with the oth-
er approaches, we can test the impact of read removal within the
WASP pipeline. After applying each of the three approaches, we
counted reads containing the two alleles at each heterozygous
site and compared these data to the ground truth (Fig. 1B). We fo-
cused on sites that had at least 20× coverage in both the ground
truth data and all three alignment approaches (11,602 heterozy-
gous sites) to make results directly comparable (Fig. 1C).

First, with standard alignment, ∼91.7% of sites that had at
least 20× coverage in the ground truth data also met this coverage
threshold (12,109/13,211), with the average coverage at these sites
dropping from∼175× in ground truth data to∼144×with standard
alignment, highlighting the loss of many reads when using the
standard approach. We find that reference allele ratios (RARs)
showed a high correlation between standard alignment and the
ground truth data at heterozygous sites (R2 = 0.960) (Fig. 1B).
However, 305 sites show an absolute difference in RARs of >10%
and 55 sites a difference >20%. The absolute mean difference
shows a 3.21% bias across all heterozygous sites (Fig. 1C).

Second, when we applied PAC to the simulated data, we
found that the number of reads and the accuracy of allelic assign-
ment was significantly improved compared to standard align-
ment. First, the number of sites that have at least 20× coverage in
both ground truth and PAC-aligned data increased to 12,448
(339 additional sites compared to standard alignment), with an av-
erage coverage of ∼150× at these sites. Second, the correlation of
RARs in PAC compared to the ground truth data increased to R2

=0.976 (Fig. 1B). The number of outlier sites also decreased to 62
and 13 sites, showing an absolute difference in reference allele ra-
tio of >10% and >20%, respectively. The mean difference from
ground truth RAR is 2.33% (Fig. 1C), which is significantly lower
than that found for standard alignment at the same sites (one-sid-
ed t-test, P=2.6×10−125).

Third, we compared WASP-filtered data to the ground truth
and found that the number of sites that have at least 20× coverage
in both ground truth and WASP-corrected data dropped to 11,612
(836 fewer than when using PAC), with an average coverage of
135×. Both of these results are likely a consequence of the approach
used in WASP to remove difficult-to-align reads from the analysis.
Whereas the number of extreme outliers reduced to 32 (absolute dif-
ference of >20%) usingWASP-filtered data, the number of sites with
an absolute difference inRARof >10% increased to 387 compared to

standard alignment, and the R2 value decreased to 0.946 (Fig. 1B).
Furthermore, the mean absolute difference between WASP-filtered
data and the ground truth (3.61%) is significantly higher than
both standard alignment (P=4.5×10−21, one-sided t-test) and
PAC (P=8.9×10−272, one-sided t-test) (Fig. 1C).

Compared to both standard andWASP-filtered alignment, ap-
plying PAC results in an additional 350 heterozygous sites that have
coverage of at least 20× that do not meet this threshold in both of
the other two approaches. Allele count quantification at these sites
is also highly accurate with PAC (R2=0.844, compared to the
ground truth). Similarly, for sites detected in standard alignment
and PAC (but not WASP-filtered data), PAC quantification is highly
significant (496 sites, R2 =0.956, P=2.6×10−266) (Fig. 2A), showing
that PAC performs well at sites with lower coverage that may be
missed by other approaches. At least part of the improvement in ac-
curacy when using PAC appears to occur in regions of the genome
where accurate alignment is known to be more difficult. For exam-
ple, the difference in RAR from the ground truth is significantly
higher in standard alignment and WASP-filtered data than PAC at
sites where there is an indel (>6 bp) within 500 bp of the heterozy-
gous site (Fig. 2B). The trend is similar when another heterozygous
site or a rare variant (MAF<1%) is close by (Fig. 2B).

On the read level, PAC aligns ∼2.4 million read pairs that are
not retained by either standard alignment or after WASP-filtering,
and 84,045 of these reads align across a heterozygous genetic var-
iant and are therefore informative for ASE. Of these reads, PAC
places the read at the exact correct location on the reference ge-
nome 86.3% of the time, showing that the vast majority of addi-
tional reads aligned by PAC are accurate. Additional reads that
are aligned by PAC are not biased towards any particular chromo-
some and have similar GC content to reads aligned by standard
alignment (47.8% vs. 49.1%, respectively), and although 68 genes
show a twofold difference in the number of reads aligned between
PAC and standard alignment (in either direction), these genes are
not enriched for any specific GO functional terms. Finally, because
the original simulated data contain a large number of reads, we
tested the performance of PAC at lower coverages by randomly re-
sampling simulated raw data to 70% (∼48million read pairs), 50%
(∼34.5 million read pairs), and 30% (∼21 million read pairs) of the
original depth, and then compared results to the ground truth in
each data set across the three methods. As before, we find that
PAC outperforms both standard alignment and WASP-filtered
data in terms of the correlation in RAR with the ground truth
and the number of outliers at all coverage levels (see
Supplemental Table 1 for details).

To characterize the performance of PAC on population level
data, we aligned 670 whole-blood RNA-seq samples from the
GTEx project (v8) (The GTEx Consortium 2020) using PAC, ob-
tained gene-level counts for each gene and individual, and then
compared the allelic fold change (aFC) (Mohammadi et al. 2017)
for each gene generated from the count data with those obtained
from eQTLmapping.We also compared these results to those gen-
erated through standard and WASP-filtered alignments using
gene-level count data from Castel et al. (2020). Using genes with
a significant eQTL (Q-value<5%) and where the aFC could be
calculated from ASE data in all three methods (8913 genes) (see
Methods), PAC shows the strongest correlation between ASE and
eQTL aFC (R2 =0.842) (Fig. 2C), followed by WASP-filtered data
(R2 = 0.829) and then standard alignment (R2 = 0.820). Further-
more, due to the higher coverage obtained when aligning data
with PAC, wewere able to generate aFC for an additional 740 genes
using this approach that did not meet coverage criteria in WASP-
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filtered data; the aFC generated from ASE and eQTL data was still
highly correlated among these genes (R2 = 0.653, P=4.0 × 10−91),
and therefore the additional data generated with PAC is likely to
be informative. Similarly, there were 319 genes present in PAC
data that were not in either standard orWASP-filtered alignments;
again the correlation between ASE and eQTL aFC for these genes
was significant (R2 = 0.643, P=1.1 ×10−38). These results indicate
that PAC not only has improved accuracy, but due to the higher
coverage obtained, PAC also allows analysis of the influence of reg-
ulatory variation on gene expression across a larger number of
genes.

Finally, to demonstrate the utility of PAC in finding biologi-
cally informative events, we attempted to identify cell type–specif-
ic ASE using gene expression data from Findley et al. (2021), who
exposed three different cell types (lymphoblastoid cell lines
[LCLs], induced pluripotent stem cells [iPSCs], and iPSC-derived
cardiomyocytes [CMs]) from six individuals to a range of treat-
ments before performing RNA sequencing on each sample.
Previous work using these data found that ASE events that were
conditional on treatment and/or cell type (cASE) were enriched
among genes linked to several disease-relevant human pheno-
types. For coronary artery disease (CAD) in particular, where
CMs are a highly relevant cell type, metal treatments such as cad-
miumgenerated the largest overlap between cASE andputative dis-
ease genes (seven genes) (Findley et al. 2021), which is consistent
with the role of cadmium in promoting atherosclerosis (Messner
et al. 2009). To explore these relationships further, we obtained
RNA sequencing data from cells treated with cadmium from six in-
dividuals across three cell types, aligned the data with both PAC
and standard alignment, and then identified cell type–specific
ASE at the site level in CMs. The purpose of this analysis was not
to follow up on the original results in Findley et al. (2021) but in-
stead to identify any differences that occur when using PAC versus
standard approaches in a biologically interpretable system. Using
PAC, we find an average of 102 sites that show a significant bias
in allele expression in CMs (binomial test, P<0.05/18,537 tests,
which is the mean number of sites tested per sample across all

methods and individuals), but not in LCLs or iPSCs (binomial
test, P> 0.05 uncorrected), and 13 of these sites fall within genes
that have been previously linked with CAD (Zhang et al. 2020).
Using standard alignment, the average number of CM-specific
ASE events per individual is the same as PAC using the same crite-
ria (N=102); however, many of the sites identified are different,
and in total eight sites overlap putative CAD genes. Focusing spe-
cifically on sites that show biased allele expression in CMs in PAC
data only (as above), we identify four genes (GPX1, RETREG3,
TCTA, and PMVK) implicated in CAD that would be missed under
these criteria using standard alignment approaches.

Discussion

In summary, we present PAC, a new tool for ASE analysis that gen-
erates highly accurate allele counts from RNA-seq data for use in
studying the regulation of gene expression. Our approach incorpo-
rates both novel and existing analytical steps to better control for
common technical biases that occur when aligning short read
data, including reference allele bias and reads that align tomultiple
different genomic locations. Additionally, PAC maximizes ASE
quantification accuracy for individual samples by improved phas-
ing of rare variants and subsequent diploid genome alignment.

Using simulated RNA-seq data, we show that PAC performs
better than standard alignment techniques and other commonly
used tools that attempt to deal with some of the technical issues
related to ASE analysis, producing both more accurate allele
counts and higher coverage at heterozygous sites. We also show
that the additional reads aligned by PAC (and not other approach-
es) are highly accurate and are not just adding noise to the data.
Applying PAC to real population level data (670 whole-blood sam-
ples from the GTEx project), we show that genetic regulatory sig-
natures inferred from ASE data closely match those from
population-basedmethods (i.e., eQTLmapping) that are less prone
to alignment biases. Further, PAC increases the aligned sequencing
coverage compared to standard alignment or WASP-filtered data,
allowing for the quantification of allelic fold change for a larger

A B C

Figure 2. Performance of PAC compared to other methods. (A) Genome-wide correlation of reference allele ratios at heterozygous sites that PAC and
standard alignment detect but that are discarded by WASP-filtering (Pearson’s correlation R2 = 0.956, P=2.6 × 10−266). Sites with at least 20× coverage
were considered. (B) The difference in reference allele ratio of sites that are within 500 bp of an at least 6-bp indel, within 25 bp of another variant or a
rare (MAF <1%) variant in different analyses against the ground truth. Sites shared between all methods and with at least 20× coverage were considered.
A Mann–Whitney U test was performed with Bonferroni correction to adjust for multiple testing. (∗∗∗∗) P≤1×10−4, (∗∗) 1.00 × 10−3 < P≤1.00 ×10−2 , and
stars above each box plot refer to the comparison against PAC. (C) Correlation of allelic fold change (aFC) values derived from ASE and eQTL analyses from
670 GTEx whole-blood samples. Genes with a significant eQTL (Q-value < 5%) and gene-level ASE information for at least 10 individuals were selected.
Pearson correlation coefficients are shown for eQTL versus ASE aFCs derived using PAC (see also Supplemental Fig. 3).
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number of genes that also show good correlation with popula-
tion level signatures, showing that PAC improves the detection
of genuine signals. Finally, we use PAC to identify gene-by-envi-
ronment interaction effects in CMs treated with cadmium and
show that some genes identified using PAC (but missed by other
methods) overlap with genes linked to cardiovascular disease.
These results could be important in understanding the roles of
these genes in the underlying etiologyof the disease,where the im-
pact of regulatory variation on gene expression may affect disease
risk.

AlthoughPAC improves the accuracy of allelic quantification,
its use comes with several limitations. First, due to its diploidmap-
ping approach, PAC requires longer processing times than stan-
dard alignment methods. Using five test GTEx samples of
average depth of ∼44 million paired reads, PAC takes an average
of 12 h and 6min to generate site- and gene-level ASE data per sam-
ple, whereas generating these data from standard alignment takes
an average of 3 h and 28 min on the same computational set up.
Although this is a longer time, we do not believe that it is pro-
hibitive for a reasonable number of samples. Second, PAC
requires phased genetic variants to construct parental genomes
for the alignment of data. This may be obtained from whole
genome/exome sequencing, or from a genotyping array of the
same sample, but it is not inconceivable that using genetic variant
calls generated from the same RNA sequencing sample would also
lead to improved allelic quantification within PAC. Third, the util-
ity of PAC to identify biologically meaningful signatures will, of
course, depend on the sample and question under study and there-
fore will not always lead to greater insight when compared to data
generated from standard approaches. However, here, we show that
PAC generates improved allelic quantifications and results when
tested against two different reference genomes (GRCh37 and
GRCh38), atmultiple different coverage thresholds (across RNA se-
quencing data from simulated data, population level experiments,
and treated cell types) and in different biological settings, showing
the potential widespread utility of the tool. Fourth, PAC is only
able to correct alignment errors in RNA sequencing data and has
no effect on technical biases introduced at other stages of data gen-
eration, including those that may have arisen during library prep-
aration (such as amplification biases).

We anticipate PAC to be useful primarily in the context of rare
diseases and other situationswhere small sample size precludes the
use of population level methods to study differences in gene ex-
pression and regulation. In such cases, accurate quantification of
allelic expression changes, in individual samples, is of paramount
importance in understanding disease biology. However, PAC can
also be used on population level data, where allelic imbalance in-
formation can be used to better infer the impact of genetic variants
on the expression of nearby genes. In these ways, PAC can be ap-
plied to the vast quantity of existing RNA-seq data sets to better un-
derstand a wide array of fundamental biological and disease
processes.

Methods

Ground truth variant calls

Ground truth variant data was obtained for a single individual
from the Platinum Genome Project (PGP), specifically, NA12877
from CEPH/Utah pedigree 1463 (Eberle et al. 2017). The PGP gen-
erated deep (50× average) whole-genome sequencing (WGS) data
from 17 individuals in a three-generation pedigree, using two dif-

ferent sequencing technologies and variant calls from six different
informatics pipelines. Conflicts between call sets were resolved us-
ing inheritance-based validation. This data set is widely considered
to represent the most accurate set of variant calls that can be
achieved with current methods. We used phased variant calls
(VCF file) for NA12877 that included indels and SNPs to generate
a diploid genome reference using AlleleSeq (Rozowsky et al. 2011)
and the hg19 version of the human reference genome.

Simulated WGS data

The maternal and paternal genomes from AlleleSeq were used to
simulate whole-genome sequencing reads for NA12877 with ART
(Huang et al. 2012). As input, ART requires parameters related to
insert size, read length, coverage, and standard deviation of frag-
ment length. To obtain a realistic simulation,we acquired these pa-
rameters from real sequencing data for sample HPSI0114i-eipl_1
from the HipSci project (Kilpinen et al. 2017). WGS reads for
‘eipl_1’ were aligned to the hg19 reference genome using BWA-
MEM (Li and Durbin 2009). SAMtools (Li et al. 2009) was then
used to limit the output to uniquely mapping, properly paired
reads and to obtain the required parameters for ART (from sam-
tools-stats). Parameters were set as follows: (1) 20× coverage;
(2) read length 150 bp; (3) mean fragment length 479 bp; and
(4) standard deviation of fragment size 117 bp. The maternal and
paternal reads were simulated separately and then merged so
that the final coverage of the simulated WGS sample was 40×.

Variant calling

SimulatedWGS reads were aligned to the reference genome (hg19)
the same way as described above, and variant calling was per-
formed with GATK v. 4.0.12.0 according to recommended best
practices (Van der Auwera et al. 2013). Variants were then phased
with SHAPEIT2 (Delaneau et al. 2013) using the 1000 Genomes
phase 3 reference panel. These variants were then compared
against the ground truth variants from PGP (see Supplemental
Results).

Simulation of RNA sequencing data

In order to construct ground truth allele counts for NA12877, we
simulated RNA sequencing reads using RSEM v1.3.1 (Li and
Dewey 2011). To obtain realistic input parameters for RSEM, we
used real data from the parents of this individual (NA12889 and
NA12890) (Supplemental Fig. 1). RawRNA-seq data for the parents
(from lymphoblastoid cell lines) were obtained from the Geuvadis
Project (Lappalainen et al. 2013), trimmed, and mapped to the
hg19 reference genome using STAR v.2.5.1a (Dobin et al. 2013)
with default parameters. The mapped reads from the parents
(two separate BAM files) were then input into RSEM to generate
a single matrix of expression levels for each transcript in the
GENCODE v19 annotations. To simulate RNA-seq reads, the
rsem-simulate-reads functionwas used with the following input pa-
rameters obtained from the alignment of data from NA12889 and
NA12890: (1) fraction of reads coming from background noise
(0.27 and 0.19, paternal and maternal sample, respectively); and
(2) total number of reads to be simulated (40.9 M and 28.1 M pa-
ternal and maternal sample, respectively). Because the input for
the simulations is based on real data from two distinct individuals,
this generates allelic variation at heterozygous positions of the ge-
nome, that is, ASE effects in the simulated data. To acquire ‘ground
truth allele counts,’ we obtained maternal and paternal allele
counts at heterozygous genome positions of NA12877 from the
PGP VCF file. The simulated reads from the parents (FASTA files)
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were then merged into a single RNA-seq sample, representing the
(simulated) transcriptome of individual NA12877.

Ground truth allele counts

The genomic coordinates of the simulated RNA-seq reads were ob-
tained using custom scripts, based on the flag information stored
for each read by RSEM (including transcript ID, position on tran-
script, etc.). liftOver was used to convert read locations from the
parental genomes to the reference genome using chain files gener-
ated by AlleleSeq. We then counted the number of reads from ref-
erence and alternative alleles that overlapped all heterozygous
positions in NA12877 based on the PGP variant calls. These allele
counts were then combined for each site to create ground truth al-
lele counts in the offspring. For all subsequent analyses, we used
heterozygous siteswith at least 20× read coverage (sumof reference
and alternative allele counts). The distribution of the reference al-
lele ratios across all 20× sites in the ground truth data is shown in
Supplemental Figure 2.

Standard alignment of simulated RNA-seq reads

The paired-end reads were aligned to a reference genome (1000G
version of GRCh37) with STAR 2.51a with standard parameters in-
cluding soft-clipping, using two-pass mapping, version 19 of the
GENCODE gene annotation, and allowing eight mismatches per
read pair, before keeping only properly paired (-f 0 × 0002 using
SAMtools) and uniquely mapped (NH:i:1 flag) reads.

PAC pipeline

The final PAC pipeline (Fig. 1) was constructed as follows, with
each step tested for its impact on the accurate alignment of reads
compared to the ground truth data (see Supplemental Table 2).
First, standard alignment of RNA-seq reads was performed (see
above). These data were then used as input for phASER (Castel
et al. 2016), alongside the phased VCF obtained from the GATK
pipeline above, to redetermine the phase at heterozygous sites
where RNA-seq reads can add information (read-aware mode).
The resulting VCF file was then used with AlleleSeq (Rozowsky
et al. 2011) to generate parental genomes. For each parental ge-
nome, simulated RNA-seq reads were aligned with STAR as above,
keeping only properly paired and uniquely aligned reads. Because
the uniquely alignable regions in the reference and nonreference
genome may differ, we also used RSEM (v1.3.0) (Li and Dewey
2011) to take the original alignment from STAR (containing
all reads aligned to transcriptome coordinates, including reads
that align to multiple locations) and realigned the data using the
‐‐sampling-for-bam flag to output a single location for each read
based on its posterior probability generated from estimated abun-
dances. Additional reads aligned by RSEM that were not uniquely
aligned using STAR were then added to the final BAM file. After
alignment of each parental genome, a custom script was used to se-
lect the best alignment for each read from the twomappings (scor-
ing reads by the number of matching nucleotides minus two times
the number of indel positions, drawing at random when the two
mappings have equal scores), and the number of each allele at
each heterozygous site was counted.We also produce allele counts
at haplotypic level using phASER Gene AE.

WASP

WASP-filtering was performed using the same approach as
detailed above for standard alignment but using the additional
flag ‐‐waspOutputMode SAMtag within STAR (v2.7.3a), together
with providing the VCF file generated from GATK (as described

above). We filtered the resulting BAM file for reads that were prop-
erly paired, reads without a WASP flag (and thus do not contain a
genetic variant), and reads that passWASP-filtering (with flag ‘vW:
i:1’), before counting reference and alternative alleles at heterozy-
gous sites.

Evaluation of allele count accuracy/outlier analysis

In order to evaluate the performance of the pipeline and how the
different steps influence the accuracy of allele counts (and eventu-
al ASE calls), we compared results obtained with PAC, standard
alignment, and WASP-filtering to the ground truth data. We ex-
cluded sites that were located in the HLA region as well as blacklist-
ed genomic regions (obtained from phASER). We monitored the
number of ‘accessible’ heterozygous sites (i.e., biallelic sites that
had at least 20× coverage, obtained through SAMtools mpileup us-
ing default parameters and disabling read-pair overlap detection),
correlation of the reference allele ratios in the analysis and the
ground truth, sites that were present in standard alignment but
missed by analysis, and the number of sites where the RAR showed
more than 10% or 20% difference between the analysis and the
ground truth (referred to as outliers).

Accuracy of analysis near indels and other variants

To evaluate howPACperforms at genomic regions that are difficult
to align relative to standard alignment andWASP-filtered data, we
compared the difference in RAR against ground truth RARs at het-
erozygous sites. For indel analysis, we selected sites that were with-
in 500 bp of an indel (minimum indel length 6 bp).We also looked
at sites that had another heterozygous single nucleotide variant or
rare variant (MAF<1%) within 25 bp of the heterozygous site. We
used CEU population data from the 1000 Genomes Project for
this. A Mann–Whitney U test was performed with Bonferroni cor-
rection to adjust for multiple testing (Fig. 2B).

Analysis of GTEx samples

To interrogate the performance of PAC on population level data, we
obtained aligned data containing all reads for 670whole-blood sam-
ples from the GTEx project (v8, aligned to the hg38 reference ge-
nome, obtained from the GTEx Portal and the NCBI database of
Genotypes and Phenotypes [dbGaP; https://www.ncbi.nlm.nih
.gov/gap/] accession number phs000424.v8.p2) (The GTEx
Consortium 2020), converted these files back to raw sequence files
(FASTQ) with SAMtools, and then used them as input for PAC (se-
lecting the GRCh38 reference genome), together with phased ge-
netic variant calls from WGS data (obtained from the GTEx,
phASER_GTEx_v8_merged.vcf.gz). GTEx samples have an average
of 9972 (SD=3809) heterozygous variants covered by at least 20
reads, with at least one read present for each nucleotide. Gene-level
count data was then obtained from the output of PAC and used to
calculate allelic fold change estimates per gene using phASER-POP
(Castel et al. 2020), which retains only genes and samples with at
least eight read counts. Within phASER-POP, we supplied lead
eQTL variants identified in the GTEx project (v8) for each gene,
which we obtained from the GTEx portal (Whole_
Blood.v8.egenes.txt.gz). We also ran phASER-POP using two addi-
tional gene count matrix files representing standard alignment
and WASP-filtered alignment, both obtained through the GTEx
portal (phASER_GTEx_v8_matrix.gw_phased.txt.gz and
phASER_WASP_GTEx_v8_matrix.gw_phased.txt.gz, respectively)
and produced by Castel et al. (2020). We then compared the aFC
for each gene generated using ASE datawhere at least 10 individuals
were heterozygous for the lead eQTLvariant linked to the gene,with
aFC estimates generated from eQTL data after filtering genes where
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the eQTL associationwasQ-value<5%.We selected only genes that
were present in all three methods for direct comparison.

Cell type–specific ASE

Raw RNA sequencing reads generated by Findley et al. (2021) were
downloaded for cadmium-treated lymphoblastoid cell lines, in-
duced pluripotent stem cells, and iPSC-derived cardiomyocytes
from six individuals from the NCBI BioProject database
(BioProject; https://www.ncbi.nlm.nih.gov/bioproject/) under
PRJNA694697. Each samplewas then used as input for PAC (select-
ing the GRCh38 reference genome), together with phased genetic
variant calls generated from whole-genome sequencing data with-
in the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2015), generating site-level allelic quantifications.
Standard alignment files were also generated with PAC, mapping
with STAR to the same standard reference sequence, and filtered
for properly paired and uniquelymapped reads as described above,
before site-level allele counts were generated. For each individual
and within each method (PAC and standard alignment), we fo-
cused on sites with at least 20× coverage in all three cell types
and then identified sites that showed significant biases in allele ex-
pression inCMs using a binomial test (P<0.05/18,537 tests, which
is the mean number of sites tested per sample across all methods
and individuals and ensures significance thresholds are compara-
ble across methods) but did not show such biases in either LCLs
or iPSCs (P>0.05 in these cases). For sites showing significant
ASE in each case, we then compared genes containing the site to
those identified as potentially playing a role in coronary artery dis-
ease by Zhang et al. (2020).

Data access

The PAC pipeline, nextflow, Dockerfile, custom scripts, and simu-
lated expression data generated in this study are available at
GitHub (https://github.com/anna-saukkonen/PAC) and as Sup-
plemental Code.
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