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Abstract

We present three experiments on horizon estimation. In Experiment 1 we verify the human ability to estimate the horizon in
static images from only visual input. Estimates are given without time constraints with emphasis on precision. The resulting
estimates are used as baseline to evaluate horizon estimates from early visual processes. Stimuli are presented for only
153 ms and then masked to purge visual short-term memory and enforcing estimates to rely on early processes, only. The
high agreement between estimates and the lack of a training effect shows that enough information about viewpoint is
extracted in the first few hundred milliseconds to make accurate horizon estimation possible. In Experiment 3 we
investigate several strategies to estimate the horizon in the computer and compare human with machine ‘‘behavior’’ for
different image manipulations and image scene types.
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Introduction

Imagine browsing through the hundreds of images, taken for

example during your last vacation, in search of one where you lean

against a tree or one with a view of the village from the neighoring

hill. Humans have no trouble completing this task effortlessly in at

most very few minutes. Computers, however, still have great

trouble finding an image given only such a semantical description,

which is no surprise given that they have to interpret nearly every

image: find and identify objects (you, a tree, the village), estimate

viewpoint (from the hill), etc. We extract all that information in

only a few hundred milliseconds per image. The analysis is not

very thorough but detailed enough to form a superficial

representation of the image content in our mind. This represen-

tation is referred to as the gist of the scene ([1–3]). It is defined as

the first impression of a scene, which forms before the first saccade,

so from at most 300 ms presentation time, and has been theorized

to contain information about the scene type (beach/restaurant/

forest/…), prominent objects in the scene (e.g., two people in the

foreground but not the sailing boat in the distance), a rough

geometric layout of the scene and the viewpoint.

Creating such a representation of an image might be beneficial

not only as a basis for human visual processing but also for

computer vision applications such as object detection, estimation

of the 3D geometry of the scene, etc. It might help to solve

problems often encountered in such applications like the lack of

initial estimates for the depth of image structures or in the chicken-

and-egg problems, that often occur in computer vision (e.g.,

segmentation and object detection).

There is a large body of work in both perception and computer

vision literature dedicated to the aforementioned aspects of gist:

human and machine object recognition and scene classification,

(3D) space perception, geometry estimation. However, little is

known about how humans estimate the last aspect, the viewpoint,

although knowledge about this is often assumed in perceptual

work and related cues are used in computer vision applications.

One aspect of viewpoint, that is mentioned most frequently, is

the horizon of an image. Since this is also a quite intuitive measure

of viewpoint we use this measure in our work as well.

We present three experiments on horizon estimation, two

psychophysical and one computational.

In the first experiment we obtain ground truth data on the

‘‘estimatability’’ of the horizon in our stimulus set. Participants are

asked to estimate the horizon heights in images, given enough time

for careful decisions. The resulting distributions of horizon heights

are then used as ground truth measure for experiments 2 and 3.

In Experiment 2 we validated theoretical considerations in the

literature ([4]) that the gist of an image might contain information

about the viewpoint. Such considerations seem reasonable since

object presence, geometric arrangement and even scene type of an

imaged scene are closely related to the viewpoint of the camera.

Since the gist is extracted by early visual processes before the first

saccade, a horizon estimate or related viewpoint information must

be available after 300 ms. We therefore had participants perform

the same task as in experiment 1, but this time with only one very

short (153 ms) presentation of each stimulus. We chose this time to

make a thorough image analysis impossible and to limit

participants’ ability to memorize the image, so they had to rely

on their first impression of the image for horizon estimation. We

also measured the influence of several image manipulations on

estimation performance.
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In our last experiment we investigated the role of different cues

to horizon estimation. We create several simple computer vision

algorithms that estimate the horizon using different single cues.

This could not only help in mimicking horizon estimation (and

possibly gist) in an artificial vision system. Comparing the behavior

of our algorithms with human results for the same image

manipulations and same data set, might also give hints to what

cues the human visual system might be using.

Some results of experiments 2 and 3 have been published in a

conference article ([5]). However, we only compared estimates to a

‘‘ground truth’’ horizon estimated by the authors and limited the

analysis of computer vision algorithms to the luminance channel.

Furthermore, we could not present results from all the evaluations

we performed due to page number limits.

Viewpoint and Horizon
Since ‘‘horizon’’ is a term widely used in different meanings, but

often only explained by ‘‘where the sky meets the ground’’, we

explain the term in more detail here. Participants in our

experiments received similar explanations, together with visuali-

zations that are shown in figure 1 and examples in figure 2.

The astronomical horizon (in the rest of this work simply

referred to as the horizon) is defined by the ‘‘horizon plane’’, a

plane that is perpendicular to gravity and located at the same

height as the viewer’s eyes/camera. In any image taken by this

camera/viewed through these eyes, the plane is only visible as a

horizontal line, which is the horizon line we are referring to in the

following. It is not dependent on the slant of the ground surface

nor on the presence of occluders (c.f. figure 1) — it is always

orthogonal to gravity.

The visible horizon is the (usually not straight) boundary line

above which only sky can be seen and below of which there is no

sky (except, of course, reflections or smaller patches). This is

usually above the (astronomical) horizon, except if the observer is

standing on a highly elevated place. The horizon lightly differs

from the true horizon, which takes into account the fact that the

earth is not flat.

Further horizons have been defined in the psychophysics

literature. The terrestrial (sometimes also referred to as truncated)

horizon for example refers to the image height of the point on the

surface plane that is furthest away from the viewer (which for finite

surfaces without slant is slightly below the horizon). On can also

extend the definition of horizon to the horizon of an arbitrary plane

which is the line in the image where all parallel lines within this

plane meet. This kind of horizon only depends on the plane’s slant

and coincides with ‘‘our’’ horizon for horizontal planes. There is

also the morphological horizon which is the straight-ahead direction

with respect to one’s own body, so it is independent of the visual

stimulus and only depends on the viewer’s body orientation.

The most general rule to find the astronomical horizon in an

image is, that everything that is above the viewer’s eye/camera

(and consequently above the horizon plane) is above the horizon

line in the image, and the same holds true for things below the

viewer/camera. The description of horizon as ‘‘where sky and

ground meet’’ is true if the ground is sufficiently flat and there are

no occluders, as is the case for many coastal scenes (e.g., figure 2,

left). However, usually there will be buildings, plants or mountains

occluding that line, or the ground surface is slanted, so it must be

estimated. One cue in that case is to estimate where on the

occluder the viewer’s eye height would be. In case of other people

of similar height on a flat ground this is easy, the horizon must be

close to their eyes as well. For other occluders one must estimate

their distance and size to find the viewer’s eye height there (see

figure 2, middle left). If the occluder is very far away, then its

ground contact point (i.e., the terrestrial horizon) is a good

approximation to the horizon because the own eye height is

negligible in the distance (imagine the height of people on the

island in the left image of figure 2). Another clue to the horizon

height is perspective. Horizontal lines that are parallel in the real

world will meet in the vanishing point which is on the horizon.

This can be used in structured environments like cities or parks

where often many parallel lines are present (as is the case in the

middle right image of figure 2). This has also been referred to in

the literature as the parallel lines and the horizon rules ([6]). All these

clues (except the ‘‘above stays above’’-rule) fail, however, if the

ground is not flat. In that case one can try to account for the effect

by estimating the amount of ground slant or rely on other senses,

gut feeling and heuristics (see for example figure 2, right).

The horizon is influenced by most other aspects of the viewpoint

as illustrated in figure 1 for pitch and roll of the camera as well as

change of viewer height.

Figure 1. Visualization of changes in viewpoint parameters and their effect on the horizon in the image. For each plot the left part
shows a side view of a simple scene while the right part shows the scene through the left person’s eyes. The red line in the side view indicates eye
height, the red line in the image is the horizon. The black lines in the left part indicate the viewing frustrum of the viewer, the black dotted lines on
the right indicate parallel lines in the real world that converge on the horizon Top left: Reference scene with viewer looking straight ahead with head
upright and from ‘normal’ eye height. Top right: A change in head pitch of the left person results in a vertical movement of all the image including
the horizon. Bottom left: Roll, i.e., tilting the viewer’s head to the side will rotate the whole image including the horizon Bottom right: If the left
person views the scene from a higher position, the position of objects with respect to the horizon changes, the further away the object the maller the
change.
doi:10.1371/journal.pone.0081462.g001
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Although the proper definition of the horizon sounds very

theoretic, it is a measure that is quite intuitive once participants

were familiarized with the practical application of horizon

estimation as described above.

In real-life situations, additional sources of information can be

used to estimate the horizon: these include dynamic visual cues

such as optical flow, proprioceptive, and vestibular cues. Final

horizon estimates are likely formed by combining estimates from

all these input sources. Here, we concentrate on horizon

estimation from static pictures of outdoor scenes in the context

of the aforementioned prior work on scene gist ([1–3]).

Related Work
The horizon is a factor that is used quite extensively in the

literature on space perception and self-orientation as well as

computer vision. However, very little work has been done on how

humans actually estimate it. We will therefore summarize the

literature in the mentioned fields with a bias towards horizon

estimation. We also point to literature on early visual perception

and computational methods used for viewpoint estimation.

Self-Orientation. In order to identify the horizon in the

world one needs to determine one’s body, head, and eye

orientation with respect to gravity. A long line of research has

been devoted to the estimation of self-orientation, early examples

being the observation by Aubert [7] that in a dark room the

apparent orientation of a line changes with body sideways tilt, and

the famous experiment showing that a tilted room affects the

perceived upright direction [8,9]. Gibson, who later emphasized

the importance of the horizon for visual perception [10], also

contributed in his earlier work to this line of research by describing

the effect of gravity and strong motion on the otherwise very stable

perception of the horizontal and vertical [11]. Newer studies on

self-orientation perception, relevant for horizon estimation, are

concerned with estimation of body pitch. Cohen and Larson [12]

strapped participants to a bed that could be pitched by a motor

and asked them to adjust their pitch to certain orientations which

produced angular errors up to 150. In the same study participants

had to estimate the horizontal component of the straight-ahead

direction relative to their body (the morphological horizon) which

they could do with a precision of around 100. Matin and colleagues

[13] determine the importance of extra-retinal eye information for

estimation of the horizontal in darkness by paralyzing the eyes

with curare. The higher precision of an estimate of the horizontal

given visual stimulation as compared to darkness was shown in

many studies, for example in [14], where participants had to adjust

a chair’s height until a illuminated target appeared at eye level. A

long line of research was performed by Matin and Li on estimating

the visually perceived eye level (VPEL) i.e., the straight-ahead

direction with respect to true gravity given a pitch of the observer,

a room of various pitch angles and different lighting conditions

(darkness, whole room, degraded line stimuli), which they

summarized in the great circle model [15]. Other studies analyzed

the effect of gravity [16,17], gymnastic expertise [18], gender [19]

or response strategies [20] on the estimation of the body-

referenced or gravity-referenced straight-ahead.

Space Perception. The orientation of one’s body affects and

is affected by the percept of the visual surrounding, in particular

the visual horizon. There is therefore quite some literature in space

perception that assumes an estimate of the visual horizon (often in

form of the horizon of a ground plane) or the horizontal direction

and uses it to explain our perception of distance and height of

objects and slant of surfaces. An early overview over this field was

given by Sedgwick [21]. More recent work includes the study by

Rogers [22] on the horizon-ratio relation [10,23], which states that

the horizon line in an image intersects objects standing on the

ground at eye height, which can be used to estimate their height.

From simple line displays participants estimated the height of

objects with high precision if the horizon line was close to the

middle of the display. Otherwise performance probably dropped

because participants perceived the line not as the horizon but as an

edge of an object. Even without any hint on a visual horizon

participants made strong assumption on the perspective in the

image which shows the presense of a strong bias on perspective in

images. Ozkan and Braunstein [24] conducted a similar study and

found high agreement between relative distance estimates of two

ellipses in front of a simple line drawing with distance estimates of

cylinders rendered on top of photographs with clearly visible

horizons. They also examined the influence of the ground and

ceiling surface and an explicit vs. an implicit horizon, finding that

both the implied vanishing points of ground and ceiling surfaces as

well as the height where the ground surface terminates influence

horizon estimates. The effect of ceiling vs ground plane was also a

topic of the study by Thompson and colleages [25] with the result

that the accuracy of blind-walking to targets on the ceiling and

ground plane were surprisingly similar but are affected by

modifications of the horizon height.

The measure that is most directly linked to the horizon is

angular declination or elevation of an object, which is the angular

difference between the straight-ahead direction (i.e., to the

horizon) and a line from the observer’s eye to an object’s ground

Figure 2. Images to explain horizon cues. Left: In the left half of the image one can see where sky and ocean meet, so the horizon must be at
that height. Middle left: assuming the the ground has no slant towards the forest in the back, the horizon can be estimated by imagining a person
right in front of the trees and pointing at that person’s eye height. Middle right: a case where perspective gives a clear horizon estimate (parallel
lines are the borders between grass and path or the tree tops). Note that this is not at other people’s eye height, presumably the picture was taken
from a sitting/kneeling position. Right: an example where the surface slant is hard to estimate, so the horizon could be anywhere below the sky. The
tree might be seen as standing slightly higher than the viewer, so can give a lower upper bound.
doi:10.1371/journal.pone.0081462.g002
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contact point. In a study by Philbeck and Loomis [26] angular

declination was the most informative cue for distance estimation.

Ooi, Wu and He found in severla studies that angular declination

is estimated quite accurately [27], that a change of angular

declination changes estimated distances [28], that these estimates

depend on a scanning of the ground surface [29], and that for

judging the straight-ahead direction the ground surface parallel

lines are used [6]. The latter study also showed that for judging the

straight-ahead direction information from the ground plane is

more important than that from the ceiling [6]. This might be due

to a higher importance of regions below the horizon for estimating

the horizon position, which will also be tested in experiment 2.

Studies in VR [30] and with degraded viewing conditions [31]

further underline the importance of horizon for distance

estimation.

There are many more cues in literature for estimating the

horizon including motion information [8,21]. The strong regular-

ity of the horizon has also influenced animal and human

physiology [32,33] and biases our saccade direction and more

generally the way we take and look at photographs [4].

Computer Vision and Graphics
In computer vision the horizon is often used as a hidden

variable that is determined through indirect measures and affects

the image interpretation. In the work by Hoiem et al. [34,35] the

horizon height in the image is estimated using converging lines,

Gaussian priors, and known real-world heights of objects to

estimate the height of detected objects. Converging lines have also

been used by Kosecka nad Zhang [36] to estimate the camera

orientation with respect to a roughly planar world. In [37] as well

as [38] the authors follow a similar goal, replacing traditional edge

detection with probabilistic models that elegantly pool edge

evidence over the image.

Finally, Torralba and Sinha [39] have proposed to use the

GIST descriptor [1] of an image as feature for horizon estimation.

They trained a mixture of linear regressors on the GIST feature to

guide object detection. This is also used in [40,41] to create image

compositions with correct perspective. We use this descriptor in

our computational experiment.

Methods

Ethics Statement
The experiments described later in this manuscript use human

volunteers. Informed written consent was obtained prior to any

experiment or recording from all participants. Participants and

data from participants were treated according to the Declaration

of Helsinki. The experiments were approved by the local ethics

committee of the University of Tübingen (Project number: 89/

2009BO2).

Ground Truth
In order to evaluate the performance of human participants and

algorithms we need stimuli for which the true horizon position in

the image is known. There are several ways to obtain such data.

Some new camera models have integrated sensors that measure

the camera pitch. Unfortunately that information is only visualized

in the camera display, but usually not saved in electronic ways.

Another possibility is to used rendered images of artificially created

3D scenes as stimulus set. This would allow for very controlled

manipulations of the images at the expense of naturalness of the

stimuli. Both these methods would provide us with the true,

physical position of the horizon in the scene. We are, however,

interested in a purely visual estimate of the horizon which might be

very uncertain or even different from the physically true position.

Given for example a surface with a slight slant and few other cues

to hint at the slant, the true horizon is of course still at a well-

defined single height in the image which can easily be estimate if

one were in the scene. The horizon in the image, however, is not a

single well-defined point because it depends on the viewer’s

estimate of the surface slant. In this case we will want to penalize a

slight deviation in the horizon position less than in images with

many cues to the true horizon position. We therefore decided to

use existing, natural images and gather estimates from several

participants to approximate a distribution of visual horizon

‘‘estimatability’’ over the image height in experiment 1, and use

this as a reference for the evaluation of participant and algorithm

performance in experiments 2 and 3.

Stimuli
We restrict our stimulus set to landscape images of outdoor

scenes, since the ecological value for horizon estimates in closer-up

shots like portraits and indoor scenes is doubtful, and since horizon

estimation in these cases might be hard or impossible. We selected

images from two sources: the very large LabelMe image data base

([42], http://labelme.csail.mit.edu) and — since LabelMe has a

bias towards man-made environments — a database of 3645

images from German zoos and wildlife parks (http://images.kyb.

tuebingen.mpg.de). From LabelMe we considered all image

folders that predominantly contained images from outdoor scenes

(171 in 2008). To avoid further biases in the image selection

process we chose random images from these two sets with the

following restrictions: Firstly, they had to be free of noticeable

camera roll, which is rarely encountered in everyday situations

since humans usually avoid sideways tilt of the head. Secondly,

images had to provide enough visual queues for horizon

estimation, which given the multitude of cues to horizon

estimation (see above) also poses no serious restriction on the

stimulus material. In this subset we labelled and verified the

horizon position in random order until we had 300 images with a

roughly homogeneous distribution of our (twice verified) horizon

labels in the middle third of the image. We will refer to these labels

as ‘expert’ labels later on, they were only used for stimulus

selection. The reason for choosing a distribution in the middle

third is two-fold. First we wanted to avoid biases participants might

have caused by avoiding to click close to the upper or lower image

border. The second reason is that some of the image manipula-

tions we tested would have sometimes rendered our expert horizon

outside the displayed part of the image. Finally, we restricted the

stimulus set to 300 images as more images would have resulted in

excessively long experiment durations.

To also study the influence of scene type on horizon estimation,

we assigned each of these 300 images to one of seven scene types

which are (roughly from natural to man-made): coast (32 scenes,

mostly beach), open country (29 wide views of natural landscapes),

forest (18 scenes dominated by trees which are quite close),

enclosed natural scenes (46 images of open natural regions which

are enclosed by forest and/or walls), non-urban street (16 views of

streets in mainly natural landscapes), city (47 pictures taken in

urban regions), and other (12 images that could not be assigned to

any other class). Examples for each of these scene types are shown

in figure 3. For experiment 2 we removed 13 images from the

stimulus set which were very similar to other images to reduce the

number of trials.

To investigate the importance of different cues for human

horizon estimation, we manipulated the images corresponding to

the following six conditions:

Horizon Estimation by Human and Machine
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norm: the original image as baseline

inverted: the image flipped (mirrored at the horizontal

axis); this affects the holistic processing of the image leaving

the structure itself and local features intact

the image is convolved with a Gaussian filter which removes

low-frequency information leaving the holistic impression

unaffected. The standard deviation of the filter was chosen

manually as s~10 pixels for images with resolution

784|512 pixels, such that the rough image structure was

still visible but fine details were more difficult to discern For

images with different resolutions, the filter was scaled

appropriately (s&0:015| image size).

lower: the lower two thirds of the image are cropped, to

study the importance of information from the lower image

region for horizon estimation. To avoid participants noticing

this manipulation through the change in image size or aspect

ratio we removed image columns randomly from the left

and right image border until the aspect ratio was the same as

the original. The remaining image was shown with a bigger

magnification to preserve visual angle

middle: we changed the image as in the lower condition

except that we took one sixth of the image away from the

top and bottom of the image, leaving the middle two thirds

of the image

upper: the same procedure as for the lower condition,

removing the lower third of the image to study the

importance of the remaining upper two thirds of the image.

Examples for the six conditions for a single image are shown

in figure 4.

Examples for the six conditions for a single image are shown in

figure 4. One reason for including the three ‘‘subwindow

conditions’’ (lower, middle, upper) was to diminish the photogra-

pher’s bias that might favor certain objects and viewpoint

compositions and that might give additional cues to horizon

estimation. The only image region that is present in both, upper

and lower subwindow conditions, is the middle third of the image.

This is the second reason mentioned above why we originally

chose stimuli with our expert horizon estimate in the middle third.

In experiment 1 participants were only presented with the original

images.

Procedure for Psychophysical Experiments
Twelve paid participants (6 male, 6 female, mean age 31:33

years, age std 6:61 years) took part in experiment 1, twenty

particpants (12 female, 8 male, mean age 28:05 years, std 8:0) took

part in the second experiment. They were informed that they

would view the appropriate number of images and that they would

be asked to estimate the horizon in those.

For experiment 1, participants were placed in front of a laptop

with a standard LCD screen (15:400-inch widescreen with LED

backlighting) at an otherwise empty desk in a regular, empty office.

Experiment 2 called for a more controlled setup since the very

short presentation time required a high level of concentration. To

avoid external distractions or influences of low-level factors like

viewing angle on the results we placed participants in a dark room

at a fixed distance of 63 cm from a flat CRT screen (screen width

39 cm, viewing angle 340, resolution 1280|1024 pixels, 85 Hz

refresh rate), with their heads resting on a chin rest fixed in front of

the screen roughly at the middle of the image.

Each participant of each experiment was carefully instructed

about the horizon definition and cues to its estimation, using

verbal explanations very similar to the one given in the

Introduction above, using images shown in figures 1 and 2.

Following the theoretical explanations participants were familiar-

ized with the estimation user interface and performed test trials

with increasingly difficult images that did not appear in the

experiment. The experimenter discussed the first estimates with

participants until they felt comfortable with task and interface. For

later training trials, feedback was reduced to simple comments on

correctness of estimated position and estimation speed. The

experiment was started when participants had understood the task

and estimated the horizon with reasonable precision in 10 images

without instructor interference. The user interface used in the

experiments was written in Matlab (The Mathworks, Inc., Natick,

USA) using PsychToolbox 3.0 [43]. Images were presented in the

middle of the screen, filling half its height with a 50%-gray

background. Each participant was shown all stimuli in a

randomized order that was different for each participant.

Figure 3. Example stimuli from every scene class. (roughly from natural to man-made): coast, open country, forest, enclosed natural scene,
other, non-urban street, city.
doi:10.1371/journal.pone.0081462.g003
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Each trial was started with a 50%-gray screen on which a

‘‘cursor’’ in form of a horizontal blue line spanning the whole

screen width was visible. As a ‘‘start button’’ a dark gray bar

spanning the screen width was shown at a pseudo-random height

in the middle third of vertical region of the screen that contained

the images. Participants started the trial by moving the blue line,

which was controlled by the mouse, into the dark region and

clicking left. The blue cursor then disappeared and instead a

fixation cross was shown for 400 ms, followed by the stimulus. In

experiment 1 this was displayed until participants had estimated

the horizon position in (or outside of) the visible image region by

placing the blue line and clicking the left or right mouse button. In

experiment 2 the image was only shown for 153 ms and then

immediately masked by a pixel-scrambled version of the image for

353 ms. Only then the blue cursor line re-appeared allowing

participants to estimate the horizon on a dark gray rectangle of the

same size and position as the stimulus. After participants clicked

the left or right mouse button the dark gray ‘‘start button’’ bar for

the next trial appeared. The vertical position of this bar was

chosen to be at a minimum distance of 16 pixels from the

estimated position to avoid the feeling of feed-back. We also

emphasized that fact in the briefing because in a preliminary

experiment some participants had interpreted the bar as feed-back

in some cases. The procedure for experiment 2 is visualized in

figure 5.

The short presentation time in experiment 2 made most

cognitive strategies to horizon estimation impossible, forcing

participants to rely on their first impression or ‘‘gut feeling’’. To

further enforce this participants were instructed not to try to be too

precise but rather emphasize on speed. In contrast, participants in

experiment 1 were instructed to respond as accurately as possible,

emphasizing precision rather than speed to motivate a more

careful analysis of the stimuli. For both experiments we told

participants that if they could not estimate the horizon in the

image they should place the horizon line at an arbitrary position

and click the right instead of the left mouse button, indicating that

they were not able to estimate the horizon in this image. Such

answers could be due to a general inability to estimate the horizon

in images, to distractions, or to lack of concentration during

stimulus presentation. Positions from these ‘‘do-not-know’’-replies

were not included in the evaluation since they contain no relevant

position information. The reaction time from such trials, however,

was included in the evaluation, since a right-click is a valid

response and the time to decide on it can be compared to times

required to decide on a horizon position estimate.

Figure 4. Examples of stimuli in the different conditions. : normal, inverted, blurred, lower subwindows, middle subwindow, upper
subwindow; green bar is the expert estimate.
doi:10.1371/journal.pone.0081462.g004

Figure 5. Chain of events in a typical trial. A dark gray bar appears,
the participant moves the blue line into it and clicks; then a fixation
cross appears for 400 ms, followed by the stimulus which stays on for
153 ms, and is immediately masked for 353 ms. Finally, the mask is
replaced by a dark gray rectangle and the blue line re-appears which
the participant moves to the position of the estimated horizon and
clicks.
doi:10.1371/journal.pone.0081462.g005
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We recorded the time from image presentation start until click

in seconds, the position where participants clicked and whether

participants clicked with the left or right mouse button. Estimated

positions were normalized for height of the full upright image, so

0:0 indicates the uppermost image row in the unmodified image,

0:5 the middle of the image and 1:0 the bottom of the original

image, already accounting for the condition to make estimates

comparable between conditions. Results from trials where

participants responded with a right click were discarded from

the analysis of positions, but not from the analysis of reaction

times.

One other major difference between experiments 1 and 2 was

the number of trials. For experiment 1 each participant estimated

the horizon in each image of the original 300 images. For

experiment 2 each participant estimated the horizon of every

image in the slightly reduced stimulus set, for every condition,

resulting in 287|6 trials. To avoid fatigue we divided these into

four blocks of 430 trials each and encouraged participants to pause

for at least five minutes between blocks. Care was taken that there

were at least 4 other images presented between the presentation of

the same image in different conditions. Participants were also told

that they could make minor breaks between (not within!) trials if

they noticed a decrease in concentration.

As a preprocessing step for experiment 1 we removed outlier

positions (not reaction times) from the analysis to avoid noise from

manual errors in our ground truth. For this we calculated for each

image the standard deviation across all participant estimates and

removed all estimates that were more than three standard

deviations away from the participant mean of the corresponding

image. There were 16 such cases (note that &10 cases are to be

expected given that for a normal distribution 99:73% of the

probability mass are concentrated between m{3s and mz3s).

For experiment 2, we did not exclude outliers. However, early

analyses showed that two participants had not understood our

instructions about the inverted condition. Their results were

inconsistent with estimates in the inverted image. Instead their

results for the inverted condition showed a remarkably good

performance if they were applied to the upright images, suggesting

that those two participants had performed a mental rotation or

flipping of the image and clicked at the position where in the then

upright image the horizon would be. Since we cannot predict what

other influences this process might have had, we excluded all

results for all conditions from these two participants from the

analysis.

Participants of both experiments filled in a questionnaire after

the experiment.

Computational Experiments
We designed several algorithms that exploit different cues to

horizon estimation in images, including those mentioned in the

perception literature (e.g., [21]). Each of these algorithms gets a

single image channel (e.g., the luminance) as input and returns for

every image row a confidence value for that row containing the

horizon. We chose a simple winner-takes-all framework to deduce

from these confidences the algorithm’s estimate. The only

exception from this is the algorithm [gst] which does not give a

confidence for each image line but directly returns the estimated

horizon position. Each algorithm’s parameters were optimized

using excessive random search.

The algorithms are the following:

[div] is a very simple algorithm that uses a mixture of global

and local features. It tests for each line how well it divides the

image into a light region (i.e., containing high values) above and a

dark region (i.e., containing lower values) below it by calculating

the concentration of high values above and of low values below the

given line. This is inspired by the fact that at day time the sky is

lighter than the ground, so if applied to the luminance channel of

an image this should yield the best separation between sky and

ground. To allow for a more precise localization a weighted

average of the (global) lightness concentration difference with the

local vertical gradient at that line is calculated (after light

smoothing of the image). A linear weighting of global and local

features then yields an estimate for each line. Interestingly,

parameter optimization resulted in a weighting that strongly

biased the algorithm towards the local information, in essence

making this algorithm quite similar to [lin].

[-div] is the same algorithm as [div] except that light and dark

are exchanged. The assumption that the region above the horizon

is lighter than below might not be true for images taken at night

time and especially might only hold for the luminance of an image,

not for color channels.

[lin] works only on a local scale. It looks for horizontal lines in

the image by calculating the vertical gradient in the image and

summing its absolute value over image lines, assuming that around

the horizon the differences between neighboring lines is greatest.

[gab] hinges on the same idea as [lin] : that around the

horizon there should be the most notable vertical gradient. This

algorithm, however, takes a more biologically motivated approach

to finding these gradients, namely by convolving the image with a

horizontal gabor filter which has been proposed as a good model

for line-sensitive cells in L1 of the visual cortex. The gabor filter

used is aligned horizontally with optimized wavelength, bandwidth

and selectivity. After filtering in Matlab using code by Peter Kovesi

(function spatialgabor from http://www.csse.uwa.edu.au/ pk), it

sums for every line the magnitude of the response per pixel.

[van] uses the perspective cue most frequently proposed in the

perception literature. It tries to estimate the vanishing point by

finding image positions where many lines converge. In order to do

this the Canny edge detection filter is applied to the image. A

Hough transform is then applied to the resulting Canny edge

image to identify lines and their strength, with the latter depending

on the edge filter response and the length of the corresponding

edges. The lines identified by the Hough transform are then added

to a black (empty) image with an intensity value proportional to

their line strength. Finally, lines are elongated to span the whole

image. The resulting image V has bright spots in positions (x,y)
where many lines meet, corresponding to candidates for the

vanishing point. Before summing up the strength of vanishing

points V in each line x, maxima are emphasized by exponenti-

ation, resulting in confidences conf (x)~
P

y ea|V (x,y). Parameters

to optimize include the size of the edge filter and two thresholds for

edges for the Canny algorithm, as well as the resolution of the

Hough transform and the exponent a for exponentiation.

[gst] is the only algorithm we could find in the computer vision

literature, that was explicitly designed to estimate the horizon of an

image. It has been proposed by Torralba and colleagues in their

work on scene understanding ([39]). It uses the spatial envelope as

feature, the response of a set of filters tuned to different

orientations and scales, which has been proposed as a psycho-

physically-motivated feature for scene classification. The algorithm

does not calculate a confidence for each image line but instead

returns a single estimate from a mixture of linear regressors which

are trained on example images and corresponding horizon labels

using an expectation-maximization procedure. We re-trained

these regressors using our stimulus set and mean estimates in a

cross-validation procedure. We also extended the algorithm to use

all color channels and not just luminance. Therefore this algorithm
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is the only one applied to not just one color channel like the other

algorithms but uses information from all channels simultaneously.

[dum1] and [dum2] are algorithms included to give a lower

bound on algorithm performance, similar to the chance level in

many experiment analyses. They ‘‘estimate’’ the horizon by

random guessing, ignoring the image information completely.

[dum1] draws estimates from a uniform distribution over an

interval L,R½ � with 0ƒLvRƒ1 while [dum2] estimates from a

normal distribution with mean and standard deviation m,s[ 0,1½ �.
Parameters L,R or m,s, respectively, are identified during

optimization.

[exp2] is included in evaluation plots to compare computa-

tional results on test images with those obtained from human

subjects. Note that results may vary from those reported of

experiment 2 because of the choice of images in the test set (see

below).

Algorithms [gab], [van] and [gst] were implemented in

Matlab, all others in python. Evaluation and experiments were

done using ipython (version 0.9.1, [44], python 2.6.2), using the

packages numpy and scipy (version 1.5.1/0.9.1, http://scipy.org),

as well as mlabwrap (version 1.1, http://mlabwrap.sourceforge.

net), matplotlib ([45]) and OpenCV (version 2.1, http://opencv.

willowgarage.com/). All images in all conditions were transformed

into the CIE L*a*b* color space ([46]) and algorithms were

applied to each of the resulting channels independently.

All algorithms have parameters that need to be optimized. To

make the best use of our limited set of results for 300 images, we

adopted a 10-fold cross validation procedure for training and

testing our algorithms. Images are divided into 10 sets of 30 images

by means of an optimization algorithm which tried to keep roughly

equal ratios of scene classes and mean ground truth densities in all

subsets. For each of the 8 algorithms, 3 color channels and each of

the 10 image subsets Si parameters are searched that best

reproduce the human results on the 9 image sets Sj , j=i (their

‘‘training sets’’) in normal condition. This results in 10 optimal

parameter sets for each algorithm and color channel. As criterion

for reproduction of human results we chose the value of the

ground truth density derived from experiment 1 at the image line

with the highest horizon confidence. The parameter search was

done using first an extensive random search in parameter space

followed by a refinement around selected maxima using the

Nelder-Mead simplex algorithm (scipy.optimize.fmin).

As exceptions to this procedure, algorithm [gst] was not

training on individual color channels but on the full L*a*b*

images. Since evaluation of [gst] ’s performance on a given image

set for certain parameter involves training a regressor, a 3-fold

cross validation for each parameter evaluation of [gst] had to be

performed during the parameter search.

The performance of the final regressor — trained on all 9

training subsets with optimal parameters found on them — was

averaged over all 10 folds and is reported in the following as

training performance. Algorithms [dum1] and [dum2] were not

trained on individual color channels since they do not ‘‘look’’ at

the image at all. Instead confidences were averaged over 10 runs of

[dum1] and [dum2] to account for the randomness.

To finally evaluate the algorithms’ performance, we report in

the Results section the performance of algorithms with optimal

parameters on the left-out subsets which together make up all the

original 300 images. For example, results on S1 are computed with

parameters searched using S2, . . . ,S10. We also ran algorithms

with optimal parameters on their respective training sets in other

conditions.

Results

Ground Truth Experiment
The distribution estimates from experiment 1 agreed well

(correlation r~0:89, c.f. figure 6 left) with our expert estimates

that were used to select the stimulus set. Estimates show a roughly

homogeneous distribution of horizons in the middle third as can

be seen from the histogram in figure 6 (right).

Participants were told to click with the right instead of the left

mouse button in case they could not estimate the horizon in the

image. This happened only twice in all of the first experiment,

which can be explained by manual errors.

The agreement with our expert estimates and the low number

of right-click results leads us to believe that the task was sufficiently

clear and intuitive.

Estimates agreed not only with our expert estimates but also

with another. The standard deviation between participants for

each image was 3:44% image height on average (3:66 before

removing outliers as described in the Methods section). This

deviation between participants varied greatly with scene type.

Figure 7 (left) shows that agreement on open coastal images is

generally much higher (std of 2% image height) than on more

closed scene types like open country, forest or closed nature (all

close to 4% image height). Street scenes within cities (class city) and

outside urban areas (class non-urban street) resulted in standard

deviations of approximately 3% of the images’ heights. We

conclude that humans are able to estimate the horizon from a

monocular image with reasonable accuracy, at least if given

enough time.

The reaction time results show a much more homogeneous

distribution with respect to scene type (figure 7 right). Participants

in experiment 1 took 7:32 s on average to estimate the horizon.

The most notable difference is again caused by the relatively easy

images from the coast class (c.f. figure 2).

Density Estimates. The 12 estimates for each image (11

estimates for 2 cases of right-click images) are used in experiments

2 and 3 as ground truth distributions for the visual horizon. We

chose this measure because it captures not only the position of the

Figure 6. Agreement of results from experiment 1 with expert
labels. Left: Histogram of relative image positions participants clicked
at compared to the distribution of expert estimates by the authors.
Right: correlation of individual subjects’ estimates (black) and their
mean (red) with the expert estimate. Both individual estimates and
estimate mean show a very high correlations with the expert labels.
doi:10.1371/journal.pone.0081462.g006
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horizon but also the variability in estimates caused by the absence

of non-visual cues. To measure how well other estimates agree

with these estimates, we fitted a mixture of Gaussians to these

‘‘ground truth estimates’’ and report the value of the resulting

probability density function at the position of the estimate to

evaluate. The method for fitting a distribution to these estimates

was scipy.stats.gaussian_kde. For a given image i[1,2, . . . ,300 it

approximates the unknown distribution from which samples

(estimates) Ei are drawn, by replacing each estimate ei,j[Ei by a

Gaussian distribution centered at ei,j with a deviation given by the

covariance of Ei. This yields a distribution with density function

([47])

pi(x)~
1

consti

X
ei,j[Ei

exp {
1

2
(x{ei,j)

T (f 2
i cov(Ei))

{1 (x{ei,j)

� �

Vx[ 0,1½ � ,

where fi~DEi D{1=(dz4) is Scott’s factor [48], consti is a

normalization constant, DEi D the number of estimates in Ei

(typically 12), and d~1 is the dimensionality of estimates. We

call an evaluation of pi at a point x0[ 0,1½ � a confidence and the

density pi from which it was taken a ground truth density in the

following. Since the ground truth densities have an integral of 1
but are close to 0 over most of the interval 0,1½ � on which they are

defined, point evaluations pi(x0) will often give values much larger

than 1. Examples of such density functions are plotted in black on

the left side of example stimuli in figure 8.

Psychophysical Experiment
Although 13 similar images were removed from the experiment

and despite very quick reaction times, the 287|6 responses per

participant took 2 hours 6 minutes on average (std 28:6 minutes)

not counting time for breaks.

In this subsection results for experiment 2 are reported:

Reaction times, confidence based on ground truth estimates from

experiment 1, inter-rater correlation and mean position per

condition, as well as a short analysis of training effects.

Our main measure of performance is the confidence as defined

above: we evaluated the ground truth density obtained from

experiment 1 estimates at the estimated horizon positions in

experiment 2, resulting in a confidence which measures how well

an estimate can be explained by the ground truth estimates from

experiment 1.

The mean reaction time per trial was 1:74 s (std 1:56 s). This is

significantly faster than replies in experiment 1 (7:32 s), showing

that participants followed a more intuitive and less cognitive

strategy. This faster reaction time is not entirely explainable by

time required for purely low-level visual processing, motion

planning and execution. Although higher-level visual processing

was severely limited by our masking paradigm, participants seem

to still have processed the visual information to make their

estimate.

Short-time memory might have played a role in two ways in this

task. First, participants had to retain in memory either the horizon

estimate they had already formed or some visual information of

the image to base an estimate on. We cannot completely rule out

that enough higher-level visual information had been retained to

employ more cognitive strategies to the task, although we tried to

minimize the probability of this by showing a mask after each

stimulus in an attempt to purge the visual short-term memory of

the image. For the effect of memory on a longer time scale, see the

section on training effects below.

Correlating the distance the mouse was moved with reaction

times showed that the time for mouse motion was not an

important factor in reaction times.

Subjective Confidence. The first question we were interest-

ed in was, whether participants felt they could perform the

experiment i.e., whether it is feasible to estimate the horizon from

such a short presentation time. This seems to be the case as only

2:8% of all replies were a ‘‘do-not-know’’ indicated by using the

right instead of the left mouse button to reply. Another indicator is

the reply participants gave to our questions in the debriefing

questionnaire. We asked them how certain they were about their

estimates on a scale from 1 (very uncertain) to 10 (very certain),

which resulted in a mean response of 6:92 with a std of 1:36. We

Figure 7. Reaction time and consistency of experiment 1 results with respect to scene type. Left: Standard deviation of participant results
per image in the ground truth experiment, shown as average per scene type. Results of pairwise comparisons with the Scheffé criterion after a 1-way
analysis of variance are indicated by letters A–D: first row denotes group, second bar shows letter of other groups, to which this group is not
significantly different; ‘‘other’’ is not significantly different from any group. Right: mean reaction time of participants per image in the ground truth
experiment, shown as average per scene type. Error bars denote standard error. Bars with letters A–B are significantly different from another. The
class ‘‘non-urban streets’’ (noUS) is not significantly different from any other class.
doi:10.1371/journal.pone.0081462.g007
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also asked how difficult the experiment was (1 easy, 10 hard), for

which we got 5:33 as mean reply (std 2:27).

Reaction Time per Condition. As shown in figure 9 (top

left), the reaction time per condition shows an interesting effect:

We would have expected the fastest reaction time for the normal

condition but participants replied significantly quicker for the

blurred version of our images (Scheffé test with a~0:01). This may

be explained by the lack of detail in those images that made

attempts at careful and exact and therefore slower placement of

the cursor impossible. Participants may therefore have felt less

need to invest time for more precise cursor placement. This might

have led to worse estimation results as shown in figure 9 (top right).

Leaving out image information from top and/or bottom of the

image, as well as image inversion, also slowed down participants

significantly.

Confidence per Condition. Regarding confidence per

condition (c.f. figure 9, top right) the worst performance for this

measure is obtained from inverted and blurred images, which

affect holistic processing in the first and high-frequency detail in

the second case. Both these sources of information seem to be

relevant to the task of visual horizon estimation. Again, the normal

condition is not the one with the best performance. The lower and

especially middle subwindow condition led to estimates that agree

better with results from experiment 1. One possible explanation

for this concerns all three subwindow conditions: participants saw

less of the image, so there were less possible regions to falsely

estimate the horizon at. The region around the horizon, however,

filled a larger range of the displayed stimulus, thus offering more

detail of the region around the horizon. A middle bias of

participants would explain the performance increase in the middle

condition but should also result in a smaller performance increase

in lower and upper subwindow conditions, rendering these two the

same level between the normal and the middle subwindow

conditions. This is not the case, so this can not be the only

explanation. We would rather suggest that information near the

horizon, especially just below it, is most important for estimation.

The fact, that the performance in the lower subwindow condition

is much better than in the upper subwindow condition might hint

at the ground dominance which has also been reported in the

literature ([6]).

Position per Condition. Although every image was shown

in every condition and although participant responses were

normalized to positions in the full upright image, tests showed a

significant difference between mean estimation position over

different conditions (see figure 9, bottom left). Participants

estimated the horizon in a lower position for the lower subwindows

condition than in the middle subwindow condition, and even

higher in the upper subwindow condition. There are at least two

possible explanations for this behavior: Participants may have had

a bias toward the middle of the visible part of the stimulus. In the

lower subwindow condition, the middle of the visible part of the

image is not at height 0:5 but at 0:667 of the full image (0 = top,

1 = bottom). Also, the horizon estimation process could include a

rivalry between a horizon estimated from the upper part of the

image (a ‘‘sky-based’’ estimate) and another estimated based on

the lower image part (a ‘‘ground-based’’ estimate), e.g., the lowest

visible sky-pixel-position versus the highest visible ground-pixel-

location. Removing information from the upper image part may

result in a less confident estimate of the horizon from the upper

image part and therefore to an estimate that tends more towards a

‘‘ground-based’’ estimate. The overall tendency in the experiment

to a horizon estimate slightly above the middle of the image might

be due to the stimulus set. However, there might also be a

tendency of participants to click a bit too far up in the images,

which could partly explain why the mean estimate in the inverted

condition is lower. However, if this was the only influencing factor,

the inverted condition would have to be exactly as much below

0:5, as normal and blur are above 0:5.

ICC per Condition. Our final measure to evaluate agree-

ment of participants uses the intraclass correlation coefficient

ICC(2,x) ([49]), which measures the reliability of the ratings of

several judges that all judge the same set of items. There are two

version of this measure: the first, ICC(2,1) computes the

reliabilities for each item separately, whereas ICC(2,k) computes

the reliability across averaged ratings. To compute these quantities

we had to omit images in conditions for which at least one of the

participants replied by a right click (‘‘do not know’’). If trials from

all conditions are treated as independent items to rate, the overall

reliability of participants is ICC(2,1)~0:432605 (based on 1231
trials). The overall reliability of the resulting ratings is

ICC(2,k)~0:932083. Both values indicate substantial agreement

across raters ([49]). Reliability of raters split across conditions are

shown in figure 9. Reliability for the inverted condition is much

smaller than for the rest, while the middle subwindow condition

show the highest reliability. Interestingly, here the upper

subwindow conditions caused more consistent participant perfor-

mance than the lower subwindow condition.

Results per Scene Type. As expected, participants respond-

ed quickest and most accurate for coastal images (c.f. figure 10).

The next easiest class seems to be non-urban street scenes (labelled

‘‘noUS’’ in figure 10 Images of this scene type often offer wide

views as well as perspective queues from the streets themselves or

objects like cars or small houses. City and open country images

result in the highest reaction times but not the worst confidences.

This might be a hint at cognitive strategies being used more in

these cases. Closed natural scene like forest and closed nature yield

the worst confidences with respect to scene type despite relatively

long processing.

Figure 8. Examples of stimuli and results from experiment 1. Individual participant estimates are shown as colored lines, the black curves on
the left of each image show the estimated estimate density function. Note how the variance of estimates varies across images.
doi:10.1371/journal.pone.0081462.g008
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Figure 9. Results of experiment 2 per condition. Top left: Mean reaction time per condition. Top right: Confidence assigned to estimates per
condition. Bottom left: Average position of estimates per condition, normalized to 0 = image top, 1 = image bottom. Although images were the
same, positions vary significantly. Bottom right: Agreement of subject ratings as intraclass correlations ICC(2,1) per condition. In all plots, error bars
denote standard errors. Bars with different letters A–E are significantly different according to a post-hoc comparison using the Scheffé criterion after
1-way analysis of variance.
doi:10.1371/journal.pone.0081462.g009

Figure 10. Results from experiment 2 per scene type. Left: Mean reaction time per scene type. Right: Mean confidence per scene type. In all
plots error bars denote standard error; bars containing letters A–D are significantly different from all bars that contain none of the same.
doi:10.1371/journal.pone.0081462.g010
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Interestingly, the pattern of reaction time per scene in

experiments 1 and 2 are very similar. Some degree of negative

correlation between standard deviation of estimates from exper-

iment 1 and confidence of estimates in experiment 2 is to be

expected: if the standard deviation in experiment 1 is high, then

the fitted distribution will attain smaller values distributed over a

bigger region of the image. An estimate in experiment 2 that

completely agrees with an estimate of experiment 1 will therefore

be assigned a lower confidence than would be the case if the

standard deviation in experiment 1 had been low. A relatively bad

estimate, on the other hand, has a better chance to get some

confidence in more diverse images, but in these cases the

confidence is low enough to not make much difference in the

mean. An interesting case in this respect is the open country class.

According to experiment 1 it is the scene class for which fixing a

ground truth horizon is hardest. Still, in terms of confidence in

experiment 2 it outranks the classes forest, closed nature and other.

Training Effects. Since participants viewed each image six

times, it may be possible that memory for the image could facilitate

estimation in later trials. A few participants reported having

realized that they had seen images repeatedly in different

conditions. In those cases, recognition and retrieval of memory

of earlier estimates could have had an influence on reaction time

and estimated position. This should have no effect when

comparing results within experiment 2 since the order in which

images and conditions were presented was randomized. However,

for comparing results of experiment 2 with those from experiment

1 and 3, a potential training effect should be taken into account.

We therefore analyzed reaction times for experiment 2 estimates

for the presence of training effects. In order to do so, confidences

were re-ordered such that all trials, in which a subject saw an

image for the first time (independent of condition), form one

group, all second views a second group, etc. An analysis of

variance of the resulting 6 groups means showed significant

differences (F (5,30121)~531:22, pv0:001), and a post-hoc

comparison using the Scheffé criterion revealed speed-ups between

all six groups from a mean of 1:70+0:03 s (std err) for the first

view to 1:27+0:01 s (std err) in the sixth. The most likely

explanation for this result is the increased proficiency with the task

that caused participants to answer faster in later trials. The result,

however, on its own cannot rule out a speed-up of estimation due

to memory effects.

A similar analysis for estimated confidences, on the other hand,

showed no significant differences in the group means

F (5,30121)~1:6, p~0:155. In particular, estimation perfor-

mance was similar for the first time an image was presented

(mean confidence 4:44+0:09 (std err)), and the sixth time (mean

confidence 4:52+0:08 (std err)). Hence, although there were was a

clear speed-up, trial repetition did not affect estimates themselves,

which speaks in favor of a relatively stable rating performance.

Overall we conclude from the subjective participant confidence,

the overall high agreement of estimates with the ground truth

estimates from experiment 1, the high agreement between

participants, and the lack of clear training effects in position

estimates, that horizon estimation is possible from simple visual processing

and that the horizon or related information could therefore well be

part of the gist.

Computational Experiments
We describe here some of the computational results obtained by

applying the simple horizon estimation algorithms described above

to luminance, a* or b* color channels of the stimulus set. We

measure results first like in the psychophysical experiment by

evaluating the ground truth density from experiment 1 at the

estimated horizon position. This allows a comparison with human

results (shown in black). To test whether algorithms ‘‘behave’’ like

the human participants, we also calculated correlation coefficients

of algorithm results with respect to condition and scene type as

described below.

Confidence. Our first measure for evaluating algorithm’s

performance is the same as used in experiment 2: confidence

assigned by calculating the agreement of the estimate with those

from experiment 1. We first tested whether algorithms were able

to capture the information contained in the training set during

parameter optimization. When evaluated on the training set (left

plot in figure 11) we see that most algorithms managed to achieve

the human performance from experiment 2. A multiple compar-

ison analysis comparing all results with all others using the Scheffé

criterion found no algorithm significantly different from [exp2].

Performing the same analysis using Tukey’s honestly significant

difference criterion, which is less conservative, identifies statistical

differences from [exp2] for algorithm [gst], and the two worst-

performing [dum2] and [-div] (b* channel). The reason for

[gst] standing out may be the relatively high number of

parameters that allow a good fit to data. Since we used the

training data itself, however, this analysis bears the risk of

overfitting.

In testing in the normal condition (right plot of figure 11), the

advantage of [gst] diminishes, still leaving it the best-performing

algorithm considered here. However, its agreement with the

ground truth densities from experiment 1 is nearly matched by

[lin] and [div] for the luminance channel. This is confirmed by

again comparing all results with all others using Tukey’s honestly

significant difference criterion. [gst] is significantly better than all

algorithms except [lin] (L* and b* channel) and [div] for the L*

channel. Luminance information seems to be the more informa-

tive for horizon estimation algorithms than color information.

Interestingly, the worst performing algorithms here are using

information from the b* channel, showing worse performance

even than [dum1] and [dum2]. Significant differences from the

worst algorithm [-div] (b* channel) are found for all algorithms

except for [gab] and [van] (b* channel) and intelligent guessing (

[dum1] and [dum2] ). When compare to [exp2], significant

differences are found only for [gst], [dum2], and the b* channel-

versions of [van] and [-div]. This is surprising since the b*

channel is required to separate blue (like sky) from yellow

(contained in sand and dirt), which would be expected to be of

interest for horizon detection. Maybe the presence of green (i.e.

low values for the a* channel) are more informative. Further

analysis e.g., of statistical properties of image color distributions,

might be of interest here.

Correlation of Behaviour. We further correlated algo-

rithms’ ‘behavior’ i.e., pattern of mean confidences per condition

and scene type, with human results. Since our ground truth

experiment did not provide results per condition we correlated the

mean confidence of algorithm with the mean confidence assigned

to the human estimates in experiment 2 (i.e. with the correspond-

ing results in [exp2] ). The results are shown in figure 12. [gst]
shows remarkably bad correlation with results of participants in

the quick experiment, although its performance when compared to

experiment 1 ratings was highest. It seems to ‘‘behave’’ more like a

carefully thinking human than a person that has seen the scene

only very quickly. [lin] shows not only very good confidence but

also the best correlation here, while [-div] produces low values in

both tests. Over all algorithms, the a* channels slightly outperform

L* and b* information, with a* of [gab] exhibiting the best

correlation in this test.
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Discussion

Estimation of the viewer’s orientation with respect to a viewed

scene is an important task in human visual perception as well as

computer vision. Although many studies in both fields assume

some viewpoint knowledge in the processing system, it has not

been explicitly tested how and how fast this knowledge is acquired.

Literature on early vision suggests that simple viewpoint informa-

tion like the horizon may be part of the gist, the representation of a

visual stimulus that forms in the viewers mind within a few

hundred milliseconds.

We have presented here three experiments addressing the

ability to estimate the horizon in human and machine. We found

that humans are well able to estimate the horizon from purely

visual input in a consistent manner. Performance depends on the

type of image displayed, with coastal scenes being the easiest to

interpret. When forced to rely on only the first visual impression

from a masked presentation of only 153 ms, performance drops

slightly but still shows remarkable agreement with estimates from

longer viewing times. We conclude therefore that viewpoint

information is part of the first visual impression of an image.

By manipulating possible feature channels in the shown stimuli,

and by comparing human estimation results with those created

with simple, single-feature image processing algorithms, we

addressed the question what information is used to estimate the

horizon. Results from the psychophysical experiments suggest that

high-frequency information plays no crucial role in estimation and

that image information close to the horizon is more important

than that in higher or lower image regions. Estimates based on

information below the horizon show significantly higher agree-

ment with estimates based on longer viewing times which is

consistent with the prediction in the literature [29]. However,

agreement between participants is higher for estimates based on

the upper two thirds of the image, than those based on the lower

two thirds. It seems, therefore, that both global and local

processing are necessary for horizon estimation.

Computational studies show a similar trend: the [gst]
algorithm, which estimates the horizon from a holistic represen-

tation of the image, exhibits the best agreement with human

estimates from longer viewing times. However, its pattern of

‘‘behavior’’ with respect to changes in scene type and stimulus

condition is least correlated with human results from short

presentation times. Simple horizontal gradients perform relatively

well in both evaluation criteria, consistent with simple local visual

processes.
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