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1 | INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) may present as “simple”
steatosis or with a potentially progressive inflammatory phenotype
of non-alcoholic steatohepatitis (NASH) that can progress to cirrho-
sis and/or hepatocellular cancer, thus being expected to become
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Abstract

Lifestyle represents the most relevant factor for non-alcoholic fatty liver disease
(NAFLD) as the hepatic manifestation of the metabolic syndrome. Although a tre-
mendous body of clinical and preclinical data on the effectiveness of dietary and life-
style interventions exist, the complexity of this topic makes firm and evidence-based
clinical recommendations for nutrition and exercise in NAFLD difficult. The aim of
this review is to guide readers through the labyrinth of recent scientific findings on
diet and exercise in NAFLD and non-alcoholic steatohepatitis (NASH), summarizing
“obvious” findings in a holistic manner and simultaneously highlighting stimulating
aspects of clinical and translational research “beyond the obvious”. Specifically, the
importance of calorie restriction regardless of dietary composition and evidence
from low-carbohydrate diets to target the incidence and severity of NAFLD are
discussed. The aspect of ketogenesis—potentially achieved via intermittent calorie
restriction—seems to be a central aspect of these diets warranting further investi-
gation. Interactions of diet and exercise with the gut microbiota and the individual
genetic background need to be comprehensively understood in order to develop per-
sonalized dietary concepts and exercise strategies for patients with NAFLD/NASH.

KEYWORDS
diet, lifestyle, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, nutrition,
physical activity

the leading cause of liver-related morbidity and mortality.! Since no
drug has yet been approved specifically for the treatment of NASH
and/or associated cirrhosis,? dietary interventions and physical ac-
tivity (PA) and exercise are generally regarded the cornerstones
of NAFLD/NASH treatment. These interventions might be spe-
cifically effective to target the “triple hit” of modern-day lifestyle

Abbreviations: p-OHB, p-hydroxybutyrate; AcAc, acetoacetate; ADF, alternate day fasting; BW, body weight; DNL, de-novo lipogenesis; FA, fatty acid; FGF-21, fibroblast growth factor
21; HCC, hepatocellular carcinoma; HCD, high-carbohydrate diet; HFCS, high-fructose corn syrup; HFD, high-fat diet; ICR, intermittent calorie restriction; IHLC, intrahepatic lipid
content; IR, insulin resistance; KD, ketogenic diet; LCD, low-carbohydrate diet; LFD, low-fat diet; LSM, liver stiffness measurement; MED, Mediterranean diet; NAFLD, non-alcoholic
fatty liver disease; NASH, non-alcoholic steatohepatitis; NEFA, non-esterified fatty acids; PA, physical activity; PPAR«, peroxisome proliferator-activated receptor a; PUFA,
polyunsaturated fatty acid; RCT, randomized controlled diet; SSB, sugar-sweetened beverages; TCA, tricarboxylic-acid-cycle; VLCD, very-low carbohydrate diet; WD, Western diet; WL,

weight loss.
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(ie sedentary behaviour, low PA and poor diet) that contributes to the
“multiple-hit” pathogenesis of NAFLD.®* The aim of this review is to
provide an overview of recent research findings covering diet and
PA “beyond the obvious”, thereby presenting stimulating aspects of

this topic complimentary to state-of-the-art reviews (eg Refs. [5-7]).

2 | THE OBVIOUS - GUIDELINE
RECOMMENDATIONS

Although being regarded as the key component to tackle the NAFLD

epidemic, guidelinesg'11

are rather unspecific and vague regarding
recommendations for diet and exercise in NAFLD patients (Table 1,
reviewed in'?). Several scientific associations (EASL-EASD-EASO
2016,% AASLD 2018,” ESPEN 2019'° and APASL 2020%) highlight
the importance of weight loss (WL)—targeting a 7%-10% reduction
in body weight (BW)—achieved by a hypocaloric diet (energy deficit
of 500-1000 kcal/d) and/or PA (in order to promote a caloric defi-
cit). However, specific recommendations are divergent. While the
EASL-EASD-EASO and APASL recommend the exclusion of pro-
cessed food and any beverages/food high in added fructose, AASLD
and ESPEN do not provide such recommendations. Although all
highlight the low evidence supporting any dietary composition (eg
low-carbohydrate/low-fat diets), EASL-EASD-EASO, ESPEN and
APASL specifically mention the Mediterranean diet (MED) as benefi-
cial in patients with NAFLD. While EASL-EASD-EASO and AASLD
discussed beneficial effects of light (<1 drink/d)? or moderate alco-
hol consumption (<20 g/d for @ and <30 g/d for d),a more recent
ESPEN and APASL guidelines recommend complete abstinence. No
recommendations are given for coffee consumption or other ma-
cronutrients. Finally, an increase in PA is generally recommended in
all guidelines, but no recommendations exist for a specific type or
amount of PA and/or duration. Importantly, recommendations on
diet and PA are similar in NAFLD patients with type-2 diabetes mel-
litus emphasizing an individual approach aiming at calorie-restriction
and MED diet.® However, dietary recommendations for cirrhotic
patients avoiding malnutrition, sarcopenia and a low-protein diet
need specific attention, and are not covered in this review.'*

3 | TYPES OF DIET

Apart from a MED, several types of diet have been proposed to
tackle NAFLD (interventional studies are summarized in Table 2).

3.1 | Mediterranean diet

In contrast to the Western diet (WD) rich in animal products in-
cluding red and processed meat, refined grains, potatoes and sugar
sweetened beverages (SSB),*> the MED containing vegetables,
fruits, whole grains, nuts and legumes, olive oil, and fish,'® and has

been promoted for WL and improvement of metabolic parameters.t’

Also, the MED has been reported to prevent cardiovascular dis-
ease.'® Since most of its components have either been (inversely) as-
sociated with the prevalence, severity or regression of NAFLD (see
chapter 4), it is not surprising that the MED is recommended over the
WD for individuals with NAFLD.Y Generally speaking, studies have
shown that adherence to a MED is inversely associated with NAFLD

20-22 23-28 and

prevalence and severity, and reduces hepatic steatosis
liver stiffness measurement (LSM).2%2? In addition, MED might even
be associated with a reduced risk of HCC or liver-related death.3%3?
However, high-quality randomized controlled trials (RCTs) are still

scarce,z“'29

and dietary and caloric composition of MED was diver-
gent across different studies, thus, complicating direct comparison
and firm conclusions. As one of these studies, the DIRECT-PLUS ran-
domized clinical trial recently showed that a calorie-restricted MED
successfully induces WL and reduction in intrahepatic lipid content
(IHLC) while the addition of dietary polyphenols via green-tea and

Mankai additionally decreased IHLC.?®

3.2 | High-protein diet

Studies investigating an increase in dietary protein content are less
common given the data on the potentially negative effects of red
meat on NAFLD (see chapter 4.1). A RCT by Markova et al (2017)*
showed that two isocaloric diets rich in animal or plant protein
(30% protein, 40% carbohydrates and 30% fat) were both able to
reduce IHLC by 36%-48% in individuals with type-2-diabetes-
mellitus. Another study by Xu et al®® found different decreases in
IHLC among three hypocaloric diets: Subjects consuming a high-
protein diet (~40% carbohydrates, ~30% protein, ~30% fat) had a
43% decrease in IHLC, subjects with a normal-protein diet (~20%
protein) had a 37% decrease while those with a low-protein/high-
carbohydrate diet (HCD; ~10% protein, ~60% carbohydrates,~30%
fat) had no reduction despite similar WL. Nevertheless, these differ-
ences might also be attributed to the differences in carbohydrates
(see chapter 3.4 and 3.5).

3.3 | Hypocaloric diet

Another more general approach to achieve caloric deficit and con-
secutive WL is a hypocaloric diet regardless of its dietary compo-
sition.3* Several studies have shown that a total energy deficiency
leads to a decrease in BW, transaminase levels, total body fat,
visceral fat and IHLC, regardless of how it is achieved.®>% This is
supported by similar long-term outcomes after 7% WL following a
low-carbohydrate-diet (LCD) vs a HCD despite short-term effects in
favour of a LCD.%®

With this regard, an important study was done by Vilar-Gomez
et al®” who reported a strong correlation of the degree of WL follow-
ing a hypocaloric diet with the degree of histological NAFLD improve-
ment including NASH resolution and fibrosis regression in NASH

patients. This correlation was recently confirmed by a meta-analysis
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promoting WL-interventions including calorie restriction over spe-
cific dietary compositions in NAFD/NASH.*° Nevertheless, further
adherence to a MED might enhance the decrease in BW, total fat

mass and hepatic fat.?’

3.4 | High-carbohydrate/low-fat diet

For years, high dietary fat has been considered the cause of obe-
sity and the metabolic syndrome because of its high energy density
leading to an increase in total energy intake. Thus, scientists called
for a low-fat diet (LFD) with compensatory increase in dietary car-
bohydrates. Although early studies suggested that dietary fat might
inhibit hepatic glucose disposal and increase storage of glucose,*! in-
creasing concerns regarding the harmful effect of HCD are arising*?
and the number of studies promoting HCD over LCD are a minority.
However, if a caloric deficit is achieved, HCD/LFD may still improve
liver histology in the mid-term.3’ With this regard, the type of fat
consumed in these studies needs to be taken into account, with satu-
rated fatty acids (FA) and trans-FA increasing and poly-unsaturated
FA decreasing BW despite their high energy content.*344

3.5 | Low-carbohydrate/high-fat diets

According to the “Carbohydrate-Insulin-Model” of obesity, an in-
crease in the consumption of processed carbohydrates produces
hormonal changes (especially by inducing insulin secretion) that
promote “energy storage” in adipose tissue, exacerbate hunger and
lower energy expenditure.45 By stimulating glucose uptake, sup-
pressing release of FAs from adipose tissue, and promoting fat and
glycogen production, hyperinsulinemia following carbohydrate in-
take again induces hunger and predisposes to weight gain.*¢ Animal
models have previously confirmed several advantages of LCD (es-
pecially those with a low glycemic-index) over HCDs.#*8 In these
studies, energy restriction while on a high glycemic-index-diet did
neither prevent weight gain nor increases in blood lipids and glu-
cose,” while a LCD indeed increased energy expenditure and de-
creased BW.*®

Thus, several types of LCD or “very-low carbohydrate diet”
(VLCD) have been studied for their effect on NAFLD.*>° Important
differences exist for their respective carbohydrate-content and
associated ketogenic potential, with ketogenesis occurring if <20-
50 g/d carbohydrate are consumed corresponding to carbohydrate
constituting 5%-10% of daily energy intake (ie VLCD, see chapter
7.0).%

Early studies comparing hypocaloric diets low or high in carbohy-
drates (LCD vs HCD) showed a significant stronger short-term reduc-
tion of IHLC after VLCD,51 but similar levels in the long-term (ie after
7% WL)%® while insulin sensitivity was durably improved also in the
long-term.®® An important study by Gepner et al’>>® demonstrated
that a hypocaloric LCD in combination with a MED (+PA) achieved

the greatest reduction in visceral adipose tissue and IHLC compared

to an hypocaloric LFD. Interestingly, this effect was achieved despite
only moderate WL, which might inadequately reflect the beneficial
effects of a LCD.”? Also, the reduction in IHLC was similar between
patients performing different amounts of PA, highlighting the essen-
tial role of diet for this outcome parameter.”®

Similarly, Mardinoglu et al®* observed significant short-term
changes in IHLC following an isocaloric VLCD, linking it to increased
ketogenesis and changes in gut microbiota (see chapters 7.1 and 7.2).
Ebbeling et al*® used heavy water to assess energy expenditure fol-
lowing HCD, moderate or LCDs. Interestingly, energy expenditure
followed a linear trend of +52 kcal/d for every 10% decrease in the
contribution of carbohydrates to total energy intake. Also, ghrelin
and leptin levels were significantly lower contributing to decreased
hunger, fat deposition and increased leptin sensitivity. Again, these
effects were independent of BMI and were greatest in patients with
high post-prandial insulin levels suggesting pronounced benefits in
patients with pre-existing hyperinsulinemia.>® These data go in line
with a previous meta-analysis showing reduced appetite and in-
creased satiety following VLCD.>®

Finally, a recent study by Luukkonen et al (2020)°” assessed IHLC
using proton magnetic resonance spectroscopy (*H-MRS) in 10 over-
weight individuals with NAFLD on VLCD/ketogenic diet and showed
a marked decrease in IHLC by 31% accompanied by a decrease in
insulin resistance (IR, =57%). Also in adolescents, LCD seems to out-
perform HCD regarding WL and reduction in IHLC and IR.5®

Despite these data on LCDs seem promising, meta-analyses
directly comparing several dietary interventions in NAFLD are still
lacking. Also, improvements of BMI, HDL-cholesterol and triglycer-
ide profiles must be balanced with potential consequences of raised
LDL- and total-cholesterol levels in the long-term.’¢° On a long-
term perspective, carbohydrate intake and overall mortality might
still follow a U-shaped curve.®!

Last but not least, a recent Mendelian randomization analy-
sis aimed at validating the aforementioned Carbohydate-Insulin-
Model.®? In this study, 30 genetic polymorphisms being linked with
glucose-stimulated insulin secretion were tested in ~500.000 sub-
jects and found to be significantly associated with BMI. In contrast,
SNPs linked with BMI were not associated with glucose-stimulated
insulin secretion. The authors thus hypothesize that post-prandial
hyperinsulinemia centrally influences BMI and associated comor-
bidities while vice-versa, BMI itself might be less important for

hyperinsulinemia.

3.6 | Intermittent calorie restriction

Intermittent calorie restriction (ICR) is another way to reduce calo-
rie intake. Following this approach, individuals consume significantly
reduced calories or no calories over a certain period (“fast days”) fol-
lowed by intervals with ad-libitum food consumption (“feast days”).
A common variant is the intermittent fasting (or alternate day fast-
ing, ADF) which consists of fasting periods over 36-hours and pe-

riods of ad-libitum food consumption over 12 hours, among other
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forms (reviewed in Ref. [63]). This periodic calorie restriction seems
to provoke several physiological changes contributing to health ben-
efits (reviewed in Refs. [64-66])—among others, it might counteract
the disruption of circadian rhythm being associated with develop-
ment of NAFLD and metabolic syndrome.®”

Among the first, Stekovic et al%® investigated the effects of ADF
for 4 weeks and >6 months on BW and markers of ageing. Compared
with the control group continuing their usual diet, ADF led to a sig-
nificant reduction in BMI, central fat, Framingham Risk Score, LDL,
total cholesterol, triglyceride and triiodothyronine levels after
4 weeks and 6 months. Also, serum f-hydroxybutyrate (B-OHB) lev-
els significantly increased after 4 weeks indicating an induction of
ketogenesis (see chapter 7.1). The authors conclude that the peri-
odic stimulus to the organism seems to exert several beneficial ef-
fects on human health that cannot be solely attributed to calorie
restriction.®®
So far, three studies have been performed focussing on NAFLD

patients. Johari et al®’

applied a modified alternate-day calorie re-
striction (ie 70% calorie-restriction on fasting day, ad-libitum eating
on non-fasting day) to demonstrate an improvement in ALT levels
as well as LSM and sonographically assessed steatosis.®” Another
study showed a decrease in BMI and triglyceride levels following
12 weeks of ADF or time-restricted feeding (energy intake only
during an 8h-window each day) despite no changes in LSM.”° Finally,
Holmer et al”* compared ICR on two non-consecutive days/week (ie
5:2 diet, <500/600 kcal/d) vs a LCD/HFD in patients with NAFLD.
This diet was associated with a significant reduction of IHLC on MRI
and was assessed via controlled attenuation parameter, as well as
improvement of BMI and IR was compared to a “healthy diet”, among
others. Interestingly, ICR was similarly effective as LCD/HFD. In gen-
eral, previous studies have largely demonstrated effective WL fol-
lowing ICR in overweight/obese individuals without serious adverse
events.”? However, it remains to be answered whether ICR is equally

73,74 and

or more effective than continuous calorie restriction,
whether it is effective if no calorie-restriction/dietary counselling
is applied.75 Also, although ICR has also been shown to be effective
and safe in overweight/obese patients with type-2 diabetes melli-
tus,”® close monitoring of diabetes medication and blood glucose is

needed because of concerns about hypoglycemia.””

4 | DIETARY COMPOSITION AND
SELECTED FOOD GROUPS

4.1 | Red and processed meat

An increasing number of recent studies showed a striking inverse
association between red and processed meat and NAFLD.?78-80
Importantly, this association seems to be driven by animal protein
since vegetable protein did not show a similar association.”®8°
A compelling explanation for this phenomenon was reported by

Alferink et al®! proposing that the diet-dependent acid-load is the

i 2257
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driving component of this association. Specifically, animal pro-
tein might cause low-grade metabolic acidosis by supplementation
of acid precursors,82 which lead to a disturbance in acid-base-
balance.®® Other studies reporting on the U-shaped association be-
tween carbohydrate-consumption and mortality hypothesized that
the substitution with animal-protein might cause the rise in mortality
following a LCD, which was not evident when plant-based protein
was substituted.®?

4.2 | Sugar-sweetened beverages and high-fructose
consumption

By searching for explanations between the parallel increase of
fructose-consumption through high-fructose corn syrup (HFCS) and
the increase in NAFLD/metabolic syndrome,84 fructose has been as-
sociated with IR, intrahepatic lipid accumulation and hypertriglyc-
eridemia, which contribute to the development of type 2 diabetes
and cardiovascular diseases.®* This is because the first-pass hepatic
extraction of fructose is nearly 100% after ingestion, and metaboli-
zation occurs solely in the liver.8%8 In contrast to glucose, it might
provide a more direct substrate for de-novo lipogenesis (DNL) and
increase IHLC on a larger scale.®¢ Unlike glucose metabolism, glu-
coneogenesis from fructose occurs independent of insulin and the
energy status of the cell 8586 leading to a depletion in ATP and sub-
sequent generation of uric acid, in terms promoting oxidative stress
and IR.8788

Thus, fructose- but not glucose-sweetened beverages have been
associated with increased DNL, dyslipidemia, visceral adiposity and
impaired insulin sensitivity.2” This was recently confirmed by a RCT
showing an increased basal secretion rate of FA in both fructose and
sucrose (ie glucose and fructose) groups raising the hypothesis of an
adaptive response to regular fructose exposure by SSB consump-
tion.”® Also, restricting fructose-intake led to a reduction in IHLC"?

In line, SSB have been associated with higher NAFLD preva-
lence,”>?> NASH presence96 and even a higher degree of fibrosis.””
However, the differences in study design need to be considered
since less significant alterations seem to occur in otherwise healthy
subjects.”® Interestingly, this might provide an explanation why
young and metabolically healthy subjects could compensate for in-
creased fructose intake while these mechanisms tilt in the presence
of metabolic dysregulation.

Aiming at investigating physiological differences in mice fed
with either glucose- or fructose-supplemented water, Softic et al®”?
found that fructose supplementation was associated with an in-
creased expression of Srebplc and Chrebp-p, increased FA synthesis
and hepatic IR, while glucose supplementation was associated with
increased total Chrebp and Chrebp-p and liver triglyceride accu-
mulation, but not with IR.”? The increased expression of Chrebp-f
further upregulating FGF-21 could be one mechanism of action by
which fructose contributes to fibrogenesis and hepatic stellate cell

activation'©®
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4.3 | Alcohol

In the context of NALFD, the controversy on the potential benefi-
cial effects of moderate alcohol consumption (<20 g/d for @ and
<30 g/d for @) on the prevalence and severity of NAFLD is still on-
going. Although data on the protective effect of moderate alcohol
consumption on the prevalence of NAFLD01194 gnd NASH102.104.105
exist, several concerns have been raised questioning the rationale be-
hind this phenomenon and adequate addressing of confounders.%®
108 Within the last two years, evidence is accumulating that supports
a rather harmful effect, and recent guidelines recommend complete
abstinence.’%!* Ajmera et al (2018)°? showed that modest alcohol
use was associated with less improvement in steatosis and level of
aspartate transaminase, as well as lower odds of non-alcoholic stea-
tohepatitis resolution compared to non-drinkers. Another study re-
ported faster worsening of non-invasive fibrosis scores in patients
with moderate alcohol consumption compared to abstainers,*'° re-
cent analyses also support a linear positive association with NAFLD

and advanced liver disease.!**112

4.4 | Coffee

Any coffee consumption was associated with a 29% lower risk of
NAFLD, a 30%-39% lower risk of liver fibrosis and a 39% lower risk of
cirrhosis in two meta-analyses.'*>!* Also, a dose-dependent inverse
relationship was evident in two different meta-analyses for cirrhosis

h'%> as well as chronic liver disease and HCC.1%¢

and liver-related deat
However, another meta-analysis describes a non-linear relationship
with a reduced risk of NAFLD only starting at >3 cups/d.**” In line,
the proportion of patients with LSM 28.0k Pa decreases among
higher coffee consumption.!® On a mechanistic basis, these ben-
eficial effects might be explained by a reduction in hepatic fat accu-
mulation by increased B-oxidation, and a reduction of systemic and
liver inflammation and oxidative stress.!'? Specifically, coffee en-
hances the expression of chaperones and antioxidant proteins such
as glutathione ensuring correct protein folding and degradation in
the liver.12% Also, chlorogenic acid, caffeine and kahweol exhibit anti-
fibrotic properties by inhibition of hepatic stellate cell activation!?*
via down-regulation of the transforming-growth-factor-p (TGF-p)
pathway and inhibiting connective tissue growth factor.}?21%3
Possible influences on the gut microbiome could contribute to
these observed associations including an increase in Bifidobacterium
spp.124125

With this regard, coffee consumption seems to be associated with
126,127

and a decrease in Escherichia coli and Clostridium spp.?®

microbial richness even in patients with cirrhosis.

4.5 | Nuts and seeds

Nuts and sees contain several bioactive compounds that have been
regarded beneficial for human's health including monounsaturated

FAs and polyunsaturated FAs (PUFA), vegetable protein, fiber,

minerals, vitamins, tocopherols, phytosterols and polyphenols.128

Recently, several studies investigated their influence on NAFLD: a
Chinese study reported a significantly lower prevalence of NAFLD

k'2? while another Chinese

in patients consuming nuts 24 times/w!
study confirmed this inverse association of NAFLD and nut consump-
tion only in men when consuming 28.86 g/d.**° These findings have
been validated in a Caucasian cohort being again more pronounced

1 and another cross-sectional study.’®? Interestingly,

in males,*
daily nut consumption might even be negatively associated with
advanced fibrosis in NALFD patients with further research needed
to confirm these associations.'3! Despite their high energy content,
nut consumption has not been associated with weight gain.**33* |n
contrast, anti-inflammatory components (eg w-3 PUFAs) might con-
tribute to their beneficial effects on NAFLD,*3>1%¢ and they have re-
cently been added to a MED showing a significant WL and decrease

in IHLC in NAFLD paients.?%°3

5 | MICRONUTRIENT COMPOSITION

Although the pathogenic role of specific food-types and macronutri-
ents is well-established in NAFLD, the impact of micronutrients (in-
cluding minerals, fat and water-soluble vitamins, and carotenoids) on
disease pathogenesis has garnered less attention (reviewed in Ref.
[137]). While the relevance of dysmetabolic iron overload in NAFLD
has been largely studied,**®%3? both zinc'*° and copper'*! deficien-
cies have also been observed in NAFLD. Interestingly, zinc supple-
mentation has shown favorable effects on glycemic parameters and
plasma lipids.**?>'*% The link between high fructose-consumption
and copper deficiency144 potentially contributing to NAFLD patho-
genesis also deserves further research.!*® Building upon the nega-
tive influence of red meat consumption on NAFLD (see chapter 4.1),
an increased amount of iron intake—independent of red meat as a
source—may also contribute to NAFLD pathogenesis.}*®

Apart from minerals, deficiencies in vitamins A, B3, B12, C, D
and E—although mostly of mild severity—have been reported in
NAFLD.'¥%147 wWhile systematic supplementation of these vitamins
has not been studied, vitamin E supplementation has been addressed
several beneficial properties in NAFLD.}8%? just recently, vitamin
E supplementation has been reported to improve transplant-free
survival and hepatic decompensation in patients with NASH and
advanced fibrosis,**° and published guidelines recommend vitamin
E supplementation to non-diabetic patients with NASH.®™ Finally,
the beneficial effects of nuts and seeds in NAFLD might partially be
explained by their high content of micronutrients and antioxidative

compounds.'?®

6 | PHYSICAL ACTIVITY AND EXERCISE

While the EASL and AASLD both recommend 2150 min of moderate-
intensity PA per week, novel ESPEN and APASL guidelines only rec-

ommend an increase of PA tailored based on patient preferences.
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This might be the case since meta-analyses proved that PA reduces
IHLC and markers of hepatocellular injury (especially in patients with

|151)

increased BM , but fail to clearly recommend one type of exercise

over another.”>™** Also, there does not seem to be a significant dif-
ference between dose or intensity of aerobic exercise.>>1%7
Despite aerobic exercise cannot be recommended over resis-
tance training, overall energy consumption seems to be lower during
resistance training compared to aerobic exercise while leading to a
similar improvement of steatosis.*>® Thus, resistance exercise might
be better tolerated by NAFLD patients with poor cardiorespiratory
fitness and musculoskeletal issues because of overweight.!158
Several aspects need to be highlighted which go beyond WL and
explain benefits from PA and exercise: Exercise improves peripheral
insulin sensitivity with only little effect on hepatic insulin sensitivity,
leading to a net improvement in insulin metabolism.'* Also, exercise
increases very-low-density-lipoprotein clearance enabling the liver

1*! and coun-

to export triglycerides,160 improves appetite-contro
teracts sarcopenia, which has been identified as independent risk
factor for NAFLD and fibrosis.2*21%% Thus, exercise is also recom-
mended and is safe in patients with NASH cirrhosis and portal hy-
pertension improving physical function, sarcopenia and even portal

hypertension. 4

6.1 | Sedentary behaviour

Sedentary behaviour is not only associated with obesity, but also
>30 health outcomes!®® and NAFLD.'¢ Specifically, television-
viewing-time was independently associated with higher fatty-liver-
index in Finnish adults*®” and computer/mobile-devices-usage-time
with Odds of NAFLD in Chinese adults.'®® Nevertheless, PA in-
between sitting time/sedentary time still attenuates post-prandial
glucose and insulin, with greater glycaemic attenuation in people
with higher BMI.1¢?

Interesting data about a protective effect on carcinogenesis
can be derived from mice-models comparing mice with access to a
running wheel to those without.?’%7® All studies showed a striking
reduction of HCC cases in the exercise groups compared to the sed-
entary groups, which might even be independent of weight gain'’*
and diet.’? Similar results were obtained from epidemiological stud-
ies reporting a lower incidence of liver cancer and especially HCC

between the groups with the least and most-frequent PA.Y74

6.2 | Combination of physical activity and dietary
interventions

Noteworthy, evidence exists that the combination of exercise and
dietary interventions lead to a greater improvement of metabolic
parameters and IHLC 124175176

The combination of a low-glycemic-index-MED with either
aerobic exercise or both aerobic exercise and resistance training

led to the greatest reduction in controlled attenuation parameter
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as a measure of hepatic steatosis in NAFLD patients after three
months.”” However, further research is needed regarding poten-
tially counteracting effects of antioxidants (vitamin C and E) and

exercise-induced mitohormesis.!”8180

7 | NOVEL MOLECULAR AND
TRANSLATIONAL ASPECTS

71 | PPARo-signalling and ketogenesis

An important aspect contributing to the success of (V)LCD is ke-
togenesis, leading to the alternative term "ketogenic diet" (KD).>*
Ketogenesis is the production of ketone bodies acetoacetate (AcAc),
B-hydroxybutyrate (8-OHB) or acetone from FAs which serve as an
alternative energy supply from the liver to peripheral tissues when
the supply of glucose is too low for the body's energetic needs.®?
From a historical perspective, mild ketosis was the normal meta-
bolic state in most cultures before the agricultural revolution lead-
ing to a shift from hunter-gathered diets to rather monotonous
carbohydrate-based diets.’®218% However, when carbohydrate
stores are available, the main source of energy is glycogenolysis and
gluconeogenesis in case of a catabolic state while ketogenesis is sup-
pressed by the presence of insulin.'84

The nuclear receptor peroxisome proliferator-activated recep-
tor o (PPAR«) is a central transcriptional factor regulating FA me-
tabolism (ie FA oxidation, FA transport and ketogenesis), which is
upregulated during fasting or ketogenic states.'®* One mechanism
of action is the induction of fibroblast growth factor 21 (FGF-21)
while PPARa-independent activation of FGF-21 also exists.18>186
Fasting significantly induces hepatic expression and circulating lev-
els of FGF-21, which is then rapidly suppressed by refeeding.18>18¢
As a proof-of-concept, PPARa-deficient mice or FGF-21 knockout
mice developed severe metabolic abnormalities including fatty liver
during feeding-period and hypoglycemia/hypoketonemia during
starvation, highlighting the regulatory role of the PPARa-FGF-21-
pathway for ketogenesis in response to fasting or (V)LCD/KD.!8>187
Another regulator of PPAR«a function is the mechanistic target of
rapamycin complex 1 (mTORC1) kinase, the inhibition of which is
necessary for ketogenesis.188

Based on knowledge of the impaired PPAR-signalling in NAFLD
and NASH,'® the induction of this pathway may serve as an addi-
tional explanation of the beneficial effects of KD or ICR. Specifically,
PPARx exerts several anti-inflammatory activities and protection
from intrahepatic lipid accumulation, inflammation and fibrosis.*’
For example, while PPARa gene expression in the liver negatively
correlates with NASH severity, histological improvement is as-
sociated with an increase in expression of PPARx.2?° Thus, while
waiting for selective or pan-PPAR-agonists to be proven effective
for NAFLD/NASH therapy,*” KD or ICR might be the alternatives
to induce the PPARa-pathway. However, in human studies it has
been shown that FGF-21 serum levels largely vary as dietary re-

33,54,192

sponse, and might therefore not be the target-substrate to
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measure. Nevertheless, regarding other PPAR« targets in the liver,
an upregulation has been shown in a mice model only following KD
without any carbohydrate intake, but not following a non-ketogenic
LCD/HFD,'?® highlighting the importantance of carbohydrate re-
striction for ketogenesis.

Moreover, ketone bodies 3-OHB and AcAc have several direct
and indirect signalling-properties that contribute to the success of
KD or ICR. Apart from their function as an energy substrate, 3-OHB
and AcAc themselves have several anti-inflammatory functions (re-
viewed in Refs. 194,195). For example, both protect against oxidative
stress by decreasing the production of mitochondrial reactive oxy-
gen species, by increasing expression or protein content of antioxi-
dant enzymes through inhibition of histone deacetylases,*”® and by
directly scavenging hydroxyl radicals (e OH).**” The inhibition of the
NLRP3 inflammasome—which controls the activation of caspase-1
and the release of the pro-inflammatory cytokines IL-1p and IL-18 in
macrophages—and activation of the hydroxycarboxylic acid receptor
2 (HCA,) seem to be other mechanisms.'?817?

Following a 6-day KD (~6% carbohydrate, ~64% fat, ~28% pro-
tein), Luukoonen et al (2020)°” demonstrated a 10-fold and six-fold
increase in f-OHB and AcAc serum concentrations while endoge-
nous B-OHB assessed by stable isotope infusions of [13C4]B—OHB in-
creased three-fold. However, this increase seems to depend on the
presence and severity of NAFLD as shown by Fletcher et al (2019).2%°
They measured non-esterified FAs (NEFAs) from peripheral lipolysis
and AcAc+p-OHB serum concentrations in NAFLD patients after
24h of fasting, and showed ~30% lower levels compared to controls.
Interestingly, patients with higher IHLC had lower 3-OHB serum lev-
els after 24h indicating an inverse relationship between the severity
of HS and ketogenesis after fasting. Contrarily, oxidation of acetyl-
CoA in the tricarboxylic-acid-cycle (TCA, ie the alternative pathway
for acetyl-CoA metabolism) increased ~60% in NAFLD patients
Fletcher et al (2019).2°° Most interestingly, these differences were
independent of BMI indicating that NAFLD itself seems to influence
ketogenesis. Another recent study confirmed ~15% lower -OHB
serum concentration correlating weakly with liver fat.2%!

These studies go in line with previous ones showing that keto-
genesis is significantly impaired in NAFLD (‘ketogenic insufficiency’)
independent of fasting.?°22%> Simultaneously, the high “energy-
processing burden” is mismatched to the mitochondrial capability
of the liver leading to an increase in anaplerotic and oxidative TCA
flux and consecutive oxidative stress and inflammation.2°220> Most
interestingly, a study in obese NAFLD/NASH patients showed that
this compensatory upregulation of mitochondrial activity (ie “he-
patic metabolic flexibility”) seems to fail following excessive hepatic
oxidative stress, leading to a decrease in mitochondrial function-
ality and progression to NASH and IR.2°® Evidence that impaired
ketogenesis contributes to this phenomenon comes from mice mod-
els.?% After blocking the ketogenic pathway by knocking-out the
3-hydroxymethylglutaryl-CoA synthase 2 (ie a key enzyme during
ketogenesis), LFD induced hyperglycaemia, increased hepatic gluco-
neogenesis and increased DNL because of excess acetyl-CoA and
increased TCA flux.

7.2 | Gut microbiota and exercise

An emerging research topic is the relationship between exercise
and the gut microbiota (reviewed in).2%82%? Despite methodological
difficulties and inhomogeneities in the studied cohorts, cardiores-
piratory fitness and activeness is usually associated with higher mi-
crobial diversity.zos'zm Two prominent studies on professional rugby
players earlier reported this higher diversity, which translates into
differences in faecal metabolites (eg short-chain FA) 211,212

Although differences have been reported for numerous taxa, spe-
cific consideration might be drawn to the taxus Akkermansia, which
seems to be more present in athletes than in non-athletes.?*%:?13
Akkermansia muciniphilia has previously been associated with a
healthy metabolic status?** and lower BW?*® while supplementation
reversed metabolic dysfunction in mice.?*

Regarding the effects of PA on gut microbiota, PA could lead
to a assimilation of microbiota to healthy individuals already after
12 weeks of training.2® However, these changes might be small,?!’
and it is unclear whether these changes are only transient returning
to a baseline profile after termination of the PA-intervention.?'82%?
Also, the effect of ones microbiota on the efficacy of PA is similarly
interesting. Liu et al (2020)217 identified the intestinal microbiota as
a potential driver of exercise-induced alterations in fasting glucose
and insulin. If these microbiota were transplanted to obese mice, it
induced similar changes as in the respective humans. Again, abun-
dance of Akkermansia muciniphilia was significantly higher in sub-
jects with metabolic changes following exercise intervention, and
a machine-learning algorithm could successfully predict glycemic
response to exercise based on gut microbiota.??” Similarly, another
study reported different exercise gains following cardiorespiratory
exercise or resistance training.2'® Finally, an increase in Veillonella
abundance in marathon runners metabolizing lactate led to the hy-

pothesis that this genus might increase athletic performance.?%°

7.3 | Gut microbiota and nutrition

In recent years, promising data have evolved characterizing the in-
teractions between diet and intestinal microbiota (reviewed in
Refs. [221,222]). Specifically, differences in gut microbiota have
been reported in the short-term following a LCD** as well as a
KD.?% Specifically, significant differences among Actinobacteria,
Bacteroidetes, Firmicutes and Bifidobacterium were observed be-
tween KD vs LFD vs HFD with Bifidobacterium showing the great-
est decline following KD.?%® Interestingly, Bifidobacterium negatively
correlated with 3-OHB concentration in the intestinal lumen indicating
that g -OHB inhibits Bifidobacterium growth, which was also confirmed
in vitro.22® What is more, the KD-associated microbiota-signature re-
duced the level of intestinal pro-inflammatory Th17 cells.?%

Also, different formulations of high-fructose diets induce distinct
alterations of gut microbiota: HFCS reduced butyrate-producing
bacteria and the Firmicutes/Bacteroidetes ratio, while a high-

fructose-diet from fruits created an opposite shift.??* This is relevant
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since a higher Firmicutes/Bacteroidetes ratio has been linked to the
pathogenesis of the metabolic syndrome.?2%226

Finally, individuals with higher abundance of Akkermansia mu-
ciniphilia displayed greater improvement in insulin sensitivity mark-
ers and other clinical parameters after calorie restriction.?™* Also,
a LCD/KD increased Akkermansia muciniphilia abundance.??” Oral
supplementation of Akkermansia muciniphilia even improved insu-
lin sensitivity and cholesterol levels in overweight/obese insulin-

resistant volunteers.??

7.4 | Personalized approaches

Future nutritional and lifestyle interventions will largely benefit from
personalized treatment strategies tailored to individual subjects (ie
“precision nutrition”). A landmark study from Zeevi et al (2015)?%°
demonstrated that large interpersonal variability exists in the post-
prandial glycemic response to identical meals. Most surprisingly, a
machine-learning algorithm including blood-derived metabolic pa-
rameters, dietary habits, PA and data on microbiota could predict the
individual postprandial glycemic response. Similarly, the PREDICT1
study assessed postprandial glucose, insulin and triglycerides in
1002 twins and unrelated healthy adults.?%® Notably, microbiota had
a greater influence than macronutrients on postprandial triglycer-
ides, and the influence on postprandial glucose was considerable.
Also, machine-learning algorithm considering genetic variants al-
lowed for prediction of triglyceride and glucose responses to food
intake. 230

As the first of its kind, the PNPLA3 polymorphism has been
studied as a modifier for dietary response. Specifically, the improve-
ment in IHLC and insulin sensitivity following a LCD was influenced
by PNPLA3-genotype with (homozygous) carriers of the G-allele
achieving a higher reduction in IHLC than individuals harbouring only
PNPLA3 C/C alleles.?®12%2 The DNA methylation profile may also
provide prognostic information on successful WL during dietary/
lifestyle interventions.?3® Recently, Vilar-Gomez et al®** confirmed a
modulatory effect of PNPLAS3 on the relationship between reported
carbohydrate-/PUFA-/flavonoid-intake and significant fibrosis. From
these data, one might hypothesize that the genetic predisposition
centrally influences ones response to a specific diet, and implications
on liver disease severity.

Finally, web-based applications might increase adherence to life-
style interventions as they have been discussed as alternatives to
group-based interventions for maintaining individuals’ adherence to

35 or exercise programs?® despite concerns

5

lifestyle interventions?

about lower attrition rates.?®

8 | STRENGTHS AND LIMITATIONS OF
LIFESTYLE INTERVENTIONS

From a holistic point of view, lifestyle interventions have cer-

tain unique advantages, but also limitations that need to be
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considered. Given promising data on NASH regression when WL
is achieved,®?% the cost-effectiveness of lifestyle interventions is
favorable. Noteworthy, the annual healthcare expenditure for un-
healthy diets are estimated to range from 3 to 148€ per capita and
from 3-181€ per capita for low PA,2%® and unhealthy lifestyle can be
attributed to ~6 years of life-expectancy lost, 239240 Targeting both
aspects by lifestyle interventions does therefore indeed make sense
although specific data on the cost-effectiveness in NAFLD are miss-
ing. Moreover, diet and lifestyle interventions improve metabolism
and health in a versatile way as outlined above, triggering beneficial
health effects presumably more efficient than NASH drugs targeting
only a certain mechanism of NASH-development.

Nevertheless, several caveats need to be kept in mind that limit
these promising aspects. As a result of the heterogeneity of di-
etary interventions and study cohorts (see also Table 2), results of
individual studies can hardly be directly compared, making strong
guideline-recommendations significantly more difficult. Next,
outcome measures differ across studies, and it remains to be an-
swered whether changes in IHLC/ transaminase levels are a valid
endpoint for dietary interventions with questionable influence on
long-term prognosis. Also, the adherence to lifestyle interventions
declines in parallel with the duration of the intervention, resulting in
a rebound-phenomenon that has largely been shown for BW.?* In
terms of adherence, underestimated factors such as gender, intrinsic
and extrinsic motivation (including monitoring of the intervention),
socioeconomic status, among others, are also known to influence
adherence to lifestyle interventions, and thus complicate interpreta-

tion of the outcome.?*?

9 | CONCLUSION

In conclusion, diet and exercise will likely remain the key therapeu-
tic elements to fight the burden of fatty liver disease. Recent stud-
ies have highlighted the importance of calorie restriction regardless
of dietary composition and while low-carbohydrate diets were
most promising for reducing metabolic dysregulation and severity
of NAFLD. Promotion of ketogenesis—potentially achieved via in-
termittent calorie restriction—seems to be the central mechanistic
aspect of beneficial diets in NAFLD/NASH. Interactions of diet and
exercise with the gut microbiota and the individual genetic back-
ground will need to be comprehensively understood to develop per-
sonalized life-style intervention strategies for patients with NAFLD/
NASH.
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