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Abstract

A leading theory regarding the pathogenesis of biliary atresia (BA) is that bile duct injury is initiated by a virus
infection, followed by an autoimmune response targeting bile ducts. In experimental models of autoimmune diseases,
B cells have been shown to play an important role. The aim of this study was to determine the role of B cells in the
development of biliary obstruction in the Rhesus rotavirus (RRV)-induced mouse model of BA. Wild-type (WT) and B
cell-deficient (Ig-a’) mice received RRV shortly after birth. Ig-a” RRV-infected mice had significantly increased
disease-free survival rate compared to WT RRV-infected BA mice (76.8% vs. 17.5%). In stark contrast to the RRV-
infected BA mice, the RRV-infected Ig-a’ mice did not have hyperbilirubinemia or bile duct obstruction. The RRV-
infected Ig-a”- mice had significantly less liver inflammation and Th1 cytokine production compared to RRV-infected
WT mice. In addition, Ig-o’- mice had significantly increased numbers of regulatory T cells (Tregs) at baseline and
after RRV infection compared to WT mice. However, depletion of Tregs in Ig-a”’- mice did not induce biliary
obstruction, indicating that the expanded Tregs in the Ig-a’ mice were not the sole reason for protection from
disease. Conclusion: B cell deficient Ig-a’ mice are protected from biliary obstruction in the RRV-induced mouse
model of BA, indicating a primary role of B cells in mediating disease pathology. The mechanism of protection may
involve lack of B cell antigen presentation, which impairs T-cell activation and Th1 inflammation. Immune modulators
that inhibit B cell function may be a new strategy for treatment of BA.
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Introduction

Biliary atresia (BA) is the leading cause of neonatal
cholestasis, occurring in approximately 1 out of 10,000 live
births in the United States [1]. BA entails a progressive,
inflammatory injury of bile ducts, leading to fibrosis and
obliteration of both the extrahepatic and intrahepatic bile ducts
[2,3]. At the time of diagnosis, a Kasai portoenterostomy is
performed in an attempt to re-establish bile flow. Despite this
surgical intervention, the intrahepatic bile duct injury continues,
leading to cirrhosis and the need for liver transplantation during
childhood in the majority of patients [4,5]. A better
understanding of the immune mechanisms associated with BA
has the potential to lead to new therapies aimed at halting
injury to the intrahepatic bile ducts and preserving liver
function.
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Multiple theories have been proposed as to the pathogenesis
of BA, including viral infection [6—8], autoimmune mediated bile
duct destruction [2,9] and abnormalities in bile duct
development [10]. It is hypothesized that an initial virus
infection induces an autoreactive T cell-mediated injury to bile
duct epithelium which persists even after virus is cleared [2]. In
order to perform mechanistic studies, the Rhesus rotavirus
(RRV)-induced mouse model of BA has been employed by
many investigators [11-14]. In this model, the bile duct injury is
associated with Th1-mediated inflammation and specifically
with bile duct epithelial autoreactive T cells [15,16]. Much less
is known about the role of B cells in the pathogenesis of BA.
Many experimental models of autoimmune diseases have
demonstrated an important role of B cells in disease
pathogenesis [17—-20] and trials of B-cell modulating agents are
being conducted in human autoimmune diseases [21]. In both
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humans and in the mouse model of BA, periductal
immunoglobulin deposits and circulating autoantibodies have
been described [15,22]. One such autoantibody reactive to
cytosolic enolase from bile duct epithelia has been identified in
both mouse and human BA [23], as well as in other
autoimmune biliary diseases [23,24], lending further evidence
to the role of autoimmunity in the pathogenesis of BA.

In this study, we explored the role of B cells in the
development of bile duct injury and obstruction in the mouse
model of BA through the use of mb-1/CD79A gene knockout
(Ig-a) mice [25]. These mice have loss of B cell receptor
expression and function and are unable to present antigen or
produce immunoglobulin [25-27]. In some autoimmune
disease models, B cells have been shown to play an important
role as antigen presenting cells that activate T cells [18,20].
Therefore, a sub aim of this study was to determine the effect
of B cells on CD4* Th1 cytokine response, as a marker of T cell
activation, in this model.

Methods

Mice

All animals were housed and handled in accordance with
criteria outlined in the NIH "Guide for Care and Use of
Laboratory Animals" (publication #86-23 revised 1985) through
the UC Denver Office of Laboratory Animal Medicine. The
study was approved by the University of Colorado Institutional
Animal Care and Use Committee. All efforts were made to
ameliorate animal suffering. Animal sacrifice was performed by
CO2 asphyxiation followed by decapitation for neonates and
cervical dislocation for adult mice. Timed pregnant female
BALB/c mice were purchased from rotavirus-free colonies of
Jackson Laboratory (Bar Harbor, ME). Ig-a’- mice [25] on the
BALB/c background were a gift from Roberta Pelanda, PhD
(National Jewish Health, Denver, CO). Mice were given a
single intraperitoneal (i.p.) injection of RRV (1.5 X 106 pfu/mL)
or balanced salt solution (BSS) within 24 hours of life. Animals
were assessed each morning for jaundice in non-fur bearing
regions. If animals were noted to display pain, severe distress,
suffering, or impending death, they were euthanized
immediately. Surviving animals were sacrificed at day 14 and
pooled tissues from 3-8 mice were analyzed (minimum 3
pools/ experiment). For experiments involving Treg depletion,
Ig-a’- mice were also given i.p. PC61 (gift from Ron Gill, PhD,
Department of Transplant Immunology, University of Colorado,
Aurora, CO) or rat serum control. All efforts were made to
minimize animal suffering. Animal sacrifice was performed by
CO, asphyxiation followed by decapitation for neonates and
cervical dislocation for adult mice.

Tissue histology

Tissue was formalin fixed, paraffin embedded, and stained
with hematoxylin-eosin. Digital photographs were obtained
using the Olympus BX41 microscopes (Melville, NY).
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Infectious Plaque Assay

Liver tissue was homogenized in 100% w/v BSS and virus
concentration was determined by plaque assay as previously
described [13].

Immunohistochemistry

Liver tissue sections (7um thick) were stained with FITC-
conjugated antibodies to CD3 or CD11b (eBiosciences, San
Diego, CA) and Alexafluor 555-conjugated cytokeratin 19 using
standard protocols [28].

Serum direct bilirubin and immunoglobulin

Serum direct bilirubin levels were determined with the Direct
Bilirubin Test (Diagnostic Chemicals Ltd., Charlottetown,
Canada). Serum IgG and IgM levels were determined via
ELISA according to manufacturer’s instructions (Kirkegaard &
Perry Laboratories, Gaithersburg, MD) (Pooled sera from 3
separate experiments).

Isolation of Immune Cells from Tissue and Flow
Cytometric Analysis

Tissue was homogenized and red cells lysed with ACK
buffer. Liver immune cells were enriched by Percoll gradient
(40/60). Single-cell suspensions were incubated with Fc-block
and stained with the following fluorochrome-conjugated
antibodies (eBioscience, San Diego, CA): CD45, CD3, CD4,
CD8, CD11B, B220, IgM, CD19, NKG2D, Foxp3, CD25,
CD11C, or isotype matched controls. A mouse regulatory T cell
(Treg) staining kit was used according to the manufacturer’s
instructions (eBioscience, San Diego, CA). Cells were
visualized with FACS Caliber flow cytometer (Becton-
Dickinson, Mountain View, CA) using FlowJo (Tree Star, Inc.,
Ashland, OR) software for analysis.

Intracellular cytokine analysis by flow cytometry

Hepatic immune cells were incubated with Brefeldin A. For
some experiments, cells were stimulated with phorbol 12-
myristate 13-acetate (PMA) and ionomycin. All cells were
incubated with fluorochrome-conjugated antibodies
(eBioscience, San Diego, CA, USA): CD45.2, CD4, CDS8,
CD11B, or CD25 followed by permeabilization and intracellular
staining for either: IL2, IL17, TNFaq, IL10, or IFNy.

Statistical analysis

Values expressed as meantstandard deviation. One way
analysis of variance (ANOVA) and Bonferroni’s correction were
used when more than two groups of mice were compared. The
t test was used for comparison between two groups. PRISM
Graph Pad software (La Jolla, CA, USA) was employed for
statistical analysis and creation of Kaplan-Meier curves.
Differences in means were considered significant for p values
<0.05.
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Figure 1. Characterization of Ig-a”- mice. Representative dot plots of B cell surface marker expression on splenocytes from WT

and Ig-a’- mice, confirming lack of B cells in Ig-a’ mice.
doi: 10.1371/journal.pone.0073644.g001

Results

Characterization of B cell knockout status in Ig-a”
mice.

The B cell receptor (BCR) is composed of membrane-bound
Ig (that binds antigen) and the non-covalently associated signal
transduction moiety Ig-a/lg-f (that is necessary for B cell
activation). The BCR is expressed on the cell surface and is
functional only when all components are present. The B cell
deficient state of the Ig-a’ mice was confirmed by the lack of
cells expressing CD19 and IgM (Figure 1) and by lack of serum
IgM and 1gG (data not shown).

RRV infected Ig-a’- mice are protected from developing
BA

Significantly improved disease-free survival rate was
observed at 2 weeks of age in Ig-a” RRV-infected mice
(76.8%; n=69) compared to WT RRV-infected mice (17.5%;
n=63) (P<0.0001) (Figure 2A). The WT RRV-infected mice
displayed extensive portal tract and extrahepatic bile duct
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inflammation and obstruction, a finding not seen in the Ig-a*
RRV-infected mice (Figure 2B). Serum direct bilirubin levels
were significantly lower in Ig-a”- RRV-infected mice at 2 weeks
of age (RRV-infected WT: 10.05+3.09 mg/dL; RRV-infected Ig-
a’: 0.41+£0.49 mg/dL) (Figure 2C). To determine if RRV
infection of the liver was altered in the Ig-a”- mice, infectious
plaque assays were performed. At 1 week, WT and Ig-a”- mice
had similar levels of infectious virus and by 2 weeks both
groups had undetectable virus (Figure 2D). These data suggest
that B cell deficient mice were protected from the inflammatory-
mediated biliary injury and obstruction associated with BA.

RRV-infected Ig-a *- mice have significantly decreased
liver inflammatory cells and increased regulatory T
cells

Based on our observation that Ig-a’ mice were protected
from BA, we sought to determine if the Ig-a’- mice had changes
in the liver immune profile. The BSS Ig-a”- mice had similar
amounts of liver CD4* and CD8* T cells and CD3*NKG2D*
natural killer (NK) T cells, and small decreases in CD11B
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Figure 2. RRV-infected Ig-a”- mice do not develop bile duct inflammation and obstruction. (A) Disease free survival. Biliary
disease was identified based on jaundice and acholic stools. *P<.001 vs. Ig-a”- RRV mice. (B) Histology. H&E staining from liver and
extrahepatic bile ducts (arrows denote bile duct epithelia). 100x: The WT RRV liver inflammation extends between portal tracts.
200x: The WT RRYV bile duct obstruction is not seen in the Ig-a”- RRV mice (HA: hepatic artery). (C) Serum direct bilirubin. *P<.001
vs. WT RRV; #P < .001 vs. Ig-a” RRV. (D) Infectious plaque assay. Quantification of infectious virus from 1 week old liver

homogenates (meantSD pfu/ml).
doi: 10.1371/journal.pone.0073644.g002

*macrophages and NKG2D * NK cells compared to BSS WT
mice. The RRV-infected Ig-a’- mice had significantly decreased
numbers of CD4* T cells (P<0.01), CD11B*macrophages (P
<0.001), NKG2D * NK cells (P<0.01), and CD3*NKG2D * NK T
cells (P<0.001) compared to RRV-infected WT mice (Figure
3A). Immunohistochemistry revealed periductal infiltrates of
CD3* T cells and CD11B* macrophages in RRV-infected WT
but not Ig-a” RRV-infected mice (Figure 3B). These results
confirm that RRV-infected Ig-a~ mice do not develop bile duct-
targeted inflammation.

Autoimmune diseases are often associated with defects in
Treg number and function. Other models of autoimmune
disease have identified that B cell depletion results in an
increased quantity of Tregs [17,29-31]. Therefore, we sought
to determine if Ig-a’~ mice might be protected from disease

PLOS ONE | www.plosone.org

because of increased levels of Tregs. Increased levels of
CD4*CD25*Foxp3* Tregs were identified in BSS-Ig-a’” mice
(14.76+4.85%) compared to BSS-WT at 2 weeks of age (7.24+
2.56%) (P<0.001). After RRV infection, Tregs remained
elevated in the Ig-a”- mice (12.58% 2.44%), but levels were
significantly lower in WT (5.24+1.87%) (P<0.001) (Figure 4A
and 4B). To determine if this increased number of Tregs in Ig-
a’- mice was responsible for protection from biliary disease, we
performed further experiments utilizing Treg-depleting
antibodies (PC61). Neonatal Ig-a’- mice received RRV at birth,
followed by PC61 or rat serum (control) on day 4. Flow
cytometry confirmed that mice receiving the PC61 injection
were devoid of Tregs (Figure 5A). There was no significant
change in disease-free survival between RRV-infected Ig-a*
mice that received PC61 (79.5%) versus control rat serum
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doi: 10.1371/journal.pone.0073644.g003

(68.5%). Likewise, there was no difference in serum direct
bilirubin levels (Figure 5B) or liver immune cell populations
(Figure 5C) between RRV-infected Ig-a’ mice that received
PC61 versus control rat serum. Therefore, despite the increase
in Tregs in Ig-a’- mice, these Treg depletion experiments show
that Treg cell number was not solely responsible for protection
from BA.

PLOS ONE | www.plosone.org

Lack of B cell antigen presentation in Ig-a’ mice is
associated with marked attenuation of CD4* Th1 cell
activation

In order for T cells to become activated, they must encounter
and recognize antigen displayed on an antigen presenting cell.
Professional antigen presenting cells include B cells,
macrophages and dendritic cells. To determine if B cell antigen
presentation was essential for T cell activation in the mouse
model of BA, we assessed the ability of T cells to become
activated in the Ig-a - mice. The level of cytokine production
from the liver immune cells was determined at baseline (“ex
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doi: 10.1371/journal.pone.0073644.9g004

vivo”) and after in vitro stimulation (PMA/ionomycin). Ex vivo
analysis reflects the degree of cytokine production at a single
time point while in vitro stimulation assesses the maximum
potential of the immune cell to generate cytokines, reflecting
the level of previous immune cell activation. Ex vivo analysis
demonstrated significantly diminished numbers of CD4* T cells
producing IFN-y (P=0.001), CD8* T cells producing IFN-y
(P=0.001), and CD11B* macrophages generating TNF-a
(P=0.01) in RRV-infected Ig-a” mice compared to RRV-
infected WT (Figure 6A). Liver immune cells from RRV-infected
Ig-a- mice that were stimulated with PMA/ionomycin in vitro
also had significantly decreased CD4* T cells producing IFN-y
(P<0.001) and TNF-a (P<0.001), CD8* T cells producing IFN-y
(P=0.001), and CD11B* macrophages producing TNF-a
(P<0.05) (Figure 6B). There was no significant difference in
production of IL2, IL10 or IL17 in ex vivo or in vitro analyses
(data not shown). These data show that in the absence of B
cell antigen presentation, effector T cells (and downstream
macrophage activation) from RRV-infected Ig-a’ mice were

PLOS ONE | www.plosone.org

markedly less activated, resulting in lack of Th1 inflammatory
injury to bile ducts.

Discussion

In the present study, we demonstrate that B cell deficient
mice are protected from developing BA, suggesting an
essential role for B cells in the pathogenesis of RRV-induced
BA in mice. The diminished T cell activation in the setting of a
B cell-deficient host suggests that the mechanism of disease
protection involves lack of B cell antigen presentation. A
summary of the proposed mechanism of action of B cells in
murine BA is shown in Figure 7. Limitations to this study
include the fact that macrophage numbers were mildly
decreased in the Ig-a” mice, possibly contributing to
diminished antigen presentation. In addition, B cells secrete
lymphotoxin which is required for proper lymphoid development
and, together with other B cell factors, regulates dendritic cell
and T cell interactions [32]. Saxena et al. has demonstrated
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doi: 10.1371/journal.pone.0073644.9g005

that primed dendritic cells are required for the proliferation of T antigen presentation function. B cells are unique in their ability
lymphocytes and the activation of NK cells in experimental BA to stimulate autoimmune responses. Unlike other professional
[33]. antigen cells which recognize molecular patterns from an

B cells have been shown to be critical in the development antigen as foreign, the B cell receptor cannot distinguish
and maintenance of multiple autoimmune diseases between self and foreign antigens. Therefore, they are able to
[17,19,20,34,35]. In a recent study by Chan et al. [36], mice present self antigens to CD4 T cells and initiate an autoreactive
unable to secrete immunoglobulin still developed lupus immune response. Additionally, the B cell receptor's high
nephritis, suggesting that the role of B cells in autoimmune affinity for a specific antigen allows for efficient processing of

nephritis extends beyond autoantibody production and includes even small amounts of antigen that escape sequestration from

PLOS ONE | www.plosone.org 7 August 2013 | Volume 8 | Issue 8 | e73644



B Cell Deficiency Protects against Biliary Atresia

97 : WTBSS
—
A 4.04
o EEN Iga-/- BSS
@ 35 :::
:?2 5 # = @ WTRRV
. U™ ol
I.I
" 3 Iga--RRV
B 2
| |
. % H # Z
@ 1.5+ I:I I:I
‘5 = = e
X 1.0 I:I I:I I:I
I.I I.I I.I
054 * = - = =
e (18l = i
CD4 CD4 cD8 CD11b
IFNy TNFa IFNy TNFa
B
40—
. — WTBSS
EEm Ig-a-/- BSS
q" -
% &0 # o 2 @=m WTRRV
| |
2 == Ig-a-- RRV
g a] "
L 2 2
@ e e
8 = =
5 104
R m e
L] |
I.I .II
¥ u Lml
CD4 CD4 cD8 CD11b
IFNy TNFo IFNy TNFo

Figure 6. Livers of Ig-a - mice have decreased Th1 cell cytokine production. (A) Ex-vivo baseline Th1 cytokine production.
Hepatic immune cells were incubated with Brefeldin A to measure baseline cytokine response from T cells. CD4-IFNy: *P<.001 vs.
WT RRV; #P < .001 vs. Ig-a”- RRV; CD8-IFNy: *P<.001 vs. WT RRV; #P < .001 vs. Ig-a’- RRV; CD11b-TNFa: *P<.001 vs. WT RRV;
#P < .01 vs. Ig-a” RRV. (B) In vitro stimulation of Th1 cytokine production. Cells were incubated with Brefeldin A followed by

stimulation with PMA/ionomycin. CD4-IFNy: *P<.001 vs. WT RRV; #P < .001 vs. Ig-a RRV; CD4-TNFa: *P<.001 vs. WT RRV; #P
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doi: 10.1371/journal.pone.0073644.g006

the immune system. Finally, the processing of autoantigen by B
cells is required for epitope spreading, which results in
augmentation of an autoimmune response [37]. The essential
role of antigen-specific B cells as antigen presenting cells has
been demonstrated in the mouse models of systemic lupus
erythematosus [38], diabetes [20,39,40], and autoimmune
arthritis [19] where B cells are necessary for the activation of
autoreactive T cells. In the animal model of multiple sclerosis,
non-B antigen presenting cells can process and present

PLOS ONE | www.plosone.org

antigenic protein, but are not able to induce the same
pathogenic immune response initiated when B cells present
antigen [41]. Several murine experimental models have
demonstrated that B cell deficiency results in failure to prime
CD4* T cells [42,43]. Autoantigen-specific B cells have been
shown to improve Th1 [44,45], Th2 [46], and memory
responses [47]. In addition, B cells have been shown to
express a number of co-stimulatory molecules which reinforce
priming and reactivation of antigen-specific T cells [48,49]. The
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findings of this study corroborate the important role of B cells in
inflammatory mediated bile duct injury in the RRV mouse
model of BA.

Tregs function to suppress inflammation as well as
autoreactive T cells that escape into the periphery. Quantitative
and qualitative reduction of Tregs has been demonstrated in
multiple inflammatory and autoimmune diseases [50-52],
including both the mouse model and human studies of BA
[53-55]. A link between B cells and Treg activity has been
suggested in the mouse model of Crohn’s disease where B
cells worsen ileitis through suppression of Treg function [56].
Interestingly, in multiple animal models as well as clinical
studies of other autoimmune diseases, B cell depletion has
resulted in an increased quantity and improved suppressive
abilities of Tregs [17,29-31]. In this study, we identified
increased quantity of Tregs at baseline and after RRV infection
in B cell deficient mice. We initially hypothesized that this
increased quantity of Tregs may have contributed to protection
from disease. Although depletion of Tregs did not induce
disease in Ig-a” mice treated with PC61, these mice did
develop slightly higher serum bilirubin levels (3 mg/dl
compared to <1 mg/dL) suggesting some degree of biliary
injury, though not enough to lead to complete biliary
obstruction. Therefore, while increased quantity of Tregs in Ig-
o’ mice was not solely responsible for protection from disease,
it may play a minor role.
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