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Abstract: Since the crucial role of the microenvironment has been highlighted, many studies have
been focused on the role of biomechanics in cancer cell growth and the invasion of the surrounding
environment. Despite the search in recent years for molecular biomarkers to try to classify and
stratify cancers, much effort needs to be made to take account of morphological and nanomechanical
parameters that could provide supplementary information concerning tissue complexity adaptation
during cancer development. The biomechanical properties of cancer cells and their surrounding
extracellular matrix have actually been proposed as promising biomarkers for cancer diagnosis
and prognosis. The present review first describes the main methods used to study the mechanical
properties of cancer cells. Then, we address the nanomechanical description of cultured cancer cells
and the crucial role of the cytoskeleton for biomechanics linked with cell morphology. Finally, we
depict how studying interaction of tumor cells with their surrounding microenvironment is crucial
to integrating biomechanical properties in our understanding of tumor growth and local invasion.
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1. Introduction

In recent decades, much effort has gone into deciphering molecular mechanisms and
identifying biomolecular markers to help to stratify cancers and predict local invasion
and metastasis. Indeed, the emergence of genomic profiling technologies has allowed for
the identification of some prognostic and predictive biomarkers and has improved the
clinical management of some cancer patients. More than 69,000 publications are indexed in
PubMed with subject headings “prognostic marker” and “neoplasm”, and some are used by
clinicians to make treatment decisions. For instance, in breast cancer, multiple gene/protein
signatures have been proposed to predict outcome and even response to therapy (reviewed
in [1]). More recently, extended research identified other types of biomolecular markers
such as microRNAs and long ncRNAs that could serve as new molecular tools for diagnosis
and prognosis in various cancers (reviewed in [2]). Ongoing analysis of circulating tumor
cells (CTCs), collected from the patient’s blood, demonstrated that these could help to
predict metastatic potential and to monitor treatment response (reviewed in [3]). However,
molecular studies only are not sufficient to understand cancer progression and response
to therapies and there is growing evidence of the role of tumor microenvironment in the
development and evolution of various cancer types. The microenvironmental contribu-
tion was shown in the acquisition of genomic instability of malignant solid tumors and
multiple myelomas (reviewed in [4]). Recent decades were also marked by a growing
interest in onco-immunology to decipher the role of the immune system in cancer initiation
and progression and resistance to therapy (reviewed in [5]). However, although tumor
stratification was improved by these recent discoveries, pathologic analysis remains of
prime importance in patient care. The recent development of more precise techniques for
studying morphological changes in tumor cells and biomechanical characteristics inside
the tumor and in the surrounding microenvironment is promising for tumor detection
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and classification. The present review describes some of the main findings regarding the
ability of cancer cells to adapt their morphology and invasiveness by remodeling their
cytoskeleton in connection with their nanomechanical properties. After a brief introduction
to the mechanoreciprocity between tumor cells and their microenvironment in terms of
biochemical and biomechanical cues, we list the main methods of biomechanical analysis of
cancer cells. Then, we describe studies showing how various nanomechanical cell parame-
ters can discriminate cancer cells from healthy ones, and the role the cytoskeleton plays in
cancer cell morphology and invasiveness. Finally, we highlight the importance of taking
account of the crucial role of the microenvironment in determining the biomechanical
characteristics of tumor cells.

2. Interplay between Biochemical and Biomechanical Features of Tumor Cells in Their
Microenvironment

A tumor in expansion inside the surrounding normal tissue will inevitably destabilize
the tissue homeostasis. The development of cancer leads to changes in cellular biome-
chanics both for cancer cells and for cells of the tumor microenvironment. These changes
translate concomitantly into specific biomechanical cues. It is well known that tumors
become stiff due to fibrosis during tumor progression, and this impacts the biochemical
and physical properties of tumor cells. Important hallmarks of cancer can be impacted
by these changes, such as increased cell proliferation, resistance to cell death, increased
cell motility and invasiveness, or induction of angiogenesis (for reviewed in [6]). Stiff-
ening of the extracellular matrix (ECM) is also observed. Cancer-associated fibroblasts
(CAFs) tumor cell migration by modifying collagen reticulation [7–9]. These changes in
the mechanical properties of the tumor microenvironment due to tumor growth lead to
the activation of molecular pathways: i.e., the β-catenin and Yap/Taz signaling pathways,
the role of which in mechanotransduction has been well described in both tumor cells
and CAFs [6,10]. Mechanosensing of ECM stiffness by cancer cells and its translation into
biochemical cues have been attributed to various players, such as junctional and membrane
proteins, cytoskeleton and nucleoskeleton and more recently to microRNAs [6].

However, the techniques for analyzing biomechanical properties are relatively recent
and it is still difficult to study the biomechanical properties of cancer cells in the context of
the microenvironment in order to take account of the mechanoreciprocity between tumor
cells and the surrounding ECM. Thus, most experiments have so far been conducted on
cultured cancer cells and mostly focused on cytoskeleton properties, since drugs targeting
the cytoskeleton are easy to apply. We will thus mainly describe the techniques relating to
the mechanical properties of cancer cells and their reciprocal correlation with cytoskeletal
and morphological properties. We will, however, finally discuss the few recent studies
that sought to include mechanoreciprocity between tumor cells and the microenvironment
in vivo.

3. Main Methods to Study Mechanical Properties of Cancer Cells

Since the late 1990s, various new technologies have enabled the measurement of
different biophysical parameters such as cell stiffness, viscoelasticity or deformability,
shedding light on the mechanics of cancer cells. These are presented in Figure 1 with their
respective properties and principles.
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Figure 1. Overview of main techniques used to study cell or tissue biomechanical properties.

3.1. Atomic Force Microscopy

Atomic force microscopy (AFM) is especially useful for single-cell analysis of the
properties of cultured adherent cells. Three physicists, Gerd Binnig, Calvin Ouate and
Christoph Gerber, invented the AFM technology in 1985 [11]. It is a microscopy technique
using a type of scanning probe microscope, based on a cantilever able to contact the sample
and scan it directly. AFM is particularly suitable for studying adherent cells and tissues.
The resolution limit of AFM imaging depends on the geometry of the probe tip, which
measures a few nanometers and is fixed at the free end of a cantilever, able to move in
XYZ directions to scan the sample. To record the Z tip position, a laser beam is focused
on the free end of the cantilever, just above the probe tip. The reflected beam is directed
toward a four-quarter photodiode. Depending on the cantilever’s mechanical properties,
the applied force and the position of the laser beam on the photodiode, the mechanical
and topographical characteristics of the sample are extracted. The very high resolution
of AFM is achieved through the small size of the tip, measuring just a few nanometers,
capturing very small samples such as DNA [12] or period collagen [13]. A large range of
cantilevers is available, with a spring constant from 0.06 N/m to 200 N/m for cell and
tissue measurement, with conical or spherical tips.

AFM is able to extract many physical parameters from a sample. In contact mode, the
probe tip is in constant physical contact with the sample surface, and the Z piezo motor
moves along the surface, keeping a constant force applied by the cantilever. AFM gives the
XYZ position for each pixel, reconstructing the topography of the sample [14]. In tapping
mode, the cantilever oscillates up and down (or near its resonance frequency) near the sample
surface. The cantilever tip is thus partially in contact with the sample. Each pixel corresponds
to a force indentation curve, determining the topography, by extracting the contact point
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on the indentation curve, and mechanical characteristics of the sample (Figure 2a) [15].
Mechanical properties such as stiffness or viscoelasticity [16] as well as electric properties [17]
can be measured by AFM, and theoretical models (Hertz or Sneddon, for instance) are used to
calculate quantitative parameters, and in particular the Young’s modulus, which represents
the measure of stiffness and resistance to elastic deformation [18]. Viscoelasticity is measured
by successive hold indentations and oscillations at normalized frequency, followed by a final
retraction of the indenter [19]. The hysteresis between the approach and the retract curve
determines the viscosity or plastic behavior of the sample. Plastic behavior is stiffer and
deformable under high constraint, easily returning to its original shape, whereas a viscous
sample is softer and more deformable (Figure 2b).

Figure 2. Schematic representation of cell stiffness, viscoelasticity and deformability properties. (a) For a given applied
force, a larger indentation is observed for the softer cell. (b) A cell quickly recovers its original shape after indentation with
small hysteresis for a more pronounced elastic behavior. Larger hysteresis is observed for a more viscous behavior. (c) The
capacity of the cell to penetrate a thin capillary allows its deformability to be determined.
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3.2. Micropipette Aspiration, Optical Stretcher and Microfluidic Systems

Other techniques are available to extract cell deformability and viscosity. The oldest is
micropipette aspiration (MPA), where a known negative pressure is applied on the cell by
micropipette and a vacuum device [20,21]. Negative pressure is applied at the tip of a glass
micropipette and, when the cell is aspirated into the micropipette, progressive deformation
can be measured (Figure 2c). With a known negative pressure and a high-resolution
camera, deformability can be extracted, and mathematical models quantify the viscoelastic
properties of the sample. This MPA technique is particularly suitable for non-adherent
cells, in contrast to AFM.

Techniques based on the capacity of a laser to trap and stretch particles by photon
momentum effect, deforming cells in suspension, have also been developed. The optical
stretcher (OS) uses two focalized laser beams that apply about 100 pN force to deform the
sample. One particularity of OS is that it is completely contact-free. This technique can be
combined with microfluidic cytometry [22].

The recent development of microfluidic approaches has improved the measurement
of cell viscoelasticity and deformability. Microfluidic systems are based on a small chip
where cells cross tight capillaries under flow effect at high speed. A high-resolution camera
extracts the deformability properties of the cells and the velocity at which they can circulate
through the microfluidic channels [23]. These techniques screen a large number of cells
with very high throughput.

Taken together, these various methods for studying biomechanical phenotypes of
individual cells or tissues can characterize them in terms of stiffness, viscoelasticity and
deformability (Figures 1 and 2). They have been used extensively in recent years, especially
to analyze the nanomechanical features of cancer cells.

4. Stiffness, Viscoelasticity and Deformability of Cultured Cancer Cells
4.1. Pioneering Experiments on the Biomechanics in Cancer Cells

Using the techniques described above, numerous studies were performed on 2D-
cultured cells, at various stages of cancer development. They showed the systematic
modulation of stiffness during tumoral transformation and progression. AFM in a mouse
embryonic model [24] for the first time enabled the study of the viscoelastic properties
of individual mouse F9 embryonic carcinoma cells [25]. Shortly afterward, comparison
by MPA between normal and transformed fibroblasts showed differences in mechanical
properties, especially in terms of intrinsic resistance of the cellular structure and defor-
mation capacity [26]. In 1999, Lekka et al. conducted a more detailed study using AFM
to study the elastic properties of normal ureter or bladder cell lines (Hu609 and HCV29
respectively) versus cancerous bladder cell lines (Hu456, T24, BC3726) [27]. Interestingly,
BC3726 cells were directly derived from HCV29 non-malignant bladder urothelial cells
after transformation by the V-ras oncogene, allowing comparison between healthy and
paired-transformed phenotypes. The authors showed that the mechanical force required
for indentation was greater for normal than for cancerous cells, with a significant 30-fold
decrease in Young’s modulus between normal and cancerous cell lines. These data con-
firmed the original experiments conducted on resuspended normal versus transformed
human dermal fibroblasts [26,28].

4.2. Stiffness and Viscoelasticity of Cancer Cells

In the 2000s, numerous studies in various types of cancer strengthened the evidence
for the modulation of cell nanomechanical features, such as stiffness, viscoelasticity and
deformability, with cell transformation and cancer progression. In breast cancer espe-
cially, analysis of the benign MCF10A, premalignant MCF10AT and invasive malignant
MCF10CA1A, MDA-MB-231 and MCF7 cell lines showed reduction in stiffness and vis-
coelasticity: i.e., breast cancer cells were softer and more fluid than their benign counter-
parts [29–33]. AFM measurements were also conducted in melanoma cell lines representa-
tive of different stages of tumor progression, from normal human epidermal melanocytes
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(NHEM) to metastatic melanoma cells (WM239A), with intermediate non-invasive and
locally invasive cell lines (SBC12 and WM115). Initial stages of transformation corre-
lated with decreasing stiffness from normal melanocytes to locally invasive melanoma
cells, whereas the fully metastatic cell line presented higher and more heterogeneous
stiffness values. The authors hypothesized that melanoma cells, well known for their
plastic abilities, could adapt their stiffness along tumor progression so as to response
optimally to the microenvironment [34]. Similar experiments compared other bladder [35],
melanoma [36], prostate [37–39], chondrosarcoma [40], ovarian [41,42], urothelial [43],
liver [44], esophageal [45], cervical [46] and thyroid [47] cancerous cell lines, versus their
non-malignant counterparts. Interestingly, reverse experiments were performed in SH-
SY5Y human neuroblastoma cells. These undifferentiated tumoral cells can be differentiated
into neuron-like cells by retinoic acid and Brain-Derived Neurotrophic Factor (BDNF) treat-
ment. The differentiation caused by the chemical treatment induced functional changes in
SH-SY5Y cells, leading to the loss of some characteristic features of cancer cells. These func-
tional changes were accompanied by changes in biomechanical properties: differentiated
cells became three times stiffer than undifferentiated tumoral SH-SY5Y cells [48,49].

4.3. Deformability Properties of Cancer Cells

The modification of cancer cell deformability, inversely correlated with stiffness, was
more specifically demonstrated by OS techniques in cell cultures in suspension. Guck et al.
were the first to show a link between deformability and the aggressiveness of breast cancer
cells, using cell lines with increasingly invasive properties [50]. They first demonstrated,
in mouse fibroblasts, that normal cells were less deformable than their counterparts trans-
formed with the oncogenic DNA virus SV40. Moreover, the two populations were easily
distinguishable by measuring this biomechanical characteristic. They also showed that
optical deformability of the different cell lines could be solely attributed to their mechanical
properties. By performing the same type of experiments on human breast samples, they
demonstrated that metastatic cell lines were more deformable than non-metastatic or non-
tumoral cell lines [50,51]. The increased deformability of tumor cells was then confirmed
by comparing normal versus cancerous oral epithelial cell lines [52] and normal versus
Ras-transformed epithelial cells [53]. In the late 2010s, the development of large-scale
micro-fluidic technologies confirmed and extended these conclusions in a large panel of
cancer cell types. Cancer stem-cell mechanomics and cellular deformation were studied
in glioblastoma [54], breast cancer [55] and osteosarcoma [56] by real-time deformation
cytometry (DC); increasing cell deformability with the progression of breast and prostate
cancer was demonstrated in cell lines with growing invasiveness by inertial microfluidic
cell stretcher (iMCS) and multi-sample DC [23,57]; and metastatic and non-metastatic breast
cell lines were able to be distinguished by mechanical separation chips (MS-chip) based
on differential deformability [51]. Overall, in a broad range of cancer cell types, biome-
chanical measurements could be considered as biomarkers of both cell transformation and
tumor progression.

4.4. Ex-Vivo Cancer Cell Analyses

Interestingly, biomechanical properties have also been studied ex vivo, in patient
samples, with promising results in terms of nanomechanical biomarker characterization.
Metastatic cancer cells from pleural effusions of patients suffering from lung, breast and
pancreas cancer were 70% to 80% softer that their benign counterparts [58–60]. Using
DC, Tse et al. showed that disseminated tumor cells from malignant pleural effusion
could be distinguished on mechanophenotype as malignant or negative, in agreement with
the observed 6-month outcome of the patients [61,62]. Finally, circulating CTCs can also
be discriminated on biomechanical parameters: CTCs from castration-resistant prostate
cancer patients were three times softer and more deformable than their castration-sensitive
counterparts [63].
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5. Cancer Cell Cytoskeleton, Cell Morphology and Biomechanical Properties

An important component of cell mechanics is unquestionably the cytoskeleton. It
determines cell morphology, maintains mechanical integrity, contributes to resistance
to external forces, and can impact both mechanotransduction and migration properties.
Variation in the concentration of the various molecules composing the cytoskeleton and
their compartmentalization and post-translational modifications influence its mechanical
properties and its capacity to deform in order to adapt its morphology in response to mi-
croenvironmental chemical and/or physical stimuli. The three elements of the cytoskeleton
are microtubules, microfilaments and intermediate filaments. They are mainly composed
of tubulin, F-actin and vimentin/desmin/keratin proteins, respectively. Their individual
concentrations in the cell and their restructuration ability are essential for the different
cell activities. Although few studies had been conducted at that time, in 1991 P.A. Janmey
reviewed the physical properties of these biopolymers and how in vivo remodeling affects
cell shape and motility [64]. By playing with various concentrations of these biopolymers
(F-actin, for example) and applying deformation until the filaments broke, various studies
showed that fiber diameter and inter-fiber interactions are crucial for cell dynamics and
physical properties. Some differences appeared on measurements of purified networks,
especially by AFM imaging. For instance, the actin network is important for cell biome-
chanics and adaptability to very low mechanical stress. On the contrary, the disruption of
intermediate filaments revealed smaller effects on cell stiffness, suggesting that intermedi-
ate filaments are involved more in resistance to stronger mechanical forces, impacting cell
migration, adhesion and mechanotransduction (reviewed in [65]). Consequently, nanome-
chanical measurements of cells in culture mainly reveal the reorganization of the actin
network. Some biomechanical studies conducted in normal adherent or non-adherent
cells (fibroblasts or macrophages) clearly demonstrated that modifying the actin network
and/or microtubule polymerization by drugs such as cytochalasins [66] or docetaxel led to
nanomechanical changes in the cell [67–72].

5.1. Cytoskeleton Disruption by Drugs and Biomechanics in Cancer Cells

Despite the discoveries regarding the cytoskeleton’s important roles in cell shape and
biomechanical properties, few studies have used drugs able to modulate the cytoskele-
ton in cancer cell cultures. For example, the treatment of cervical cancer HeLa cells by
cytochalasin B, which blocks actin polymerization and elongation without affecting the
structure of microfilaments or intermediate filaments, significantly decreased the cellular
elastic modulus: i.e., cells became softer when F-actin was damaged [73]. Cytochalasin D
treatment also reduced the Young’s modulus of human bladder cancer cells and increased
cellular deformability [35,74]. This suggested that the viscoelastic properties of these blad-
der carcinoma cell lines could be mainly attributed to the 3D-organization of actin filaments.
These observations could be juxtaposed with the basal differences in the actin network of
grade II and III bladder carcinoma cells compared to non-malignant or transitional bladder
cells. In the two first malignant cell lines, only short actin filaments were observed whereas
normal bladder cells showed actin fibers organized in both short filaments and bundles of
long filaments named stress fibers [35]. These findings highlighted changes in the actin
cytoskeleton structure during cancer progression, reflected by cell stiffness, which could
thus be a powerful biomarker, especially in human bladder tumors. Similar results were
later observed in breast cancer cells [75,76].

The same kind of experiments were performed with drugs affecting the polymerization
and stability of the microtubule network. Paclitaxel treatment, which stabilizes microtubules,
decreased cell stiffness in Ishikawa cells and Hela cells [77] but increased Young’s modulus
in melanoma cells [78]. Treatment by colchicine or docetaxel drugs, which induce functional
disturbances in the microtubule network, modified the elastic modulus in prostate cancer
cells [79] and in some hepatoma cells, without affecting normal hepatocytes [80].

Overall, these data showed that playing directly on the cytoskeleton with drugs that
directly target microtubules or actin microfilaments deeply affects cell structure and biome-
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chanical parameters. The less constant effect seen with microtubule-disturbing drugs could
reflect the fact that, as in normal cells, nanomechanical measurements of tumoral cells in
culture are more profoundly affected by reorganization of the actin network than by the mi-
crotubule network [81]. Very few studies have been carried out on the role of intermediate
filaments, but it appears that keratin reorganization in human pancreatic cancer cells and
transformed keratinocytes alters their stiffness and viscoelastic properties [82,83]. Similarly,
spatial reorganization of the vimentin intermediate filament network by the overexpression
of various oncogenes in human skin fibroblasts modulated their stiffness [84].

5.2. Link between Cytoskeleton, Morphology and Nanomechanical Properties of Cancer Cells

Other studies linked cytoskeleton disruption not only to nanomechanical modulation
(stiffness, elasticity, deformability) but also to cell morphology and invasiveness. In mouse
fibroblasts and human breast epithelial cells, malignant transformation was associated
with the reduction in and reorganization of cytoskeleton filamentous actin, coupled with
an increase in cell deformability [50]. Fibroblast transformation was also associated with
lamellipodia remodeling, actin reorganization and reduced stiffness [85]. Interestingly,
when highly metastatic MDA-MB-231 breast cancer cells were treated by trans retinoic acid
to reduce their aggressive phenotype, a decrease in their deformability was observed in
correlation with the modulation of cytoskeletal resistance to deformation. Conversely, the
disruption of the actin or microtubule networks in these breast cancer cells changed their
shape and increased cell deformability [23]. Also, the inhibition of microtubule synthesis and
actin filament disruption by fullerenol [86,87] significantly decreased the stiffness of human
hepatocellular carcinoma cells and diminished long actin filaments, transforming them into
actin aggregates irregularly distributed in the cells, which became retracted and acquired
a rounder morphology [88]. Likewise, when SH-SY5Y human neuroblastoma cells were
treated with N-methyl-D-aspartate (NMDA), known to regulate intracellular Rho GTPases,
which contribute to forming bundles of long actin filaments [89], stiffness measured by AFM
was disturbed, as cell surface and neurite extensions were modified [90]. The importance
of Ras/Rock (Rho Associated Coiled-Coil Containing Protein Kinase) GTPase-dependent
cytoskeleton organization in stiffness modulation was also shown in epithelial transformed
cells [53]. Finally, in melanoma cells, the modification of the actin filament distribution
in cells undergoing oxidative stress was also accompanied by drastic modification in cell
morphological and cell biomechanical parameters (stiffness and elasticity) [91].

Taken together, these data highlight the importance of the cytoskeleton in modulating
both the morphological and the biomechanical properties of cancer cells.

6. Cell-Environment Mechanical Interaction in Cancer

As previously mentioned, most studies focused on the nanomechanical properties of
isolated cancer cells. Only recently have the stiffness, deformability and morphology of can-
cer cells been studied in three dimensions, integrating the important role of tissue structure
and the surrounding extracellular matrix (ECM). Even in normal cells, it is well established
that growing them on ECMs of different rigidities modifies their morphology, adhesion
and cytoskeletal organization as well as their stiffness [92,93], and that ECM collagen I and
fibronectin can modulate mechanical forces depending upon matrix tension [94].

6.1. Mechanoreciprocity between Tumor Cells and the Surrounding ECM

Tumors were first analyzed as a whole, and were in general described as stiffer
than the surrounding normal tissue [95–99], due partly to collagen crosslinking in the
ECM by malignant and stromal cells [100,101]. The interplay between cellular and ECM
stiffness is all the more crucial due to the mechanoreciprocity between the ECM and the
expanding tumor within the surrounding normal tissue. Cell biomechanical properties may
be different at the periphery and in the core of the tumor. The structure and organization of
a tumor is continuously changing as the cancer evolves, and the biomechanical state of the
cells that compose the tumor may evolve at the same time. Tumor cells thus need to adapt
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themselves to the physical pressure exerted by the microenvironment as the tumor grows
and is remodeled at the periphery and in the core. The application of biomechanical stress
on human breast tumors grafted into Nude mice led to modification of tumor volume
over time [102]. At the cellular level, it has been shown that mimicking compression of
osteosarcoma cells by confining them inside ECM-functionalized channels led to dramatic
changes in cell shape and a progressive reduction in cell stiffness [103]. How the stiffness
of the microenvironnement drives malignant transformation and progression was first
described in breast cancer [100,104,105]. Consistently with the importance of the link
between modulation of biomechanical properties and reorganization of the cytoskeleton
in tumor cell cultured in vitro, even a slight change in ECM rigidity can disturb tissue
architecture and favor tumor growth by regulating Rho GTPase signaling [104]. Changes
in the mechanical properties of the microenvironment by cultivating cells in 3D collagen
matrices were also shown to lead to changes in cell viscoelasticity in various other cancer
types such as colorectal, pancreatic or prostate carcinoma [55,106].

6.2. Mechanoreciprocity during Local Invasion

The important role of mechanoreciprocity between tumor cells and their surrounding
microenvironment was specifically investigated during invasion to try to explain why
some cells with certain biomechanical properties more promptly acquire higher invasive-
ness. Differences in cell morphology and stiffness were shown to be more pronounced
in various head and neck carcinoma cell lines differing in invasiveness when they were
cultivated in 3D-collagen matrices [107]. This underlies the importance of studying cell
biomechanics in an in vivo-like microenvironment to better understand invasion features.
A correlation between invasive potential and a cancer cell’s ability to adjust mechanically
to the surrounding ECM was clearly established in pancreatic cancer cells [55]. Recent
techniques combining AFM, confocal fluorescent microscopy and finite element mathemat-
ical modeling enabled the quantitative study of the viscoelastic properties of both tumor
cells and the surrounding matrix. Breast cancer cells stiffened as they invaded collagen I
matrices, and this stiffening depended on Rho/ROCK signaling [108]. Cell stiffening may
be mediated by transient accumulation of stress fibers prior to acquisition of malignant
features that help tumor growth in premalignant stages [109]. The importance for cancer
cells to become transiently stiffer may be directly linked to ECM remodeling in tumoral
contexts. Profound ECM reorganization during tumor development, with densification
of the collagen network and a radial alignment of collagen fibers, may be partly due to
CAFs remodeling [7–9]. These tracks help tumor cells to migrate collectively in local
invasion [110,111]. Interestingly, Kaur et al. showed that age-related ECM modification
changes, with increased matrix alignment and ECM stiffness, promoted melanoma cell
invasion [112]. Overall, these new observations prove the importance of the 3D tumoral
microenvironment for better understanding the biomechanics underlying the behavior of
cancer cells in their physiological context.

Very recently, Han et al., using organoids of mammary cancer cells in hydrogel,
demonstrated that tumors exhibit heterogeneous biomechanical cell patterns that facilitate
tumor invasion. Cells at the organoid periphery were softer and larger than those in the
core. Stiffness became increasingly heterogeneous as the organoid developed. Moreover,
eliminating the softer peripheral cells of cancer organoids delayed the transition toward
an invasive phenotype [113], thus linking biomechanical properties to tumor progression
toward invasiveness. These data are all the more interesting in that Gensbittel et al.
recently proposed a model whereby cancer cells continuously adapt their biomechanical
properties throughout the various steps of transformation and progression [114]. It can be
hypothesized that cancer cell plasticity, perhaps through the modulation of the epithelial-
to-mesenchymal (EMT) transition, is a way for tumor cells to be more compliant in terms
of biomechanical properties. Indeed, modulating EMT transcription factors or epithelial
cell adhesion molecule (EpCAM) not only affected cell migration and invasion, but also
drastically modulated intracellular stiffness [115,116].
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7. Conclusions

Despite the great effort made in searching for new molecular biomarkers for cancer,
classification, stratification and prediction of outcome remains difficult. Taking into account
the tumoral microenvironment seems to be crucial for understanding tumor transformation
and progression. Numerous studies on the immune microenvironment have been con-
ducted in recent years, but the morphological and biomechanical properties of the tumor
in its surrounding environment have been less studied. However, there is an increasing
development of high throughput techniques associating, for instance, the measurement
of nanomechanical parameters in microfluidics and improved microscopy technologies
combined with 3D biological models. Thus, in the future, biomechanics will be more and
more easy to study and could help to better understand cancer initiation, progression and
dissemination, and even cancer therapy resistance, since stiffness modulation has also been
linked to drug resistance [117–119].
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