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1  | INTRODUC TION

Non-alcoholic fatty liver disease (NAFLD) may present as “simple” 
steatosis or with a potentially progressive inflammatory phenotype 
of non-alcoholic steatohepatitis (NASH) that can progress to cirrho-
sis and/or hepatocellular cancer, thus being expected to become 

the leading cause of liver-related morbidity and mortality.1 Since no 
drug has yet been approved specifically for the treatment of NASH 
and/or associated cirrhosis,2 dietary interventions and physical ac-
tivity (PA) and exercise are generally regarded the cornerstones 
of NAFLD/NASH treatment. These interventions might be spe-
cifically effective to target the “triple hit” of modern-day lifestyle  

 

Received: 23 April 2021  |  Revised: 6 July 2021  |  Accepted: 10 July 2021

DOI: 10.1111/liv.15024  

R E V I E W

Diet and exercise in NAFLD/NASH: Beyond the obvious

Georg Semmler1  |   Christian Datz2  |   Thomas Reiberger1  |   Michael Trauner1

This is an open access article under the terms of the Creat​ive Commo​ns Attri​butio​n-NonCo​mmerc​ial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Liver International published by John Wiley & Sons Ltd.

Abbreviations: β-OHB, β-hydroxybutyrate; AcAc, acetoacetate; ADF, alternate day fasting; BW, body weight; DNL, de-novo lipogenesis; FA, fatty acid; FGF-21, fibroblast growth factor 
21; HCC, hepatocellular carcinoma; HCD, high-carbohydrate diet; HFCS, high-fructose corn syrup; HFD, high-fat diet; ICR, intermittent calorie restriction; IHLC, intrahepatic lipid 
content; IR, insulin resistance; KD, ketogenic diet; LCD, low-carbohydrate diet; LFD, low-fat diet; LSM, liver stiffness measurement; MED, Mediterranean diet; NAFLD, non-alcoholic 
fatty liver disease; NASH, non-alcoholic steatohepatitis; NEFA, non-esterified fatty acids; PA, physical activity; PPARα, peroxisome proliferator-activated receptor α; PUFA, 
polyunsaturated fatty acid; RCT, randomized controlled diet; SSB, sugar-sweetened beverages; TCA, tricarboxylic-acid-cycle; VLCD, very-low carbohydrate diet; WD, Western diet; WL, 
weight loss.

1Division of Gastroenterology and 
Hepatology, Department of Internal 
Medicine III, Medical University of Vienna, 
Vienna, Austria
2Department of Internal Medicine, General 
Hospital Oberndorf, Teaching Hospital of 
the Paracelsus Medical University Salzburg, 
Salzburg, Austria

Correspondence
Michael Trauner, Division of 
Gastroenterology and Hepatology, 
Department of Internal Medicine III, Medical 
University of Vienna, Währinger Gürtel 18-
20, 1090 Vienna, Austria.
Email: michael.trauner@meduniwien.ac.at

Editor: Luca Valenti

Abstract
Lifestyle represents the most relevant factor for non-alcoholic fatty liver disease 
(NAFLD) as the hepatic manifestation of the metabolic syndrome. Although a tre-
mendous body of clinical and preclinical data on the effectiveness of dietary and life-
style interventions exist, the complexity of this topic makes firm and evidence-based 
clinical recommendations for nutrition and exercise in NAFLD difficult. The aim of 
this review is to guide readers through the labyrinth of recent scientific findings on 
diet and exercise in NAFLD and non-alcoholic steatohepatitis (NASH), summarizing 
“obvious” findings in a holistic manner and simultaneously highlighting stimulating 
aspects of clinical and translational research “beyond the obvious”. Specifically, the 
importance of calorie restriction regardless of dietary composition and evidence 
from low-carbohydrate diets to target the incidence and severity of NAFLD are 
discussed. The aspect of ketogenesis—potentially achieved via intermittent calorie 
restriction—seems to be a central aspect of these diets warranting further investi-
gation. Interactions of diet and exercise with the gut microbiota and the individual 
genetic background need to be comprehensively understood in order to develop per-
sonalized dietary concepts and exercise strategies for patients with NAFLD/NASH.
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(ie sedentary behaviour, low PA and poor diet) that contributes to the 
“multiple-hit” pathogenesis of NAFLD.3,4 The aim of this review is to 
provide an overview of recent research findings covering diet and 
PA “beyond the obvious”, thereby presenting stimulating aspects of 
this topic complimentary to state-of-the-art reviews (eg Refs. [5-7]).

2  | THE OBVIOUS – GUIDELINE 
RECOMMENDATIONS

Although being regarded as the key component to tackle the NAFLD 
epidemic, guidelines8-11 are rather unspecific and vague regarding 
recommendations for diet and exercise in NAFLD patients (Table 1, 
reviewed in12). Several scientific associations (EASL-EASD–EASO 
2016,8 AASLD 2018,9 ESPEN 201910 and APASL 202011) highlight 
the importance of weight loss (WL)—targeting a 7%-10% reduction 
in body weight (BW)—achieved by a hypocaloric diet (energy deficit 
of 500-1000 kcal/d) and/or PA (in order to promote a caloric defi-
cit). However, specific recommendations are divergent. While the 
EASL-EASD–EASO and APASL recommend the exclusion of pro-
cessed food and any beverages/food high in added fructose, AASLD 
and ESPEN do not provide such recommendations. Although all 
highlight the low evidence supporting any dietary composition (eg 
low-carbohydrate/low-fat diets), EASL-EASD–EASO, ESPEN and 
APASL specifically mention the Mediterranean diet (MED) as benefi-
cial in patients with NAFLD. While EASL-EASD–EASO and AASLD 
discussed beneficial effects of light (<1 drink/d)9 or moderate alco-
hol consumption (<20 g/d for ♀ and <30 g/d for ♂),8 more recent 
ESPEN and APASL guidelines recommend complete abstinence. No 
recommendations are given for coffee consumption or other ma-
cronutrients. Finally, an increase in PA is generally recommended in 
all guidelines, but no recommendations exist for a specific type or 
amount of PA and/or duration. Importantly, recommendations on 
diet and PA are similar in NAFLD patients with type-2 diabetes mel-
litus emphasizing an individual approach aiming at calorie-restriction 
and MED diet.13 However, dietary recommendations for cirrhotic 
patients avoiding malnutrition, sarcopenia and a low-protein diet 
need specific attention, and are not covered in this review.14

3  | T YPES OF DIET

Apart from a MED, several types of diet have been proposed to 
tackle NAFLD (interventional studies are summarized in Table 2).

3.1 | Mediterranean diet

In contrast to the Western diet (WD) rich in animal products in-
cluding red and processed meat, refined grains, potatoes and sugar 
sweetened beverages (SSB),15 the MED containing vegetables, 
fruits, whole grains, nuts and legumes, olive oil, and fish,16 and has 
been promoted for WL and improvement of metabolic parameters.17 

Also, the MED has been reported to prevent cardiovascular dis-
ease.18 Since most of its components have either been (inversely) as-
sociated with the prevalence, severity or regression of NAFLD (see 
chapter 4), it is not surprising that the MED is recommended over the 
WD for individuals with NAFLD.19 Generally speaking, studies have 
shown that adherence to a MED is inversely associated with NAFLD 
prevalence and severity,20-22 and reduces hepatic steatosis23-28 and 
liver stiffness measurement (LSM).26,29 In addition, MED might even 
be associated with a reduced risk of HCC or liver-related death.30,31 
However, high-quality randomized controlled trials (RCTs) are still 
scarce,24-29 and dietary and caloric composition of MED was diver-
gent across different studies, thus, complicating direct comparison 
and firm conclusions. As one of these studies, the DIRECT-PLUS ran-
domized clinical trial recently showed that a calorie-restricted MED 
successfully induces WL and reduction in intrahepatic lipid content 
(IHLC) while the addition of dietary polyphenols via green-tea and 
Mankai additionally decreased IHLC.28

3.2 | High-protein diet

Studies investigating an increase in dietary protein content are less 
common given the data on the potentially negative effects of red 
meat on NAFLD (see chapter 4.1). A RCT by Markova et al (2017)32 
showed that two isocaloric diets rich in animal or plant protein 
(30% protein, 40% carbohydrates and 30% fat) were both able to 
reduce IHLC by 36%-48% in individuals with type-2-diabetes-
mellitus. Another study by Xu et al33 found different decreases in 
IHLC among three hypocaloric diets: Subjects consuming a high-
protein diet (~40% carbohydrates, ~30% protein, ~30% fat) had a 
43% decrease in IHLC, subjects with a normal-protein diet (~20% 
protein) had a 37% decrease while those with a low-protein/high-
carbohydrate diet (HCD; ~10% protein, ~60% carbohydrates,~30% 
fat) had no reduction despite similar WL. Nevertheless, these differ-
ences might also be attributed to the differences in carbohydrates 
(see chapter 3.4 and 3.5).

3.3 | Hypocaloric diet

Another more general approach to achieve caloric deficit and con-
secutive WL is a hypocaloric diet regardless of its dietary compo-
sition.34 Several studies have shown that a total energy deficiency 
leads to a decrease in BW, transaminase levels, total body fat, 
visceral fat and IHLC, regardless of how it is achieved.35-37 This is 
supported by similar long-term outcomes after 7% WL following a 
low-carbohydrate-diet (LCD) vs a HCD despite short-term effects in 
favour of a LCD.38

With this regard, an important study was done by Vilar-Gomez 
et al39 who reported a strong correlation of the degree of WL follow-
ing a hypocaloric diet with the degree of histological NAFLD improve-
ment including NASH resolution and fibrosis regression in NASH 
patients. This correlation was recently confirmed by a meta-analysis 
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promoting WL-interventions including calorie restriction over spe-
cific dietary compositions in NAFD/NASH.40 Nevertheless, further 
adherence to a MED might enhance the decrease in BW, total fat 
mass and hepatic fat.27

3.4 | High-carbohydrate/low-fat diet

For years, high dietary fat has been considered the cause of obe-
sity and the metabolic syndrome because of its high energy density 
leading to an increase in total energy intake. Thus, scientists called 
for a low-fat diet (LFD) with compensatory increase in dietary car-
bohydrates. Although early studies suggested that dietary fat might 
inhibit hepatic glucose disposal and increase storage of glucose,41 in-
creasing concerns regarding the harmful effect of HCD are arising42 
and the number of studies promoting HCD over LCD are a minority. 
However, if a caloric deficit is achieved, HCD/LFD may still improve 
liver histology in the mid-term.39 With this regard, the type of fat 
consumed in these studies needs to be taken into account, with satu-
rated fatty acids (FA) and trans-FA increasing and poly-unsaturated 
FA decreasing BW despite their high energy content.43,44

3.5 | Low-carbohydrate/high-fat diets

According to the “Carbohydrate-Insulin-Model” of obesity, an in-
crease in the consumption of processed carbohydrates produces 
hormonal changes (especially by inducing insulin secretion) that 
promote “energy storage” in adipose tissue, exacerbate hunger and 
lower energy expenditure.45 By stimulating glucose uptake, sup-
pressing release of FAs from adipose tissue, and promoting fat and 
glycogen production, hyperinsulinemia following carbohydrate in-
take again induces hunger and predisposes to weight gain.46 Animal 
models have previously confirmed several advantages of LCD (es-
pecially those with a low glycemic-index) over HCDs.47,48 In these 
studies, energy restriction while on a high glycemic-index-diet did 
neither prevent weight gain nor increases in blood lipids and glu-
cose,47 while a LCD indeed increased energy expenditure and de-
creased BW.48

Thus, several types of LCD or “very-low carbohydrate diet” 
(VLCD) have been studied for their effect on NAFLD.49,50 Important 
differences exist for their respective carbohydrate-content and 
associated ketogenic potential, with ketogenesis occurring if <20-
50 g/d carbohydrate are consumed corresponding to carbohydrate 
constituting 5%-10% of daily energy intake (ie VLCD, see chapter 
7.1).49

Early studies comparing hypocaloric diets low or high in carbohy-
drates (LCD vs HCD) showed a significant stronger short-term reduc-
tion of IHLC after VLCD,51 but similar levels in the long-term (ie after 
7% WL)38 while insulin sensitivity was durably improved also in the 
long-term.38 An important study by Gepner et al52,53 demonstrated 
that a hypocaloric LCD in combination with a MED (±PA) achieved 
the greatest reduction in visceral adipose tissue and IHLC compared 

to an hypocaloric LFD. Interestingly, this effect was achieved despite 
only moderate WL, which might inadequately reflect the beneficial 
effects of a LCD.52 Also, the reduction in IHLC was similar between 
patients performing different amounts of PA, highlighting the essen-
tial role of diet for this outcome parameter.53

Similarly, Mardinoglu et al54 observed significant short-term 
changes in IHLC following an isocaloric VLCD, linking it to increased 
ketogenesis and changes in gut microbiota (see chapters 7.1 and 7.2). 
Ebbeling et al55 used heavy water to assess energy expenditure fol-
lowing HCD, moderate or LCDs. Interestingly, energy expenditure 
followed a linear trend of +52 kcal/d for every 10% decrease in the 
contribution of carbohydrates to total energy intake. Also, ghrelin 
and leptin levels were significantly lower contributing to decreased 
hunger, fat deposition and increased leptin sensitivity. Again, these 
effects were independent of BMI and were greatest in patients with 
high post-prandial insulin levels suggesting pronounced benefits in 
patients with pre-existing hyperinsulinemia.55 These data go in line 
with a previous meta-analysis showing reduced appetite and in-
creased satiety following VLCD.56

Finally, a recent study by Luukkonen et al (2020)57 assessed IHLC 
using proton magnetic resonance spectroscopy (1H-MRS) in 10 over-
weight individuals with NAFLD on VLCD/ketogenic diet and showed 
a marked decrease in IHLC by 31% accompanied by a decrease in 
insulin resistance (IR, −57%). Also in adolescents, LCD seems to out-
perform HCD regarding WL and reduction in IHLC and IR.58

Despite these data on LCDs seem promising, meta-analyses 
directly comparing several dietary interventions in NAFLD are still 
lacking. Also, improvements of BMI, HDL-cholesterol and triglycer-
ide profiles must be balanced with potential consequences of raised 
LDL- and total-cholesterol levels in the long-term.59,60 On a long-
term perspective, carbohydrate intake and overall mortality might 
still follow a U-shaped curve.61

Last but not least, a recent Mendelian randomization analy-
sis aimed at validating the aforementioned Carbohydate-Insulin-
Model.62 In this study, 30 genetic polymorphisms being linked with 
glucose-stimulated insulin secretion were tested in ~500.000 sub-
jects and found to be significantly associated with BMI. In contrast, 
SNPs linked with BMI were not associated with glucose-stimulated 
insulin secretion. The authors thus hypothesize that post-prandial 
hyperinsulinemia centrally influences BMI and associated comor-
bidities while vice-versa, BMI itself might be less important for 
hyperinsulinemia.

3.6 | Intermittent calorie restriction

Intermittent calorie restriction (ICR) is another way to reduce calo-
rie intake. Following this approach, individuals consume significantly 
reduced calories or no calories over a certain period (‘‘fast days’’) fol-
lowed by intervals with ad-libitum food consumption (‘‘feast days’’). 
A common variant is the intermittent fasting (or alternate day fast-
ing, ADF) which consists of fasting periods over 36-hours and pe-
riods of ad-libitum food consumption over 12 hours, among other 
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forms (reviewed in Ref. [63]). This periodic calorie restriction seems 
to provoke several physiological changes contributing to health ben-
efits (reviewed in Refs. [64-66])—among others, it might counteract 
the disruption of circadian rhythm being associated with develop-
ment of NAFLD and metabolic syndrome.67

Among the first, Stekovic et al68 investigated the effects of ADF 
for 4 weeks and >6 months on BW and markers of ageing. Compared 
with the control group continuing their usual diet, ADF led to a sig-
nificant reduction in BMI, central fat, Framingham Risk Score, LDL, 
total cholesterol, triglyceride and triiodothyronine levels after 
4 weeks and 6 months. Also, serum β-hydroxybutyrate (β-OHB) lev-
els significantly increased after 4 weeks indicating an induction of 
ketogenesis (see chapter 7.1). The authors conclude that the peri-
odic stimulus to the organism seems to exert several beneficial ef-
fects on human health that cannot be solely attributed to calorie 
restriction.68

So far, three studies have been performed focussing on NAFLD 
patients. Johari et al69 applied a modified alternate-day calorie re-
striction (ie 70% calorie-restriction on fasting day, ad-libitum eating 
on non-fasting day) to demonstrate an improvement in ALT levels 
as well as LSM and sonographically assessed steatosis.69 Another 
study showed a decrease in BMI and triglyceride levels following 
12  weeks of ADF or time-restricted feeding (energy intake only 
during an 8h-window each day) despite no changes in LSM.70 Finally, 
Holmer et al71 compared ICR on two non-consecutive days/week (ie 
5:2 diet, <500/600 kcal/d) vs a LCD/HFD in patients with NAFLD. 
This diet was associated with a significant reduction of IHLC on MRI 
and was assessed via controlled attenuation parameter, as well as 
improvement of BMI and IR was compared to a “healthy diet”, among 
others. Interestingly, ICR was similarly effective as LCD/HFD. In gen-
eral, previous studies have largely demonstrated effective WL fol-
lowing ICR in overweight/obese individuals without serious adverse 
events.72 However, it remains to be answered whether ICR is equally 
or more effective than continuous calorie restriction,73,74 and 
whether it is effective if no calorie-restriction/dietary counselling 
is applied.75 Also, although ICR has also been shown to be effective 
and safe in overweight/obese patients with type-2 diabetes melli-
tus,76 close monitoring of diabetes medication and blood glucose is 
needed because of concerns about hypoglycemia.77

4  | DIETARY COMPOSITION AND 
SELEC TED FOOD GROUPS

4.1 | Red and processed meat

An increasing number of recent studies showed a striking inverse 
association between red and processed meat and NAFLD.21,78-80 
Importantly, this association seems to be driven by animal protein 
since vegetable protein did not show a similar association.78,80 
A compelling explanation for this phenomenon was reported by 
Alferink et al81 proposing that the diet-dependent acid-load is the 

driving component of this association. Specifically, animal pro-
tein might cause low-grade metabolic acidosis by supplementation 
of acid precursors,82 which lead to a disturbance in acid-base-
balance.83 Other studies reporting on the U-shaped association be-
tween carbohydrate-consumption and mortality hypothesized that 
the substitution with animal-protein might cause the rise in mortality 
following a LCD, which was not evident when plant-based protein 
was substituted.61

4.2 | Sugar-sweetened beverages and high-fructose 
consumption

By searching for explanations between the parallel increase of 
fructose-consumption through high-fructose corn syrup (HFCS) and 
the increase in NAFLD/metabolic syndrome,84 fructose has been as-
sociated with IR, intrahepatic lipid accumulation and hypertriglyc-
eridemia, which contribute to the development of type 2 diabetes 
and cardiovascular diseases.84 This is because the first-pass hepatic 
extraction of fructose is nearly 100% after ingestion, and metaboli-
zation occurs solely in the liver.85,86 In contrast to glucose, it might 
provide a more direct substrate for de-novo lipogenesis (DNL) and 
increase IHLC on a larger scale.86 Unlike glucose metabolism, glu-
coneogenesis from fructose occurs independent of insulin and the 
energy status of the cell,85,86 leading to a depletion in ATP and sub-
sequent generation of uric acid, in terms promoting oxidative stress 
and IR.87,88

Thus, fructose- but not glucose-sweetened beverages have been 
associated with increased DNL, dyslipidemia, visceral adiposity and 
impaired insulin sensitivity.89 This was recently confirmed by a RCT 
showing an increased basal secretion rate of FA in both fructose and 
sucrose (ie glucose and fructose) groups raising the hypothesis of an 
adaptive response to regular fructose exposure by SSB consump-
tion.90 Also, restricting fructose-intake led to a reduction in IHLC91

In line, SSB have been associated with higher NAFLD preva-
lence,92-95 NASH presence96 and even a higher degree of fibrosis.97 
However, the differences in study design need to be considered 
since less significant alterations seem to occur in otherwise healthy 
subjects.98 Interestingly, this might provide an explanation why 
young and metabolically healthy subjects could compensate for in-
creased fructose intake while these mechanisms tilt in the presence 
of metabolic dysregulation.

Aiming at investigating physiological differences in mice fed 
with either glucose- or fructose-supplemented water, Softic et al99 
found that fructose supplementation was associated with an in-
creased expression of Srebp1c and Chrebp-β, increased FA synthesis 
and hepatic IR, while glucose supplementation was associated with 
increased total Chrebp and Chrebp-β and liver triglyceride accu-
mulation, but not with IR.99 The increased expression of Chrebp-β 
further upregulating FGF-21 could be one mechanism of action by 
which fructose contributes to fibrogenesis and hepatic stellate cell 
activation100
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4.3 | Alcohol

In the context of NALFD, the controversy on the potential benefi-
cial effects of moderate alcohol consumption (<20  g/d for ♀ and 
<30 g/d for ♂) on the prevalence and severity of NAFLD is still on-
going. Although data on the protective effect of moderate alcohol 
consumption on the prevalence of NAFLD101-104 and NASH102,104,105 
exist, several concerns have been raised questioning the rationale be-
hind this phenomenon and adequate addressing of confounders.106-

108 Within the last two years, evidence is accumulating that supports 
a rather harmful effect, and recent guidelines recommend complete 
abstinence.10,11 Ajmera et al (2018)109 showed that modest alcohol 
use was associated with less improvement in steatosis and level of 
aspartate transaminase, as well as lower odds of non-alcoholic stea-
tohepatitis resolution compared to non-drinkers. Another study re-
ported faster worsening of non-invasive fibrosis scores in patients 
with moderate alcohol consumption compared to abstainers,110 re-
cent analyses also support a linear positive association with NAFLD 
and advanced liver disease.111,112

4.4 | Coffee

Any coffee consumption was associated with a 29% lower risk of 
NAFLD, a 30%-39% lower risk of liver fibrosis and a 39% lower risk of 
cirrhosis in two meta-analyses.113,114 Also, a dose-dependent inverse 
relationship was evident in two different meta-analyses for cirrhosis 
and liver-related death115 as well as chronic liver disease and HCC.116 
However, another meta-analysis describes a non-linear relationship 
with a reduced risk of NAFLD only starting at >3 cups/d.117 In line, 
the proportion of patients with LSM ≥8.0k  Pa decreases among 
higher coffee consumption.118 On a mechanistic basis, these ben-
eficial effects might be explained by a reduction in hepatic fat accu-
mulation by increased β-oxidation, and a reduction of systemic and 
liver inflammation and oxidative stress.119 Specifically, coffee en-
hances the expression of chaperones and antioxidant proteins such 
as glutathione ensuring correct protein folding and degradation in 
the liver.120 Also, chlorogenic acid, caffeine and kahweol exhibit anti-
fibrotic properties by inhibition of hepatic stellate cell activation121 
via down-regulation of the transforming-growth-factor-β (TGF-β)  
pathway and inhibiting connective tissue growth factor.122,123 
Possible influences on the gut microbiome could contribute to 
these observed associations including an increase in Bifidobacterium 
spp.124,125 and a decrease in Escherichia coli and Clostridium spp.125 
With this regard, coffee consumption seems to be associated with 
microbial richness even in patients with cirrhosis.126,127

4.5 | Nuts and seeds

Nuts and sees contain several bioactive compounds that have been 
regarded beneficial for human's health including monounsaturated 
FAs and polyunsaturated FAs (PUFA), vegetable protein, fiber, 

minerals, vitamins, tocopherols, phytosterols and polyphenols.128 
Recently, several studies investigated their influence on NAFLD: a 
Chinese study reported a significantly lower prevalence of NAFLD 
in patients consuming nuts ≥4 times/wk129 while another Chinese 
study confirmed this inverse association of NAFLD and nut consump-
tion only in men when consuming ≥8.86 g/d.130 These findings have 
been validated in a Caucasian cohort being again more pronounced 
in males,131 and another cross-sectional study.132 Interestingly, 
daily nut consumption might even be negatively associated with 
advanced fibrosis in NALFD patients with further research needed 
to confirm these associations.131 Despite their high energy content, 
nut consumption has not been associated with weight gain.133,134 In 
contrast, anti-inflammatory components (eg ω-3 PUFAs) might con-
tribute to their beneficial effects on NAFLD,135,136 and they have re-
cently been added to a MED showing a significant WL and decrease 
in IHLC in NAFLD paients.28,53

5  | MICRONUTRIENT COMPOSITION

Although the pathogenic role of specific food-types and macronutri-
ents is well-established in NAFLD, the impact of micronutrients (in-
cluding minerals, fat and water-soluble vitamins, and carotenoids) on 
disease pathogenesis has garnered less attention (reviewed in Ref. 
[137]). While the relevance of dysmetabolic iron overload in NAFLD 
has been largely studied,138,139 both zinc140 and copper141 deficien-
cies have also been observed in NAFLD. Interestingly, zinc supple-
mentation has shown favorable effects on glycemic parameters and 
plasma lipids.142,143 The link between high fructose-consumption 
and copper deficiency144 potentially contributing to NAFLD patho-
genesis also deserves further research.145 Building upon the nega-
tive influence of red meat consumption on NAFLD (see chapter 4.1), 
an increased amount of iron intake—independent of red meat as a 
source—may also contribute to NAFLD pathogenesis.146

Apart from minerals, deficiencies in vitamins A, B3, B12, C, D 
and E—although mostly of mild severity—have been reported in 
NAFLD.137,147 While systematic supplementation of these vitamins 
has not been studied, vitamin E supplementation has been addressed 
several beneficial properties in NAFLD.148,149 Just recently, vitamin 
E supplementation has been reported to improve transplant-free 
survival and hepatic decompensation in patients with NASH and 
advanced fibrosis,150 and published guidelines recommend vitamin 
E supplementation to non-diabetic patients with NASH.8-11 Finally, 
the beneficial effects of nuts and seeds in NAFLD might partially be 
explained by their high content of micronutrients and antioxidative 
compounds.128

6  | PHYSIC AL AC TIVIT Y AND E XERCISE

While the EASL and AASLD both recommend ≥150 min of moderate-
intensity PA per week, novel ESPEN and APASL guidelines only rec-
ommend an increase of PA tailored based on patient preferences. 
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This might be the case since meta-analyses proved that PA reduces 
IHLC and markers of hepatocellular injury (especially in patients with 
increased BMI151), but fail to clearly recommend one type of exercise 
over another.151-154 Also, there does not seem to be a significant dif-
ference between dose or intensity of aerobic exercise.155-157

Despite aerobic exercise cannot be recommended over resis-
tance training, overall energy consumption seems to be lower during 
resistance training compared to aerobic exercise while leading to a 
similar improvement of steatosis.158 Thus, resistance exercise might 
be better tolerated by NAFLD patients with poor cardiorespiratory 
fitness and musculoskeletal issues because of overweight.11,158

Several aspects need to be highlighted which go beyond WL and 
explain benefits from PA and exercise: Exercise improves peripheral 
insulin sensitivity with only little effect on hepatic insulin sensitivity, 
leading to a net improvement in insulin metabolism.159 Also, exercise 
increases very-low-density-lipoprotein clearance enabling the liver 
to export triglycerides,160 improves appetite-control161 and coun-
teracts sarcopenia, which has been identified as independent risk 
factor for NAFLD and fibrosis.162,163 Thus, exercise is also recom-
mended and is safe in patients with NASH cirrhosis and portal hy-
pertension improving physical function, sarcopenia and even portal 
hypertension.164

6.1 | Sedentary behaviour

Sedentary behaviour is not only associated with obesity, but also 
>30 health outcomes165 and NAFLD.166 Specifically, television-
viewing-time was independently associated with higher fatty-liver-
index in Finnish adults167 and computer/mobile-devices-usage-time 
with Odds of NAFLD in Chinese adults.168 Nevertheless, PA in-
between sitting time/sedentary time still attenuates post-prandial 
glucose and insulin, with greater glycaemic attenuation in people 
with higher BMI.169

Interesting data about a protective effect on carcinogenesis 
can be derived from mice-models comparing mice with access to a 
running wheel to those without.170-173 All studies showed a striking 
reduction of HCC cases in the exercise groups compared to the sed-
entary groups, which might even be independent of weight gain171 
and diet.172 Similar results were obtained from epidemiological stud-
ies reporting a lower incidence of liver cancer and especially HCC 
between the groups with the least and most-frequent PA.174

6.2 | Combination of physical activity and dietary 
interventions

Noteworthy, evidence exists that the combination of exercise and 
dietary interventions lead to a greater improvement of metabolic 
parameters and IHLC.154,175,176

The combination of a low-glycemic-index-MED with either 
aerobic exercise or both aerobic exercise and resistance training 
led to the greatest reduction in controlled attenuation parameter 

as a measure of hepatic steatosis in NAFLD patients after three 
months.177 However, further research is needed regarding poten-
tially counteracting effects of antioxidants (vitamin C and E) and 
exercise-induced mitohormesis.178-180

7  | NOVEL MOLECUL AR AND 
TR ANSL ATIONAL A SPEC TS

7.1 | PPARα-signalling and ketogenesis

An important aspect contributing to the success of (V)LCD is ke-
togenesis, leading to the alternative term "ketogenic diet" (KD).54 
Ketogenesis is the production of ketone bodies acetoacetate (AcAc), 
β-hydroxybutyrate (β-OHB) or acetone from FAs which serve as an 
alternative energy supply from the liver to peripheral tissues when 
the supply of glucose is too low for the body's energetic needs.181 
From a historical perspective, mild ketosis was the normal meta-
bolic state in most cultures before the agricultural revolution lead-
ing to a shift from hunter-gathered diets to rather monotonous 
carbohydrate-based diets.182,183 However, when carbohydrate 
stores are available, the main source of energy is glycogenolysis and 
gluconeogenesis in case of a catabolic state while ketogenesis is sup-
pressed by the presence of insulin.184

The nuclear receptor peroxisome proliferator-activated recep-
tor α (PPARα) is a central transcriptional factor regulating FA me-
tabolism (ie FA oxidation, FA transport and ketogenesis), which is 
upregulated during fasting or ketogenic states.184 One mechanism 
of action is the induction of fibroblast growth factor 21 (FGF-21) 
while PPARα-independent activation of FGF-21 also exists.185,186 
Fasting significantly induces hepatic expression and circulating lev-
els of FGF-21, which is then rapidly suppressed by refeeding.185,186 
As a proof-of-concept, PPARα-deficient mice or FGF-21 knockout 
mice developed severe metabolic abnormalities including fatty liver 
during feeding-period and hypoglycemia/hypoketonemia during 
starvation, highlighting the regulatory role of the PPARα-FGF-21-
pathway for ketogenesis in response to fasting or (V)LCD/KD.185-187 
Another regulator of PPARα function is the mechanistic target of 
rapamycin complex 1 (mTORC1) kinase, the inhibition of which is 
necessary for ketogenesis.188

Based on knowledge of the impaired PPAR-signalling in NAFLD 
and NASH,189 the induction of this pathway may serve as an addi-
tional explanation of the beneficial effects of KD or ICR. Specifically, 
PPARα exerts several anti-inflammatory activities and protection 
from intrahepatic lipid accumulation, inflammation and fibrosis.189 
For example, while PPARα gene expression in the liver negatively 
correlates with NASH severity, histological improvement is as-
sociated with an increase in expression of PPARα.190 Thus, while 
waiting for selective or pan-PPAR-agonists to be proven effective 
for NAFLD/NASH therapy,191 KD or ICR might be the alternatives 
to induce the PPARα-pathway. However, in human studies it has 
been shown that FGF-21 serum levels largely vary as dietary re-
sponse,33,54,192 and might therefore not be the target-substrate to 
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measure. Nevertheless, regarding other PPARα targets in the liver, 
an upregulation has been shown in a mice model only following KD 
without any carbohydrate intake, but not following a non-ketogenic 
LCD/HFD,193 highlighting the importantance of carbohydrate re-
striction for ketogenesis.

Moreover, ketone bodies β-OHB and AcAc have several direct 
and indirect signalling-properties that contribute to the success of 
KD or ICR. Apart from their function as an energy substrate, β-OHB 
and AcAc themselves have several anti-inflammatory functions (re-
viewed in Refs. 194,195). For example, both protect against oxidative 
stress by decreasing the production of mitochondrial reactive oxy-
gen species, by increasing expression or protein content of antioxi-
dant enzymes through inhibition of histone deacetylases,196 and by 
directly scavenging hydroxyl radicals (•OH).197 The inhibition of the 
NLRP3 inflammasome—which controls the activation of caspase-1 
and the release of the pro-inflammatory cytokines IL-1β and IL-18 in 
macrophages—and activation of the hydroxycarboxylic acid receptor 
2 (HCA2) seem to be other mechanisms.198,199

Following a 6-day KD (~6% carbohydrate, ~64% fat, ~28% pro-
tein), Luukoonen et al (2020)57 demonstrated a 10-fold and six-fold 
increase in β-OHB and AcAc serum concentrations while endoge-
nous β-OHB assessed by stable isotope infusions of [13C4]β-OHB in-
creased three-fold. However, this increase seems to depend on the 
presence and severity of NAFLD as shown by Fletcher et al (2019).200 
They measured non-esterified FAs (NEFAs) from peripheral lipolysis 
and AcAc+β-OHB serum concentrations in NAFLD patients after 
24h of fasting, and showed ~30% lower levels compared to controls. 
Interestingly, patients with higher IHLC had lower β-OHB serum lev-
els after 24h indicating an inverse relationship between the severity 
of HS and ketogenesis after fasting. Contrarily, oxidation of acetyl-
CoA in the tricarboxylic-acid-cycle (TCA, ie the alternative pathway 
for acetyl-CoA metabolism) increased ~60% in NAFLD patients 
Fletcher et al (2019).200 Most interestingly, these differences were 
independent of BMI indicating that NAFLD itself seems to influence 
ketogenesis. Another recent study confirmed ~15% lower β-OHB 
serum concentration correlating weakly with liver fat.201

These studies go in line with previous ones showing that keto-
genesis is significantly impaired in NAFLD (‘ketogenic insufficiency’) 
independent of fasting.202-205 Simultaneously, the high “energy-
processing burden” is mismatched to the mitochondrial capability 
of the liver leading to an increase in anaplerotic and oxidative TCA 
flux and consecutive oxidative stress and inflammation.202-205 Most 
interestingly, a study in obese NAFLD/NASH patients showed that 
this compensatory upregulation of mitochondrial activity (ie “he-
patic metabolic flexibility”) seems to fail following excessive hepatic 
oxidative stress, leading to a decrease in mitochondrial function-
ality and progression to NASH and IR.206 Evidence that impaired 
ketogenesis contributes to this phenomenon comes from mice mod-
els.207 After blocking the ketogenic pathway by knocking-out the 
3-hydroxymethylglutaryl-CoA synthase 2 (ie a key enzyme during 
ketogenesis), LFD induced hyperglycaemia, increased hepatic gluco-
neogenesis and increased DNL because of excess acetyl-CoA and 
increased TCA flux.

7.2 | Gut microbiota and exercise

An emerging research topic is the relationship between exercise 
and the gut microbiota (reviewed in).208,209 Despite methodological 
difficulties and inhomogeneities in the studied cohorts, cardiores-
piratory fitness and activeness is usually associated with higher mi-
crobial diversity.208,210 Two prominent studies on professional rugby 
players earlier reported this higher diversity, which translates into 
differences in faecal metabolites (eg short-chain FA).211,212

Although differences have been reported for numerous taxa, spe-
cific consideration might be drawn to the taxus Akkermansia, which 
seems to be more present in athletes than in non-athletes.211,213 
Akkermansia muciniphilia has previously been associated with a 
healthy metabolic status214 and lower BW215 while supplementation 
reversed metabolic dysfunction in mice.215

Regarding the effects of PA on gut microbiota, PA could lead 
to a assimilation of microbiota to healthy individuals already after 
12 weeks of training.216 However, these changes might be small,217 
and it is unclear whether these changes are only transient returning 
to a baseline profile after termination of the PA-intervention.218,219 
Also, the effect of ones microbiota on the efficacy of PA is similarly 
interesting. Liu et al (2020)217 identified the intestinal microbiota as 
a potential driver of exercise-induced alterations in fasting glucose 
and insulin. If these microbiota were transplanted to obese mice, it 
induced similar changes as in the respective humans. Again, abun-
dance of Akkermansia muciniphilia was significantly higher in sub-
jects with metabolic changes following exercise intervention, and 
a machine-learning algorithm could successfully predict glycemic 
response to exercise based on gut microbiota.217 Similarly, another 
study reported different exercise gains following cardiorespiratory 
exercise or resistance training.218 Finally, an increase in Veillonella 
abundance in marathon runners metabolizing lactate led to the hy-
pothesis that this genus might increase athletic performance.220

7.3 | Gut microbiota and nutrition

In recent years, promising data have evolved characterizing the in-
teractions between diet and intestinal microbiota (reviewed in 
Refs. [221,222]). Specifically, differences in gut microbiota have 
been reported in the short-term following a LCD54 as well as a 
KD.223 Specifically, significant differences among Actinobacteria, 
Bacteroidetes, Firmicutes and Bifidobacterium were observed be-
tween KD vs LFD vs HFD with Bifidobacterium showing the great-
est decline following KD.223 Interestingly, Bifidobacterium negatively 
correlated with β-OHB concentration in the intestinal lumen indicating 
that β -OHB inhibits Bifidobacterium growth, which was also confirmed 
in vitro.223 What is more, the KD-associated microbiota-signature re-
duced the level of intestinal pro-inflammatory Th17 cells.223

Also, different formulations of high-fructose diets induce distinct 
alterations of gut microbiota: HFCS reduced butyrate-producing 
bacteria and the Firmicutes/Bacteroidetes ratio, while a high-
fructose-diet from fruits created an opposite shift.224 This is relevant 
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since a higher Firmicutes/Bacteroidetes ratio has been linked to the 
pathogenesis of the metabolic syndrome.225,226

Finally, individuals with higher abundance of Akkermansia mu-
ciniphilia displayed greater improvement in insulin sensitivity mark-
ers and other clinical parameters after calorie restriction.214 Also, 
a LCD/KD increased Akkermansia muciniphilia abundance.227 Oral 
supplementation of Akkermansia muciniphilia even improved insu-
lin sensitivity and cholesterol levels in overweight/obese insulin-
resistant volunteers.228

7.4 | Personalized approaches

Future nutritional and lifestyle interventions will largely benefit from 
personalized treatment strategies tailored to individual subjects (ie 
“precision nutrition”). A landmark study from Zeevi et al (2015)229 
demonstrated that large interpersonal variability exists in the post-
prandial glycemic response to identical meals. Most surprisingly, a 
machine-learning algorithm including blood-derived metabolic pa-
rameters, dietary habits, PA and data on microbiota could predict the 
individual postprandial glycemic response. Similarly, the PREDICT1 
study assessed postprandial glucose, insulin and triglycerides in 
1002 twins and unrelated healthy adults.230 Notably, microbiota had 
a greater influence than macronutrients on postprandial triglycer-
ides, and the influence on postprandial glucose was considerable. 
Also, machine-learning algorithm considering genetic variants al-
lowed for prediction of triglyceride and glucose responses to food 
intake.230

As the first of its kind, the PNPLA3 polymorphism has been 
studied as a modifier for dietary response. Specifically, the improve-
ment in IHLC and insulin sensitivity following a LCD was influenced 
by PNPLA3-genotype with (homozygous) carriers of the G-allele 
achieving a higher reduction in IHLC than individuals harbouring only 
PNPLA3 C/C alleles.231,232 The DNA methylation profile may also 
provide prognostic information on successful WL during dietary/
lifestyle interventions.233 Recently, Vilar-Gomez et al234 confirmed a 
modulatory effect of PNPLA3 on the relationship between reported 
carbohydrate-/PUFA-/flavonoid-intake and significant fibrosis. From 
these data, one might hypothesize that the genetic predisposition 
centrally influences ones response to a specific diet, and implications 
on liver disease severity.

Finally, web-based applications might increase adherence to life-
style interventions as they have been discussed as alternatives to 
group-based interventions for maintaining individuals’ adherence to 
lifestyle interventions235 or exercise programs236 despite concerns 
about lower attrition rates.235

8  | STRENGTHS AND LIMITATIONS OF 
LIFEST YLE INTERVENTIONS

From a holistic point of view, lifestyle interventions have cer-
tain unique advantages, but also limitations that need to be 

considered. Given promising data on NASH regression when WL 
is achieved,39,237 the cost-effectiveness of lifestyle interventions is 
favorable. Noteworthy, the annual healthcare expenditure for un-
healthy diets are estimated to range from 3 to 148€ per capita and 
from 3-181€ per capita for low PA,238 and unhealthy lifestyle can be 
attributed to ~6 years of life-expectancy lost.239,240 Targeting both 
aspects by lifestyle interventions does therefore indeed make sense 
although specific data on the cost-effectiveness in NAFLD are miss-
ing. Moreover, diet and lifestyle interventions improve metabolism 
and health in a versatile way as outlined above, triggering beneficial 
health effects presumably more efficient than NASH drugs targeting 
only a certain mechanism of NASH-development.

Nevertheless, several caveats need to be kept in mind that limit 
these promising aspects. As a result of the heterogeneity of di-
etary interventions and study cohorts (see also Table 2), results of 
individual studies can hardly be directly compared, making strong 
guideline-recommendations significantly more difficult. Next, 
outcome measures differ across studies, and it remains to be an-
swered whether changes in IHLC/ transaminase levels are a valid 
endpoint for dietary interventions with questionable influence on 
long-term prognosis. Also, the adherence to lifestyle interventions 
declines in parallel with the duration of the intervention, resulting in 
a rebound-phenomenon that has largely been shown for BW.241 In 
terms of adherence, underestimated factors such as gender, intrinsic 
and extrinsic motivation (including monitoring of the intervention), 
socioeconomic status, among others, are also known to influence 
adherence to lifestyle interventions, and thus complicate interpreta-
tion of the outcome.242

9  | CONCLUSION

In conclusion, diet and exercise will likely remain the key therapeu-
tic elements to fight the burden of fatty liver disease. Recent stud-
ies have highlighted the importance of calorie restriction regardless 
of dietary composition and while low-carbohydrate diets were 
most promising for reducing metabolic dysregulation and severity 
of NAFLD. Promotion of ketogenesis—potentially achieved via in-
termittent calorie restriction—seems to be the central mechanistic 
aspect of beneficial diets in NAFLD/NASH. Interactions of diet and 
exercise with the gut microbiota and the individual genetic back-
ground will need to be comprehensively understood to develop per-
sonalized life-style intervention strategies for patients with NAFLD/
NASH.
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