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The goal was to identify the domain-general cognitive abilities and academic attitudes
that are common and unique to reading and mathematics learning difficulties that
in turn will have implications for intervention development. Across seventh and
eighth grade, 315 (155 boys) adolescents (M age = 12.75 years) were administered
intelligence, verbal short-term and working memory, and visuospatial memory, attention,
and ability measures, along with measures of English and mathematics attitudes
and mathematics anxiety. Teachers reported on students’ in-class attentive behavior.
A combination of Bayesian and multi-level models revealed that intelligence and
in-class attentive behavior were common predictors of reading accuracy, reading
fluency, and mathematics achievement. Verbal short-term memory was more critical
for reading accuracy and fluency, whereas spatial ability and mathematics self-efficacy
were more critical for mathematics achievement. The combination of intelligence and
in-class attentive behavior discriminated typically achieving students from students
with comorbid (D = 2.44) or mathematics (D = 1.59) learning difficulties, whereas
intelligence, visuospatial attention, and verbal short-term memory discriminated typically
achieving students from students with reading disability (D = 1.08). The combination of
in-class attentive behavior, verbal short-term memory, and mathematics self-efficacy
discriminated students with mathematics difficulties from their peers with reading
difficulties (D = 1.16). Given the consistent importance of in-class attentive behavior,
we conducted post hoc follow-up analyses. The results suggested that students with
poor in-class attentive behavior were disengaging from academic learning which in turn
contributed to their risk of learning difficulties.

Keywords: learning difficulties, adolescence, reading achievement, mathematics achievement, cognition,
attention, learning, memory

INTRODUCTION

Academic competencies at the end of secondary school contribute to individuals’ employability,
wages, and the ability to pursue further education (Rivera-Batiz, 1992; Bynner, 1997; Ritchie
and Bates, 2013; Stoet and Geary, 2020). Individuals with deficits in core academic domains,
especially reading and mathematics, will face long-term hardships in many areas of life
(Richmond-Rakerd et al., 2020). Interventions that reduce risk of academic difficulties thus have
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the potential for long-term benefits for at-risk individuals and
the communities in which they will eventually reside. Fuchs
et al. (2013, 2019) demonstrated that students’ responsiveness
to such interventions is influenced by their preexisting domain-
general abilities, such as working memory, and that more effective
interventions can be developed with the inclusion of supports
that address any domain-general weaknesses (Fuchs et al., 2020).
As an example, speeded (timed) practice of just-learned number
knowledge benefited students with weak non-verbal reasoning
abilities, whereas non-speeded practice did not.

More generally, individual differences in academic
achievement, achievement growth, and grade-point average
are related to domain-general cognitive abilities (e.g., working
memory; Geary et al., 2017; Peng et al., 2019) and to non-
cognitive factors, such as mathematics self-efficacy (Marsh
and Yeung, 1998; Eccles and Wang, 2016; Semeraro et al.,
2020). However, most of the learning difficulties research has
focused on cognitive factors, such as poor working memory
(Geary, 1993, 2004; Swanson et al., 2009a; Peng and Fuchs,
2016; Koponen et al., 2017), although non-cognitive factors are
sometimes considered (Cirino et al., 2018; Devine et al., 2018).
Even fewer studies have assessed the joint relations between
domain-general cognitive abilities and non-cognitive factors
and learning difficulties. We provided such an assessment
for middle-school students and sought to determine the best
combinations of domain-general cognitive and non-cognitive
factors that characterize learning difficulties in mathematics,
reading, and their comorbidity.

Learning Difficulties
In the United States, about 5% of students have school-identified
specific learning disabilities (Grigorenko et al., 2020), but the
percentage of at-risk students is much higher. This is because
many students fail to achieve grade-level learning benchmarks for
key subject areas. The U.S. National Assessment of Educational
Progress, for instance, identifies ‘basic’ achievement levels as
partial mastery of grade-level knowledge and skills.1 The most
recent assessments revealed that 27% and 28% of United States
students were below basic levels of achievement in reading in
8th and 12th grade, respectively. For mathematics, 31% and 38%
of students were below basic levels of achievement in 8th and
12th grade, respectively (United States Center for Educational
Statistics, 2020).

Many students with below-basic academic competencies are
not identified as having a specific learning disability and many of
them might not meet the multiple criteria for diagnosis of such
a disability (Grigorenko et al., 2020). Nevertheless, students with
below basic levels of reading and mathematical competencies are
at high risk of long-term difficulties in the labor market and in
other areas of life (Berlin and Sum, 1988; Rivera-Batiz, 1992;
Hanushek and Woessmann, 2008; Ritchie and Bates, 2013). In
the study of the factors contributing to learning difficulties in
mathematics, a commonly used cutoff is at or below the 25th
percentile on a standardized achievement test (Geary et al., 2007;
Murphy et al., 2007). A cutoff at this percentile is consistent

1https://nces.ed.gov/nationsreportcard/

with the percentage of United States students with below-basic
academic competencies, and thus we adopted it for our analyses
of reading, mathematics, and comorbid learning difficulties.

However, performance on achievement tests is continuous
and generally normally distributed (Geary et al., 2012;
Grigorenko et al., 2020), and thus cutoffs at any percentile
are arbitrary, albeit useful for the identification and study of
at-risk students. For this reason, we also use an individual
differences approach to identify the domain-general cognitive
and non-cognitive factors that are common and unique to
reading and mathematics achievement.

Domain-General Cognitive Abilities
Individual differences in reading and mathematics achievement,
as well as achievement growth, are related to intelligence and
executive functions (Deary et al., 2007; Peng et al., 2018,
2019). Working memory–holding information in mind while
engaged in other processes (Miyake et al., 2000)–is an important
component of executive functions and is consistently related
to academic learning (Paas and Ayres, 2014; Lee and Bull,
2016; Geary et al., 2017). Although the diagnosis of a specific
learning disability typically involves the exclusion of students
with very low IQ scores (Grigorenko et al., 2020), students
with persistent learning difficulties often have modestly lower
IQ scores than their typically achieving peers. Although IQ may
contribute to their learning difficulties, it is not in and of itself a
sufficient explanation (Stuebing et al., 2002; Murphy et al., 2007).
Deficits in executive functions and especially working memory
appear to be an additional contributing factor in both reading
difficulties and mathematics difficulties (Swanson et al., 2009b;
Geary et al., 2012).

There are also cognitive abilities that are relatively more
important for reading or for mathematics achievement.
Short-term verbal memory and verbal working memory
contribute to various aspects of reading competence–assessed
in individual differences and learning disability studies–and
are more important than visuospatial memory (Carretti
et al., 2009; Swanson et al., 2009b; Giofrè et al., 2018; Peng
et al., 2018). Verbal short-term and working memory can
contribute to some aspects of early number and arithmetic
learning (Krajewski and Schneider, 2009; Allen et al., 2020),
but these become relatively less important for mathematics
learning in later grades. As the mathematics that students
are expected to learn becomes more complex, visuospatial
memory (Li and Geary, 2013, 2017) and more complex
spatial abilities become increasingly important (Casey et al.,
1997; Kyttälä and Lehto, 2008). The latter includes the
ability to generate and manipulate visual images and is
consistently correlated with mathematics achievement (Casey
et al., 1997). The ability to control visuospatial attention is
related to some aspects of number processing (Longo and
Lourenco, 2007) and may also contribute to word reading
(Friedrich et al., 1985).

Non-cognitive
Several non-cognitive measures were considered in this study,
including academic attitudes, mathematics anxiety, and in-class
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attentive behavior. The attitudes included self-efficacy or
confidence about one’s abilities in English and mathematics, as
well as beliefs about the future usefulness or utility of competence
in English and mathematics (Eccles and Wigfield, 2002; Eccles
and Wang, 2016). The relation between these attitudes and
academic outcomes is typically bidirectional for older students
and adults (Valentine et al., 2004; Talsma et al., 2018), but the
relations are less certain across elementary and middle school
students (Giofrè et al., 2017; Gunderson et al., 2018; Geary et al.,
2019; Toste et al., 2020). Whatever the direction of the relations
during schooling, in the long-term these attitudes can influence
later occupational choices (Lauermann et al., 2017).

Mathematics anxiety is another factor that has been linked
to variation in mathematics outcomes, although cause-and-effect
relations are not yet fully understood (Ashcraft and Kirk, 2001;
Ma and Xu, 2004; Dowker et al., 2016); unfortunately, we did
not have a parallel measure for reading anxiety. Byrnes and
Miller-Cotto (2016) recently found that internalizing problems,
which includes anxiety, were associated with slower mathematics
growth across the third- and eighth-grade academic years,
controlling many other factors. Higher mathematics anxiety is
also thought to result in an avoidance of mathematics coursework
and math-intensive careers (Hembree, 1990; Meece et al., 1990).

On the basis of these findings, we might expect that students
with learning difficulties would show lower academic self-efficacy
and those with mathematics difficulties would show higher
mathematics anxiety than their typically achieving peers, but this
is not always the case. The academic self-efficacy of many students
with learning difficulties (in any area) is overly optimistic relative
to their actual achievement (Klassen, 2002). Devine et al. (2018)
found that relative to typically achieving students, about twice
as many students with mathematics learning difficulties showed
high levels of mathematics anxiety. However, most of the students
with difficulties did not show higher than average levels of
mathematics anxiety and many of the anxious students had
average or better mathematics achievement levels.

A final non-cognitive factor that contributes to academic
achievement is in-class attention. Teacher ratings of students’
in-class attentive behavior is consistently related to concurrent
and longitudinal gains in mathematical achievement and is
sometimes related to gains in reading achievement (Fuchs
et al., 2006, 2016; Geary et al., 2013). The associated behaviors
include sustained attention and attention to details during
school activities, and distractibility in the classroom (Swanson
et al., 2012). In-class attentive behavior is likely influenced by
cognitive competencies, such as executive functions, but we
included it as a non-cognitive measure because it captures aspects
of students’ behavioral engagement in the classroom that are
not fully captured by cognitive measures of attentional control
and working memory.

Attentional deficits and issues with behavioral self-control
are common among students with reading, mathematics, and
comorbid learning difficulties (Willcutt et al., 2013), and have
long-term consequences. In a large-scale longitudinal study,
Smart et al. (2017) found that the combination of learning
difficulties and comorbid attentional and behavioral deficits
resulted in a 16-fold increase in the odds of dropping out

of school and a 2-fold increase in the odds of employment
difficulties in early adulthood.

Current Study
The current study provides a broad assessment of the domain-
general cognitive, as well as the non-cognitive factors, that are
common and unique to individual differences in reading and
mathematics achievement and in the prediction of comorbid
learning difficulties. As noted, identifying the domain-general
cognitive abilities that contribute to mathematics and reading
achievement will have implications for the development of
interventions for students who are at-risk for academic
difficulties (Fuchs et al., 2013, 2019, 2020). The inclusion of
non-cognitive factors greatly broadens the study of these at-
risk students and could have implications for understanding
their long-term engagement in the domain. For instance, above-
average levels of mathematics anxiety could result in an avoidance
of mathematics that over time will exacerbate knowledge-deficits
in this domain (Hembree, 1990; Meece et al., 1990).

On the basis of prior studies, we anticipated that IQ and one
or several measures of working memory (e.g., N-back) would
emerge as common contributors to reading and mathematics
achievement, and to comorbid learning difficulties. We also
anticipated that one or several of the verbal short-term or
working memory measures would be unique (or at least relatively
more important) to reading achievement and difficulties, and
that one or several of the visuospatial measures would be unique
to mathematics achievement and difficulties. Among the non-
cognitive measures, we anticipated in-class attentive behavior
would emerge as important to mathematics and perhaps reading
achievement but were less certain about the attitudes and anxiety
measures, given the mixed findings in prior studies.

MATERIALS AND METHODS

Participants
The participants were 315 (155 boys) students enrolled in an
on-going longitudinal study conducted in collaboration with
the Columbia Public Schools in Columbia, MO, United States.
They were recruited across two cohorts from a larger group of
1,926 students who participated in an assessment of sixth-grade
mathematical competencies (see Geary et al., 2019). All 1,926
students were invited to join the longitudinal component of the
study and 342 of them and their parents did so. The 315 students
included here completed all of the seventh- and eighth-grade
assessment sessions.

Demographic information was obtained through a parent
survey. For the group of 315 students, 88% of them were non-
Hispanic, 6% were Hispanic or Latino, and the ethnic status of
the remaining students was unknown. The racial composition
was 71% White, 14% Black, 3% Asian, 1% Native American,
10% multiracial, with the remaining unknown. As a comparison,
students in the school district from which the participants were
recruited were 61% white, 20% black, 5% Asian, 7% Hispanic,
and 6% multiracial. For the current participants, parent-reported
annual household income was distributed as follows: $0–$24,999
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(9%); $25,000–$49,999 (15%); $50,000–$74,999 (9%); $75,000–
$99,999 (19%); $100,000–$149,999 (17%); and $150,000+ (15%).
Sixty-three percent of the students had at least one parent with
a college degree. Fifteen percent of the families received food
assistance, and five percent received housing assistance.

Materials
Standardized Measures
Intelligence
Full scale IQ was estimated using the Vocabulary and
Matrix Reasoning subtests of the Wechsler Abbreviated Scale
of Intelligence (WASI; Wechsler, 1999), following procedures
detailed in the manual.

Achievement and disability groups
Mathematics and reading achievement were assessed using
the Numerical Operations and Oral Reading Fluency subtests
from the Wechsler Individual Achievement Test–Third Edition
(Wechsler, 2009), respectively. The Numerical Operations items
for students of this age included basic arithmetic and continued
through fractions, algebra, geometry and calculus, solved with
pencil and paper. For Oral Reading Fluency, the student read two
passages (one at a time) under a time limit. Reading errors (added
words, misstated words) were recorded by the experimenter and
independently verified by review of an audio-recording of the
read passages. The scores were reading accuracy [total word
count – (total addition errors + total other errors)] and oral
reading fluency [(total word count – total other errors)/total
completion time]∗60, which were highly correlated (r = 0.68,
p < 0.001).

To identify groups with and without learning difficulties,
we first examined the distribution of achievement scores for
the current sample, focusing on the 25th percentile (Geary
et al., 2007; Murphy et al., 2007). For Numerical Operations,
students at the 25th percentile of the current sample were
at the 18th percentile based on national norms. Students at
or below this cutoff were considered to have mathematics
difficulties (N = 84). Using the same 18th percentile cutoff
based on national norms, 95 students were identified as having
reading difficulties based on reading accuracy scores. Only 26
students scored at or below this cutoff for reading fluency
and 25 of them were included in the reading difficulties group
based on reading accuracy. Thus, the reading difficulties group
was determined based solely on reading accuracy, although
we still conducted individual differences analyses for Oral
Reading Fluency scores.

Forty-six students fell into both groups and were classified
as having comorbid learning difficulties [National Percentile
Ranks = 6.60 (SD = 4.70) and 8.18 (SD = 5.46) for mathematics
and reading, respectively]. Forty-nine students fell into the
reading but not mathematics group and were classified as
having reading difficulties [National Percentile Ranks = 47.45
(SD = 21.91) and 9.06 (SD = 5.38) for mathematics and reading,
respectively]. Thirty-eight students fell into the mathematics but
not reading group and were classified as having mathematics
difficulties [National Percentile Ranks = 10.58 (SD = 5.37) and
40.53 (SD = 17.55) for mathematics and reading, respectively].

As a comparison group, we used the 182 students who did
not fall into any of the difficulties groups [National Percentile
Ranks = 64.60 (SD = 26.31) and 48.35 (SD = 18.65) for
mathematics and reading, respectively].

Cognitive Measures
All of the tasks are standard measures of short-term and working
memory, verbal memory, and various aspects of spatial ability.
Most of the tasks were administered on iPads using customized
programs developed through Inquisit by Millisecond.2 The verbal
memory task was administered using a customized program
developed in Qualtrics;3 manuals are available on OSF.4 With
the exception of N-back which was only administered in seventh
grade (due to time constraints), all tasks were administered in
seventh and eighth grade. The score was the mean across the
two grades, which should provide a more stable estimate of their
abilities in these areas than will scores for any single grade. We
estimated the reliabilities (ρ) of these summary scores using the
Spearman–Brown Prophecy formula applied to the test–retest
correlations across grades.

The assessment of verbal short-term memory included
a measure of passive memory for strings of words, as
well as the more standard forward digit span measure,
whereas the assessment of visuospatial memory included a
forward spatial span task (Gathercole et al., 2004). The
working memory measures involved the active retention of
information, while processing other information and included
the standard backward digit span measure and N-back. The
latter engages brain regions typically associated with working
memory but are not identical to those engaged in the
digit span task (Yaple and Arsalidou, 2018). The inclusion
of both measures thus provided a broader assessment of
working memory than the inclusion of only one of them.
The broad assessment of working memory is potentially
important because it is more consistently related to outcomes
in mathematics than are other executive functions (e.g.,
inhibition; Bull and Lee, 2014). The spatial ability measures
assessed visuospatial attention and the ability to generate
and manipulate images (Hegarty, 2018), and these too are
predictive of outcomes in mathematics (Casey et al., 1997;
Kyttälä and Lehto, 2008).

Digit span
The students hear a sequence of digits presented at 1 s intervals,
starting with three digits for the forward assessment and two
digits for the backward assessment. The task is to recall the
digit list in order (in either a forward or backward manner,
respectively) by tapping the digits on a circle of digits displayed
on the iPad screen. If the response is correct, the student moves
up to the next level. If the response is incorrect, the same level
is presented a second time. If a consecutive error occurs, the
student moves down to a lower level. Each direction (forward
and then backward) ends after 14 trials. The score was the highest
digit span correctly recalled before making two consecutive errors

2https://www.millisecond.com
3https://www.qualtrics.com
4https://osf.io/qwfk6/
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at the same span length. Estimated reliabilities for the current
sample were adequate for both forward (ρ = 0.68) and backward
(ρ = 0.73) digit span.

Verbal memory
The verbal memory measure was taken from a longer proactive
inhibition task. The student listens to a recording of a set of
four animal words, presented in 1-s intervals using the iPad
speakers. To prevent rehearsal, the student immediately names
colors from a sheet with rows of different colors for 10 s. After
10 s, a tone prompts the student to recall the words, in order.
Responses are recorded by the experimenter using Qualtrics
on the iPad. The process is repeated with two new sets of
four animal words, and finally with a set of four fruit words.
Items were taken from Paivio et al. (1968) and Gilhooly and
Logie (1980). The words were chosen based on Imagery (I) and
Concreteness (C) ratings (1 to 7 scale), with all scores > 6. The
one exception was ‘lime’ (imagery of 5.7), which was included
because it was the closest (to 6.0) available one-syllable fruit
word. Each quartet included one moderate to high frequency
word and three low frequency words (<10/million), and three
1-syllable and one 2-syllable words. All within-list words started
with different letters and presentation orders were initially
randomized, and subsequently presented in the same order to all
students. We used percent correct on the first quartet of words
as a measure of short-term verbal memory (ρ = 0.40 for the
current sample). The ρ is low but the internal consistency of
the measure, based on the eight trials across grades, is adequate
(α = 0.66).

We did not use performance on the three other quartets of
words because there were (as expected) memory interference
effects for these quartets and thus they did not provide measures
of basic verbal memory.

N-back
Following Jaeggi et al. (2010), students completed an adaptive
version of a single N-back task. The student is shown a “target”
letter and then a sequence of 20 randomly determined stimulus
letters (all consonants; 6 are target; 14 are not) and asked to
indicate whether the currently presented letter is a target by
tapping a key, or is not a target by not responding. The target
letter could be the first stimuli presented (N = 0) or could be
the same as the one that preceded it (N = 1) or the same as one
presented in the 2 (N = 2) or 3 (N = 3) trials that preceded it.

For each trial a letter is presented for 500 ms, followed by
a 2,500 ms blank screen, and then by the next letter in the
sequence. Students have the entire 3,000 ms to respond by
tapping a key if they detect a target. After three 10-item practice
blocks for levels N = 0 to N = 2, all participants start on level
N = 0. Depending on performance, they move up, stay on the
current level, or move down a level for five total blocks (<3
errors – move up; 3–5 errors – repeat level; >5 errors – move
down). Performance feedback (percent correct) is displayed after
each block. Hits (H), Misses, False Alarms (FA), and Correct
Rejections are recorded and summarized by block. The score is
(H – FA)/(total blocks). The estimated split-half reliability for the
current sample was 0.74.

Spatial span
Spatial span was assessed using the forward Corsi Block Tapping
Task (Kessels et al., 2000). Students are presented with a display
of nine squares that appear to be randomly arranged. The squares
“light up” in a pre-determined sequence, and the task is to tap
on the squares in the same order they were lit. The sequence
length starts at two squares and could increase to up to nine
squares. Students have two attempts at each sequence length.
If one of the sequences is recalled correctly, the next sequence
level begins; if both sequences at the same level are recalled
incorrectly, the task is terminated. The score is the total number
of correctly recalled sequences across the whole task (ρ = 0.67 for
the current sample).

Spatial ability
Judgment of Line Angle and Position Test (JLAP) was the first
spatial measure (Collaer et al., 2007), and assesses visuospatial
attention (Benton et al., 1978). The task requires students to
match the angle of the single presented line to 1 of 15-line options
in an array at the bottom center of the iPad screen. The 20 test
items are presented one at a time, and the student uses the touch
screen to select the matching angle. Each stimulus is presented
for up to 10 s, and when a selection is made, a reaction time is
recorded, and the next stimulus is immediately presented. The
outcome is the number correct (ρ = 0.71 for the current sample).

The Mental Rotation Task (MRT-A; Peters et al., 1995) was the
second spatial measure, and assesses the ability to generate and
manipulate images (Hegarty, 2018). On each trial, the student
views images of 3D drawings of 10 connected cubes. For each
trial, there is one target and four choice options, and the task is to
select the two options that are rotations of the target figure. After
four self-paced practice problems, students are presented with 24
problems in two blocks of 12 problems each (3 min per block).
The score is the number of problems on which the student chose
both correct options (ρ = 0.83 for the current sample).

Non-cognitive Measures
Due to assessment delays related to the Covid-19 pandemic, we
only have attitudes and anxiety data for seventh grade.

Academic attitudes
Mathematics and English attitudes were assessed using measures
from the Michigan Study of Adolescent and Adult Transitions.5

The measures are designed to assess students’ self-efficacy in and
their beliefs about the long-term utility of these areas (Meece
et al., 1990; Eccles and Wigfield, 2002). The mathematics measure
included seven items on a 1-to-7 Likert scale; e.g., “How much do
you like doing math?” rated from 1 (a little) to 7 (a lot), with the
six English items being similar.

Previous analyses using an exploratory principle components
factor analysis (EFA), as well as parallel and MAP analyses (R
Core Team, 2017), indicated that the mathematics items defined
two factors and the English items one factor (Geary et al., 2020).
For mathematics attitudes, the loadings of individual items on
their respective factors were consistent with distinct utility (Items
1 to 4, inclusive) and self-efficacy (Items 5 to 7) dimensions. The

5http://garp.education.uci.edu/msalt.html
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scores were the sum of the corresponding items (α = 0.71 for
utility, and 0.78 for self-efficacy). The English attitudes score was
the mean of the six items (α = 0.83).

Mathematics anxiety
The 10 items were adapted from Hopko et al. (2003). Each item
(e.g., “Taking an examination in a math course”) was rated on
a 1 (low anxiety) to 5 (high anxiety) scale (Geary et al., 2019).
All three analyses (i.e., EFA, MAP, parallel) indicated two factors.
The first included five items that involved learning mathematics
(e.g., “Watching a teacher work an algebraic equation on the
board”; items 1, 3, 6, 7, 9) and the second four items that
involved some type of evaluation (e.g., “Taking an examination
in a math course”; items 2, 4, 5, 8), and the final item (i.e.,
“In general, how anxious are you about math?”). Composite
scores were based on the mean of the five learning anxiety items
(α = 0.77) and the five evaluation anxiety items (α = 0.86).
The two core factors identified here are consistent with previous
findings (Baloglu and Koçak, 2006).

In-class attentive behavior
In-class attentive behavior was assessed using the Strength
and Weaknesses of ADHD-Symptoms and Normal-Behavior
(SWAN) measure (Swanson et al., 2012). The items assess
attentional deficits and hyperactivity, but the scores are normally
distributed and based on the behavior of a typical student.
The nine item (e.g., “Gives close attention to detail and
avoids careless mistakes”) attention subscale was distributed
to the students’ seventh-grade and eighth-grade mathematics
and English language arts teachers who were asked to rate the
behavior of the student relative to other students of the same age
on a 1 (far below) to 7 (far above) scale. Ratings were consistent
across items (αs = 0.98), mathematics and language arts teachers
within grades (rs = 0.69 to 0.73), and across grades (rs = 0.67 to
0.88). Given this consistency, we calculated one in-class attentive
behavior score based on mean ratings across teachers and grades
(α = 0.92).

Procedure
In seventh grade, the students were administered the intelligence,
achievement, attitudes, anxiety, and cognitive measures
individually at a quiet location in their school across three
45-min assessments. As shown in Table 1, with the exception of
the verbal memory task (due to time constraints), the cognitive
measures were administered during the first semester of seventh
grade, and the remaining measures during the second semester.
In eighth grade, all of the cognitive tasks were assessed in the
fall semester and the achievement measures in the spring. In
the spring of both grades, students competed the attitudes and
anxiety measures and teachers completed the in-class attentive
behavior survey.

Parents provided informed written consent, and assent was
obtained from adolescents for all assessments. The University
of Missouri Institutional Review Board (IRB; Project 2002634,
“Algebraic Learning and Cognition”) approved all methods
included in this study.

TABLE 1 | Age of administration and timing of assessments.

Task name Seventh grade Eighth grade

Fall Spring Fall Spring

Mean age at test 153 156 164 168

Digit span forward x x

Digit span backward x x

N-back x

Spatial span x x

Judgment of Line Angle and Position x x

Mental Rotations Test x x

Verbal memory x x

Intelligence x

Oral Reading Fluency x

Numerical Operations x

In-class attentive behavior x x

Mathematics efficacy x x

Mathematics utility x x

English attitudes x x

Mathematics anxiety for learning x x

Mathematics anxiety for evaluation x x

Age is in months, SDs range between 4.47 and 4.96 months.

Analyses
The first goal was to identify common and unique predictors of
individual differences in reading and mathematics achievement.
To do so, we first used Bayesian regressions to identify the best
set of cognitive and non-cognitive predictors of achievement
(Gallistel, 2009; Rouder and Morey, 2012). For this we used the
BayesFactor package in R (v0.9.12-4.2; Morey and Rouder, 2015)
with default prior scales for standardized slopes (rscale = 1/2).
Bayes Factors provide information regarding whether the
inclusion of specific predictors improves model fit above and
beyond other predictors simultaneously considered in the model.
This method is more robust than standard linear regression
with correlated variables. Bayes Factors are higher when one
of two highly correlated variables are included in relation to
models containing both or none, providing the ability to compare
the relative contribution of individual predictors. In separate
analyses, we selected the best combination of cognitive and
then non-cognitive predictors of standardized eighth-grade Oral
Reading Fluency and Numerical Operations scores. The variables
identified from each of these analyses were subsequently used
in a follow-up analysis to identify the best combination of
cognitive and non-cognitive predictors of these achievement
scores. The sequence of analyses provides structured, step-by-
step information on the best set of cognitive, non-cognitive, and
combined predictors of individual differences in achievement.
The results are identical to those that would emerge if all variables
were considered simultaneously, but the approach used here
provides more information regarding the relative importance of
different combinations of cognitive and non-cognitive variables.

The first set of Bayes Factors are noted as MCm, where m = the
specific set of cognitive (C) predictors in the model (M) and
comparisons as BCmn, with B representing the comparison ratio
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of Bayes Factors between models m and n. BCm0 represents a
contrast of the selected model to a null model with no predictors.
These analyses assess the likelihood of the data for alternative
models. For the cognitive measures, the initial analysis included
digit span forward, digit span backward, N-back, Corsi, JLAP,
MRT, verbal memory, and IQ as potential predictors. The first
model identified the most probable subset of these variables as
predictors of the achievement outcome. For the non-cognitive
measures, we included all of the English and math attitudes
and math anxiety variables in the prediction of both math and
reading achievement as a way to assess the convergent and
discriminant validity of these variables. That is to determine
if students are making subject-specific discriminations in their
self-reports (they were, below).

For instance, the full model (including all selected cognitive
predictors from the first regression) MC1 for the prediction
of Oral Reading Accuracy included digit span forward, JLAP,
verbal memory, and IQ. Each of these predictors were then
dropped one-by-one and change in the odds of the model
was evaluated. Dropping IQ resulted in model MC2 and the
comparison to the full model as BC21. The latter resulted in a
Bayes Factor ratio of 5.17 × 106, meaning the model without
IQ was <1% as probable as the model with it. Dropping verbal
memory resulted in a model that was 32.35% as probable (MC31)
or stated differently the model including verbal memory was
preferred 3.09 times to 1 over the model without it. Here,
lower Bayes Factors indicate greater evidence for a predictor.
As a rule of thumb, models that are less than 33% as probable
without the variable provide evidence for retaining it, and models
that are less than 10% as probable provide strong evidence for
retaining it (Jeffreys, 1961; Raftery, 1995). We used the 33%
criterion for variable retention, corresponding to a commonly
used cutoff for positive evidence (e.g., Bayes factor of three, Kass
and Raftery, 1995); stated differently, to be retained the model
with the variable had to be preferred at least 3 to 1 over the
model without it.

Once the best set of predictors was identified, we used multi-
level models to estimate the relative importance of the common
and unique predictors of Oral Reading Accuracy and Numerical
Operations and Oral Reading Fluency and Numerical Operations
scores using Proc Mixed (SAS Institute, 2014). Students were
distributed among six schools and there were small but significant
school differences for Oral Reading Accuracy, F(5,309) = 3.84,
p = 0.002, r2 = 0.06, and Numerical Operations, F(5,309) = 5.42,
p < 0.001, r2 = 0.08. To model these effects, students were
assigned as level 1 units and schools as level 2 units in the
multi-level models, which allowed intercepts to vary randomly
for schools. Achievement scores and predictor variables were
centered (M = 0, SD = 1) and Oral Reading Accuracy (or
Fluency) and Numerical Operations scores were nested in an
overall achievement variable. Differences across reading and
mathematics achievement were estimated with test by predictor
interactions. Initially, all variables identified in the Bayesian
analyses were included as fixed effects, along with the interactions
with test. Non-significant interactions were dropped and changes
in model fit were assessed using the Bayesian Information
Criterion (smaller values indicate better fit) and negative log

likelihood estimate. For nested models, values for the latter can
be evaluated using a χ2 statistic (Wilks, 1938).

Next, logistic regressions were used to predict inclusion or not
in each of the three learning difficulties groups (i.e., comorbid
difficulties, reading difficulties, mathematics difficulties) relative
to the group of typically achieving students, and inclusion in the
mathematics difficulties as compared to the reading difficulties
group. The variables used in each regression were based on the
results from the Bayesian and multi-level models. These sets
of variables provide the best estimate of the combination of
factors that predict different forms of learning difficulty and a
means to estimate the relative importance of each individual
predictor. Moreover, the Cohen’s d of the log odds of group
membership is identical to the multivariate Mahalanobis distance
(i.e., multivariate d) and thus provides a multivariate estimate
of the magnitude of the differences across the students in
the learning difficulties groups and students in the typically
achieving group.

RESULTS

Mean scores across measures are shown in Table 2 for the
entire sample and the samples of typically achieving and
learning difficulty groups. Whole-sample correlations among the
measures are shown in Figure 1.

Bayesian Regressions
Oral Reading Accuracy
As noted, the best set of cognitive predictors of Oral Reading
Accuracy scores were digit span forward, JLAP, verbal memory,
and IQ (see Table 3). The BCm0 is very large for this first model
and all alternative models, providing strong evidence for some
combination of cognitive predictors of Oral Reading Accuracy
relative to the null. Dropping IQ and digit span forward resulted
in models that were <1% as probable as the models without
them. Dropping verbal memory and JLAP resulted in models
that were 32.35% (MC31) or 14.05% (MC41) as probable as the
models with them; or stated otherwise, the models including
verbal memory and JLAP were preferred 3.09 and 7.12 times to
1 relative to models without them. On the basis of these results,
all four variables were retained for the combined analyses.

The second section of Table 3 indicates that the best set
of non-cognitive predictors of Oral Reading Accuracy included
mathematics anxiety for learning, English attitudes, and in-
class attentive behavior. Dropping the latter resulted in a model
(MNC2) that was <1% as probable as the model with it. However,
dropping mathematics anxiety and English attitudes resulted
in models that were 59.46% (MNC3) and 83.27% (MNC4),
respectively, as probable as the models with them respectively;
or stated otherwise, the models including mathematics anxiety
and English attitudes were preferred 1.68 and 1.20 times to 1
relative to models without them. The two latter results indicate
that inclusion of these variables does not add substantively to
the prediction of Oral Reading Accuracy and thus only in-class
attentive behavior was retained for the combined analyses.
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TABLE 2 | Means for cognitive and non-cognitive measures.

Overall (N = 315) Typically achieving
(N = 182)

Comorbid
difficulty (N = 46)

d Reading difficulty (N = 49) d Math difficulty (N = 38) d

Measure M (SD) M (SD) M (SD) M (SD) M (SD)

Achievement

Oral Reading Accuracy 92.71 (12.52) 99.65 (8.49) 77.35 (6.73) 1.78 78.47 (5.96) 1.69 96.42 (7.91) 0.26

Oral Reading Fluency 103.58 (11.79) 108.59 (8.49) 89.93 (10.84) 1.58 96.08 (10.04) 1.06 105.76 (10.87) 0.24

Numerical Operations 98.85 (18.22) 108.64 (14.81) 75.20 (7.16) 1.84 99.37 (9.44) 0.51 79.95 (5.77) 1.57

Cognitive

Intelligence 105.07 (13.09) 110.77 (10.70) 90.33 (10.43) 1.56 102.27 (11.28) 0.65 99.21 (11.01) 0.88

N-back 3.80 (0.76) 3.95 (0.76) 3.38 (0.71) 0.75 3.72 (0.72) 0.30 3.68 (0.66) 0.36

Digit span forward 5.86 (0.99) 6.16 (0.97) 5.14 (0.76) 1.03 5.46 (0.82) 0.71 5.83 (0.90) 0.33

Digit span backward 4.72 (1.12) 5.14 (1.07) 3.78 (0.80) 1.21 4.30 (0.78) 0.75 4.38 (1.06) 0.68

Verbal memory 0.68 (0.23) 0.74 (0.20) 0.53 (0.25) 0.91 0.61 (0.21) 0.57 0.65 (0.24) 0.39

Spatial span 8.83 (1.96) 9.26 (1.91) 7.61 (1.94) 0.84 8.76 (1.65) 0.26 8.34 (1.91) 0.47

Judgment of Line Angle 13.57 (2.86) 14.45 (2.70) 11.74 (2.48) 0.95 12.74 (2.95) 0.59 12.63 (2.32) 0.64

Mental Rotation Test 9.88 (4.31) 11.00 (4.27) 6.41 (2.60) 1.06 9.85 (3.95) 0.27 8.76 (4.17) 0.52

Non-cognitive

In-class attentive behavior 4.90 (1.35) 5.49 (1.07) 3.32 (1.15) 1.61 4.89 (1.03) 0.44 3.97 (1.12) 1.13

Math utility 5.25 (0.97) 5.36 (0.96) 4.89 (0.93) 0.48 5.48 (0.82) −0.12 4.89 (1.09) 0.48

Math efficacy 5.02 (1.02) 5.23 (0.87) 4.38 (1.01) 0.83 5.18 (0.94) 0.05 4.48 (1.27) 0.74

English attitudes 5.06 (1.11) 5.19 (1.00) 4.88 (1.22) 0.28 4.85 (1.10) 0.31 4.92 (1.38) 0.24

Math anxiety for evaluation 2.61 (0.96) 2.54 (0.95) 2.80 (0.96) −0.27 2.55 (0.94) −0.01 2.81 (1.02) −0.28

Math anxiety for learning 1.71 (0.65) 1.58 (0.55) 2.07 (0.73) −0.75 1.70 (0.69) −0.18 1.91 (0.76) −0.51

d = (MTypical – MDifficulty)/pooled SD. The achievement and intelligence scores are standardized based on national norms (M = 100, SD = 15). Raw scores are presented
for all other variables.

The combined analysis included digit span forward, JLAP,
verbal memory, IQ, and in-class attentive behavior. As shown
in Table 3, the best model included all five predictors. However,
dropping verbal memory resulted a model that was 66.06%
(MA4) as probable as the model with it, and thus this variable was
dropped. The other models provide evidence for the retention of
the remaining variables.

Oral Reading Fluency
The bottom sections of Table 3 show the Bayesian results
for the prediction of Oral Reading Fluency scores. The best
set of cognitive predictors included digit span forward, verbal
memory, and IQ. The BCm0 is very large for this first model
and all alternative models, providing strong evidence for some
combination of cognitive predictors of Oral Reading Fluency. As
can be seen, there is strong evidence for the retention of each of
these variables.

The next section of Table 3 shows that the top set of
non-cognitive predictors of Oral Reading Fluency included
mathematics utility, English Attitudes, mathematics anxiety for
evaluation, and in-class attentive behavior. Dropping each of
these variables in turn resulted in models that were <12.76% as
probable as the model with them, or models with each of these
predictors are preferred at least 7.84 to 1 over models without
them. Thus, all were retained for the combined analysis.

The combined analyses included digit span forward, verbal
memory, IQ, mathematics utility, English Attitudes, mathematics
anxiety for evaluation, and in-class attentive behavior. As shown
in the final section of Table 3, all of these predictors were in

the best model, except for mathematics utility and mathematics
anxiety for evaluation. Dropping each of the remaining predictors
in turn resulted in models that were <32.17% as probable as the
models with them; or stated otherwise, the models with each
of these predictors were preferred at least 3.11 to 1 over the
models without them.

In all, digit span forward, IQ, and in-class attentive behavior
were common predictors of Oral Reading Accuracy and Oral
Reading Fluency, whereas JLAP was unique to the former and
Verbal Memory and English Attitudes to the latter.

Numerical Operations
A summary of the Bayesian models for the prediction of
Numerical Operations scores is presented in Table 4. The first
of these sections shows that the best set of cognitive predictors
included digit span forward, JLAP, MRT, verbal memory, and
IQ. Dropping IQ resulted in a substantive reduction in model
fit (<1% as probable as the model with it). Dropping verbal
memory (55.09% as probable, or the model with it is preferred
1.82 to 1 relative to the model without it) and digit span forward
(79.40% as probable, or the model with it is preferred 1.26
to 1 relative to the model without it) resulted in models that
were not substantively different than the models with them.
There was positive evidence for the retention of MRT (19.09%
as probable, or the model with it is preferred 5.24 to 1 to the
model without it) and JLAP (10.31% as probable, or the model
with it is preferred 9.7 to 1 to the model without it). On the
basis of these findings, JLAP, MRT, and IQ were retained for
the final analyses.
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FIGURE 1 | Correlations among predictors and reading and mathematics achievement.

As shown in Table 4, there was strong evidence for the
inclusion of mathematics self-efficacy and in-class attentive
behavior among the non-cognitive predictors of Numerical
Operations scores. Thus, the final combined analyses included
JLAP, MRT, IQ, mathematics self-efficacy, and in-class attentive
behavior. The best model included all of these variables.
Dropping each of the predictors resulted in models that were less
than 26.57% as probable as models with them; in other words,
the models with them were preferred at least 3.76 to 1 over the
models without them.

Intelligence and Working Memory
On the basis of prior research, we anticipated one or several of
the working memory measures would emerge as predictors of
reading and mathematics achievement (Swanson et al., 2009b;
Lee and Bull, 2016; Geary et al., 2017). This was the case for Oral
Reading Fluency but not for Oral Reading Accuracy or Numerical
Operations scores. One possibility is that inclusion of IQ in the
analyses obscured any relation between working memory and
these outcomes, given the correlation between performance on
IQ and working memory measures (Ackerman et al., 2005). To
assess this possibility, we conducted post hoc analyses for Oral
Reading Accuracy and Numerical Operations, dropping IQ.

For Oral Reading Accuracy, dropping IQ resulted in the
identification of digit span backward as a predictor, along with
digit span forward, JLAP and in-class attentive behavior as in
the original analyses. Similarly, there was no change in the best
model for predicting Numerical Operations scores, except that
digit span backward replaced IQ.

Multi-Level Models
Oral Reading Accuracy and Numerical Operations
The Bayesian analyses identified IQ, in-class attentive behavior,
and JLAP as common predictors of Oral Reading Accuracy and
Numerical Operations scores, and digit span forward as unique
to reading achievement and MRT and mathematics self-efficacy
as unique to mathematics achievement. These six variables along
with achievement test (reading = 0, mathematics = 1) and test by
variable interactions were included in the multi-level models.

The full model revealed non-significant interactions between
test and IQ (p = 0.391) and test and JLAP (p = 0.599). Dropping
these two interactions did not substantively change overall
model fit [1BIC = 2.4, χ2(2) = 1.1, p = 0.577]. The estimates
associated with the model that did not include these interactions
are shown in Table 5. The highly significant main effects,
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TABLE 3 | Bayes factor analyses of predictors of oral reading achievement.

Oral Reading Accuracy

Model: Top Cognitive Predictors BCm0 Excluded BCm1

MC1 DSF + JLAP + Verbal memory + IQ 6.92 × 1023 – 1

MC2 DSF + JLAP + Verbal memory 3.58 × 1018 IQ 0.0000

MC3 DSF + JLAP + IQ 2.24 × 1023 Verbal memory 0.3235

MC4 DSF + Verbal memory + IQ 9.72 × 1022 JLAP 0.1405

MC5 + JLAP + Verbal memory + IQ 4.76 × 1019 DSF 0.0000

Model: Top Non-cognitive Predictors BNCm0 Excluded BNCm1

MNC1 English attitudes + MAnxLearn + Attentive behavior 1.01 × 1012 – 1

MNC2 English attitudes + MAnxLearn 2.49 × 103 Attentive behavior 0.0000

MNC3 English attitudes + Attentive behavior 5.98 × 1011 MAnxLearn 0.5946

MNC4 MAnxLearn + Attentive behavior 8.38 × 1011 English attitudes 0.8327

Model: Top Combined Predictors BAm0 Excluded BAm1

MA1 DSF + JLAP + Verbal memory + IQ + Attentive behavior 1.37 × 1025 – 1

MA2 DSF + JLAP + Verbal memory + IQ 6.92 × 1023 Attentive behavior 0.0504

MA3 DSF + JLAP + Verbal memory + Attentive behavior 1.03 × 1023 IQ 0.0075

MA4 DSF + JLAP + IQ + Attentive behavior 9.07 × 1024 Verbal memory 0.6606

MA5 DSF + Verbal memory + IQ + Attentive behavior 2.67 × 1024 JLAP 0.1948

MA6 JLAP + Verbal memory + IQ + Attentive behavior 2.07 × 1021 DSF 0.0002

Oral Reading Fluency

Model: Top Cognitive Predictors BCm0 Excluded BCm1

MC1 DSF + Verbal memory + IQ 2.66 × 1024 – 1

MC2 DSF + Verbal memory 7.03 × 1017 IQ 0.0000

MC3 DSF + IQ 4.57 × 1022 Verbal memory 0.0172

MC4 Verbal memory + IQ 4.45 × 1018 DSF 0.0000

Model: Top Non-cognitive Predictors BCm0 Excluded BCm1

MNC1 MUtility + English attitudes + MAnxEval + Attentive behavior 1.22 × 1014 – 1

MNC2 MUtility + English attitudes + MAnxEval 4.10 × 102 Attentive behavior 0.0000

MNC3 MUtility + English attitudes + Attentive behavior 1.56 × 1013 MAnxEval 0.1276

MNC4 MUtility + MAnxEval + Attentive behavior 1.86 × 1012 English attitudes 0.0152

MNC5 English attitudes + MAnxEval + Attentive behavior 9.21 × 1012 MUtility 0.0752

Model: Top Combined Predictors BAm0 Excluded BAm1

MA1 DSF + Verbal memory + IQ + English attitudes + Attentive behavior 3.30 × 1026 – 1

MA2 DSF + Verbal memory + IQ + English attitudes 2.40 × 1025 Attentive behavior 0.0727

MA3 DSF + Verbal memory + IQ + Attentive behavior 1.06 × 1026 English Attitudes 0.3217

MA4 DSF + Verbal memory + English attitudes + Attentive behavior 8.01 × 1023 IQ 0.0024

MA5 DSF + IQ + English attitudes + Attentive behavior 2.21 × 1025 Verbal memory 0.0366

MA6 Verbal memory + IQ + English attitudes + Attentive behavior 5.42 × 1021 DSF 0.0000

DSF, Digit Span Forward; JLAP, Judgment of Line Angle and Position Test; MRT, Mental Rotation Test; MAnxLearn, Mathematics Anxiety for Learning; MAnxEval,
Mathematics Anxiety for Evaluation; MUtility, Mathematics Utility; MC, Models for cognitive variables; MNC, Models for non-cognitive variables; MA, Models for all, that is,
top cognitive and non-cognitive variables.

without significant interactions for IQ and JLAP (ps < 0.001),
confirm the importance of these variables in the prediction
of overall achievement, that is, achievement across reading
and mathematics.

The significant interactions indicate that the relative
importance of the predictor varies across reading and
mathematics achievement, with positive estimates indicating

larger effects in the prediction of reading achievement and
negative estimates indicating larger effects in the prediction of
mathematics achievement. The interactions are consistent with
the Bayesian analyses, with digit span forward being relatively
more important for the prediction of reading accuracy and MRT
and mathematics self-efficacy for mathematics achievement.
In-class attentive behavior predicts reading and mathematics
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TABLE 4 | Bayes factor analyses of predictors of mathematics achievement.

Numerical Operations

Model: Top Cognitive Predictors BCm0 Excluded BCm1

MC1 DSF + JLAP + MRT + Verbal memory + IQ 1.80 × 1032 – 1

MC2 DSF + JLAP + MRT + Verbal memory 3.08 × 1022 IQ 0.0000

MC3 DSF + JLAP + MRT + IQ 9.94 × 1031 Verbal memory 0.5509

MC4 DSF + JLAP + Verbal memory + IQ 3.45 × 1031 MRT 0.1909

MC5 DSF + MRT + Verbal memory + IQ 1.86 × 1031 JLAP 0.1031

MC6 JLAP + MRT + Verbal memory + IQ 1.43 × 1032 DSF 0.7940

Model: Top Non-cognitive Predictors BCm0 Excluded BCm1

MNC1 Math efficacy + Attentive behavior 3.23 × 1040 – 1

MNC2 Math efficacy 7.32 × 1010 Attentive behavior 0.0000

MNC3 Attentive behavior 4.17 × 1034 Math efficacy 0.0000

Model: Top Combined Predictors BAm0 Excluded BAm1

MA1 JLAP + MRT + IQ + Math Efficacy + Attentive behavior 7.81 × 1051 – 1

MA2 JLAP + MRT + IQ + Math efficacy 3.12 × 1036 Attentive behavior 0.0000

MA3 JLAP + MRT + IQ + Attentive behavior 3.54 × 1048 Math efficacy 0.0005

MA4 JLAP + MRT + Math efficacy + Attentive behavior 3.72 × 1048 IQ 0.0005

MA5 JLAP + IQ + Math efficacy + Attentive behavior 2.07 × 1051 MRT 0.2657

MA6 MRT + IQ + Math efficacy + Attentive behavior 1.16 × 1051 JLAP 0.1485

DSF, Digit Span Forward; JLAP, Judgment of Line Angle and Position Test; MRT, Mental Rotation Test; MC, Models for cognitive variables; MNC, Models for non-cognitive
variables; MA, Models for all, that is, top cognitive and non-cognitive variables.

achievement, but the interaction reveals that it is relatively more
important for mathematics.

Oral Reading Fluency and Numerical Operations
The Bayesian analyses identified IQ and in-class attentive
behavior as common predictors of Oral Reading Fluency
and Numerical Operations scores. Digit span forward, verbal

TABLE 5 | Estimates from multi-level model for Oral Reading Accuracy and
Numerical Operations.

Effect Estimate (se) t-Test p

Fixed effects

Intercept −0.012 (0.06) −0.18 0.867

Intelligence 0.234 (0.04) 5.71 0.000

In-class attentive behavior 0.390 (0.05) 8.26 0.000

JLAP 0.134 (0.04) 3.81 0.000

Digit span forward 0.078 (0.04) 1.78 0.077

Mental Rotation Test (MRT) 0.100 (0.05) 2.14 0.033

Mathematics efficacy 0.171 (0.04) 3.93 0.000

Test by in-class attentive behavior −0.184 (0.06) −3.13 0.002

Test by digit span forward 0.176 (0.06) 3.09 0.002

Test by MRT −0.121 (0.06) 2.09 0.037

Test by mathematics efficacy −0.205 (0.06) −3.58 0.000

Random effects

Intercepts: Schools 0.015 (0.01) 1.11 0.133

Intercepts: Students in schools 0.061 (0.03) 2.07 0.019

Residual 0.459 (0.04) 12.55 0.000

JLAP, Judgment of Line Angle and Position.

memory, and English Attitudes were unique to reading fluency,
whereas JLAP, MRT and mathematics self-efficacy were unique
to mathematics achievement. These eight variables along with
achievement test (reading = 0, mathematics = 1) and test by
variable interactions were included in the multi-level models.

The full model revealed non-significant interactions between
test and IQ (p = 0.877) and test and MRT (p = 0.953). Dropping
these two interactions did not substantively change overall model
fit [1BIC = 1.8, χ2(2) < 1, p < 0.001]. The estimates associated
with the model that did not include these interactions are shown
in Table 6. The highly significant main effects, without significant
interactions for IQ and MRT (ps < 0.001), indicate that these
variables predicted achievement in both domains.

Again, the significant interactions indicate that the
relative importance of the predictor varies across reading
and mathematics achievement, with positive estimates
indicating larger effects in the prediction of reading fluency
and negative estimates indicating larger effects in the prediction
of mathematics achievement. The interactions indicate stronger
relations between in-class attentive behavior, JLAP, and
mathematics efficacy and mathematics achievement than reading
fluency. In contrast, digit span forward, verbal memory, and
English attitudes were more strongly related to reading fluency
than to mathematics achievement.

Logistic Regressions
Comorbid Learning Difficulties
The first logistic regression included the common predictors
of reading and mathematics achievement, that is, IQ, in-class
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TABLE 6 | Estimates from multi-level model for Oral Reading Fluency and
Numerical Operations.

Effect Estimate (se) t-Test p

Fixed effects

Intercept −0.007 (0.05) −0.14 0.893

Intelligence 0.193 (0.04) 4.82 0.000

In-class attentive behavior 0.391 (0.05) 8.21 0.000

Digit span forward 0.077 (0.04) 1.76 0.079

Verbal memory 0.059 (0.04) 1.38 0.167

English attitudes 0.006 (0.04) 0.15 0.881

JLAP 0.116 (0.04) 2.61 0.010

Mental Rotation Test (MRT) 0.119 (0.04) 3.38 0.001

Mathematics efficacy 0.179 (0.04) 4.18 0.000

Test by in-class attentive behavior −0.198 (0.06) −3.20 0.002

Test by digit span forward 0.164 (0.06) 2.77 0.006

Test by verbal memory 0.107 (0.06) 1.84 0.067

Test by English attitudes 0.099 (0.06) 1.75 0.080

Test by JLAP −0.106 (0.06) −1.82 0.070

Test by mathematics efficacy −0.321 (0.06) −5.55 0.000

Random effects

Intercepts: Schools 0.007 (0.01) 0.89 0.186

Intercepts: Students in schools 0.033 (0.03) 1.17 0.121

Residual 0.468 (0.04) 12.55 0.000

JLAP, Judgment of Line Angle and Position.

attentive behavior, and JLAP. The overall model was highly
significant, Wald χ2(3) = 48.01, p < 0.001, and correctly classified
95.5% of the students as having comorbid learning difficulties
or not. However, the estimate for JLAP was not significant
(p = 0.070) and thus the regression was rerun with only IQ and
in-class attentive behavior.

The resulting model was highly significant, Wald
χ2(2) = 48.32, p < 0.001, as were the effects for IQ and in-
class attentive behavior (ps < 0.001). One SD increases in
IQ and in-class attentive behavior resulted in 4.6-fold [95%
confidence interval (CI) = 2.4, 8.7] and 4.7-fold [CI = 2.5,
9.0] increases in the odds of being in the typically achieving
group, respectively. The combination correctly classified
94.6% of students as having comorbid learning difficulties or
not, which is equivalent to a very large multivariate effect,
D = 2.44 [CI = 2.03, 2.85]. As a comparison, the univariate
effect sizes for IQ (d = 1.56) and in-class attentive behavior
(d = 1.61) were large, as shown in Table 2, but smaller than the
combined effect.

Reading Difficulties
The first logistic regression included the best predictors of
reading achievement identified in the prior analyses, that is,
IQ, in-class attentive behavior, JLAP, and digit span forward.
The overall model was highly significant, Wald χ2(4) = 32.52,
p < 0.001, and correctly classified 79% of the students as
having reading difficulties or not. However, the estimate for
in-class attentive behavior was not significant (p = 0.077) and
thus the regression was rerun with only IQ, JLAP, and digit
span forward.

The resulting model was highly significant, Wald
χ2(3) = 30.78, p < 0.001, as were the individual effects
(ps < 0.05). One SD increases in IQ, JLAP, and digit span
forward resulted in 1.9-fold [CI = 1.2, 2.9], 1.5-fold [CI = 1.0,
2.2], and 2-fold [CI = 1.3, 3.0] increases in the odds of being
in the typically achieving group, respectively. The combination
correctly classified 78% of students as having reading difficulties
or not, which is equivalent to a large multivariate effect D = 1.08
[CI = 0.74, 1.41]. As a comparison, the univariate effect sizes for
IQ (d = 0.65), JLAP (d = 0.59), and digit span forward (d = 0.71)
were moderate and smaller than the combined effect.

Mathematics Difficulties
The first logistic regression included the best predictors of
mathematics achievement identified in the prior analyses, that
is, IQ, in-class attentive behavior, JLAP, MRT, and mathematics
self-efficacy. The overall model was highly significant, Wald
χ2(5) = 39.80, p < 0.001, and correctly classified 87.7% of the
students as having mathematics difficulties or not. However,
the estimates for JLAP (p = 0.107) and MRT (p = 0.772) were
not significant.

Dropping MRT resulted in a significant effect for JLAP
(p = 0.044), but a substantive decrease in the percentage (79%) of
students who were correctly classified. Dropping other individual
variables indicated that the most parsimonious model only
included IQ and in-class attentive behavior, Wald χ2(2) = 38.57,
p < 0.001. One SD increases in IQ and in-class attentive behavior
resulted in 2.2-fold [CI = 1.4, 3.7] and 3.6-fold [CI = 2.1,
6.2] increases in the odds of being in the typically achieving
group. The combination correctly classified 86.8% of students
as having mathematics difficulties or not, which is equivalent
to a large multivariate effect, D = 1.59 [CI = 1.20, 1.97]. As a
comparison, the univariate effect sizes for IQ (d = 0.88) and in-
class attentive behavior (d = 1.13) were large, but smaller than the
combined effect.

Mathematics Versus Reading Difficulties
The first logistic regression included the best predictors of
mathematics or reading achievement identified in prior analyses,
that is, IQ, in-class attentive behavior, forward digit span,
JLAP, MRT, and mathematics self-efficacy. The overall model
was significant, Wald χ2(6) = 17.58, p = 0.007, and correctly
classified 79.1% of the students as having mathematics rather than
reading difficulties. However, the estimates for IQ (p = 0.794),
JLAP (p = 0.657) and MRT (p = 0.566) were not significant
and thus dropped.

The follow-up regression was significant, Wald χ2(3) = 17.19,
p < 0.001. The individual estimates for in-class attentive behavior
(p < 0.001) and mathematics self-efficacy (p = 0.041) were
significant and the estimate for forward digit span was a trend
(p = 0.065). One SD increases in in-class attentive behavior and
mathematics self-efficacy resulted in 2.7-fold [CI = 1.5, 4.8] and
1.7-fold [CI = 1.02, 2.93) decreases, respectively, in the odds of
being in the mathematics difficulties group. A 1 SD increase in
forward digit span, in contrast, resulted in a 1.6-fold [CI = 0.97,
2.7] decrease in the odds of being in the reading difficulties group.
The combination correctly classified 78.5% of students as having
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mathematics or reading difficulties, which is equivalent to a large
multivariate effect, D = 1.16 [CI = 0.66, 1.65].

In-Class Attentive Behavior
The above analyses indicated that in-class attentive behavior is
an important predictor of individual differences in academic
achievement and contributes to comorbid and mathematics
learning difficulties. In a post hoc analyses, we used Bayesian
regressions to identify the best set of cognitive and non-cognitive
predictors of in-class attentive behavior, which allowed for
inferences about the factors that might contribute to students’
disengagement in classroom learning.

As shown in Table 6, the top cognitive model included verbal
memory and IQ, but dropping the former resulted in little change
in model fit. The model without verbal memory was 86.09% as
probable as the one with it, or the model with it was preferred
only 1.16 to 1 over the model without it. The top non-cognitive
predictors included mathematics self-efficacy, English attitudes,
mathematics anxiety for evaluation, and mathematics anxiety for
learning. Dropping each of these variables in turn resulted in
models that were less than 5% as probable as the models with
them, and thus all of them were kept for the combined analyses.

The combined analysis included mathematics self-efficacy,
English attitudes, mathematics anxiety for evaluation,
mathematics anxiety for learning, and IQ, and the best
model included all of them. However, as shown in Table 7,
the inclusion of mathematics anxiety for learning did not add
substantively to the prediction of in-class attentive behavior and
thus was dropped.

A follow-up regression revealed that these four variables
explained 33% of the variance in in-class attentive behavior,
F(4,310) = 37.35, p < 0.001. The largest effect was for IQ, β = 0.47,
t(310) = 9.68, p < 0.001, followed by mathematics self-efficacy,
β = 0.19, t(310) = 3.62, p < 0.001, English attitudes, β = 0.14,
t(310) = 3.03, p = 0.003, and mathematics anxiety for evaluation,
β = 0.09, t(310) = 1.84, p = 0.068. IQ alone explained 28% of the
variance, F(1,313) = 120.93, p < 0.001, whereas the combination
of the three non-cognitive variables (without IQ) explained 12%
of the variance in in-class attentive behavior, F(3,311) = 14.29,
p < 0.001.

Overall, students with higher intelligence and mathematics
self-efficacy, along with more positive attitudes toward English
or language arts and more concern about their performance on
mathematics evaluations were more attentive in classrooms.

DISCUSSION

The current study provided a comprehensive analysis of the
common and unique predictors of individual differences in
reading and mathematics achievement and learning difficulties
in these domains. The results indicate that there are common
domain-general cognitive abilities and non-cognitive factors that
contribute to individual and group differences in reading and
mathematics achievement, as well as factors that are unique to
each of them. We discuss the details and implications of these

results in terms of individual differences in achievement and with
respect to students with learning difficulties.

Individual Differences in Achievement
The finding that intelligence emerged as a common predictor
of reading accuracy, reading fluency, and mathematics
achievement is not surprising, given previous findings (Deary
et al., 2007; Peng et al., 2019). As noted, on the basis of
these findings we anticipated that one or several of the
commonly used working memory measures (e.g., backward
digit span) would emerge as predictors of both reading and
mathematics achievement (Swanson et al., 2009a; Lee and
Bull, 2016; Geary et al., 2017), but this was not the case. One
potential reason is the well-documented correlation between
performance on intelligence and working memory measures
(Ackerman et al., 2005). Indeed, dropping IQ resulted in the
emergence of working memory (i.e., digit span backward)
as a predictor of both reading accuracy and mathematics
achievement. In other words, working memory contributes
to variation in reading and mathematics achievement, as
found in many previous studies, but the associated variance
is captured by intelligence. The results confirm that the
combination of strong working memory abilities and intelligence
indexes the ease of learning academic material (Cattell, 1963;
Geary, 2005, 2008).

In keeping with prior studies, in-class attentive behavior
also emerged as an important predictor of achievement but
more so for mathematics than for reading accuracy or reading
fluency (Geary et al., 2013; Fuchs et al., 2016). The pattern
likely follows from the importance of attending to classroom
lectures for learning mathematical content. In other words, the
mathematics achievement measure assessed knowledge that is
imparted, at least in part, in the context of classroom instruction
and inattention in the classroom is related to slower learning
of mathematics (Stigler et al., 1987). The reading achievement
measure, in contrast, assessed oral reading that is likely not as
dependent on day-to-day attention in classroom settings. Even
so, teacher-rated in-class attentive behavior was predictive of
individual differences in oral reading accuracy. If the in-attentive
behavior reported by teachers is expressed during oral reading,
then we would expect less fluent reading and more reading errors,
as we found. Interventions that focus students’ attention on each
grapheme in words as they read are helpful for reducing such
errors (McCandliss et al., 2003).

We also anticipated that one or several of the spatial measures
would emerge as stronger predictors of mathematics than reading
achievement, and the Bayesian analyses showed that this was the
case for the Mental Rotation Test (Casey et al., 1997; Kyttälä
and Lehto, 2008). Among other things, the MRT assesses ease
of generating mental images (Hegarty, 2018) that in turn could
facilitate comprehension of certain types of mathematics (e.g.,
slopes, number line, parallel lines) and might also contribute to
the ability to use spatial strategies during mathematical problem
solving (Johnson, 1984). Any such relations would be more
important for some types of mathematics than others (Kyttälä
and Lehto, 2008), but our mathematics achievement measure
does not allow for this type of fine-grain assessment.
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TABLE 7 | Bayes factor analyses of predictors of in-class attentive behavior.

Model: Top Cognitive Predictors BCm0 Excluded BCm1

MC1 Verbal memory + IQ 6.91 × 1020 – 1

MC2 Verbal memory 3.13 × 104 IQ 0.0000

MC3 IQ 5.95 × 1020 Verbal memory 0.8609

Model: Top Non-cognitive Predictors BNCm0 Excluded BNCm1

MNC1 Math efficacy + EngAtt + MAnxEval + MAnxLearn 3.10 × 108 – 1

MNC2 Math efficacy + EngAtt + MAnxEval 9.40 × 105 MAnxLearn 0.0030

MNC3 Math efficacy + EngAtt + MAnxLearn 1.35 × 107 MAnxEval 0.0436

MNC4 Math efficacy + MAnxEval + MAnxLearn 4.54 × 106 EngAtt 0.0146

MNC5 EngAtt + MAnxEval + MAnxLearn 2.18 × 105 Math efficacy 0.0007

Model: Top Combined Predictors BAm0 Excluded BAm1

MA1 Math efficacy + EngAtt + MAnxEval + MAnxLearn + IQ 3.99 × 1022 – 1

MA2 Math efficacy + EngAtt + MAnxEval + MAnxLearn 3.10 × 108 IQ 0.0000

MA3 Math efficacy + EngAtt + MAnxEval + + IQ 2.58 × 1022 MAnxLearn 0.6464

MA4 Math efficacy + EngAtt + + MAnxLearn + IQ 6.80 × 1021 MAnxEval 0.1705

MA5 Math efficacy + + MAnxEval + MAnxLearn + IQ 5.13 × 1021 EngAtt 0.1286

MA6 + EngAtt + MAnxEval + MAnxLearn + IQ 2.22 × 1021 Math efficacy 0.0556

MAnxLearn, Mathematics Anxiety for Learning; EngAtt, English Attitudes; MAnxEval, Mathematics Anxiety for Evaluation. MC, Models for cognitive variables; MNC, Models
for non-cognitive variables; MA, Models for all, that is, top cognitive and non-cognitive variables.

Performance on the Judgment of Line Angle and Position Test
(Collaer et al., 2007), a measure of visuospatial attention (Tranel
et al., 2009), also emerged as a predictor of individual differences
in mathematics achievement. Consistent with this finding, prior
studies indicate that the visuospatial abilities assessed by this
measure are important for discriminating the relative magnitudes
of numerals and for positioning them on the number line (Longo
and Lourenco, 2007; Zorzi et al., 2012).

However, performance on the JLAP was just as important in
predicting oral reading accuracy as mathematics achievement,
indicating that visuospatial attention is not uniquely related
to mathematics learning. Indeed, prior studies have found
that deficits in visuospatial attention contribute to reading
difficulties, including word reading errors (Friedrich et al., 1985;
Valdois et al., 2019). Valdois et al.’s (2019) study suggests
that the deficits are associated with the top-down control of
visual attention. Deficits in control of visual attention would
hamper the processing of visually and sequentially presented
details, which would make accurate reading and many aspects
of mathematics (e.g., processing an equation) error prone.
At the same time, oral reading fluency was not related to
JLAP performance, indicating the students who committed
reading errors were still able to appear to fluently read,
although they often generated words that were not actually in
the text.

In addition to the Mental Rotation Test, mathematics self-
efficacy was more important in the prediction of mathematics
than reading achievement, and English attitudes were more
strongly related to reading fluency than to mathematics
achievement or reading accuracy The pattern indicates that
students were differentiating between their competencies in
mathematics and reading, and that perceived effort during the
act of reading (i.e., fluency) might be more important in shaping

associated attitudes than reading accuracy. The cause-effect
relation between attitudes and achievement cannot, however, be
determined from these results. On the basis of prior results, it
is likely that the relation emerged because students are aware of
their relative performance in mathematics and reading and this in
turn influenced their attitudes in these areas (Talsma et al., 2018;
Geary et al., 2019).

Verbal short-term memory, as measured by forward digit
span, was the only measure that was important for reading
accuracy and fluency but not mathematics achievement, while
passive verbal memory contributed to oral reading fluency
but not reading accuracy. While these findings are generally
consistent with many previous studies (Swanson et al., 2009b;
Peng et al., 2018), they also provide nuance. The critical
difference is that the use of verbal memory strategies (e.g.,
rehearsal) is possible with the digit span but not the verbal
memory task. In other words, the ability to engage in top-down
manipulation of verbal material was relatively more important
for oral reading accuracy than was passive short-term retention
of words, while the passive retention of verbal information also
contributed to fluency.

Finally, our post hoc analyses of individual differences in in-
class attentive behavior is unique (to the best of our knowledge)
to this study and suggests that a combination of cognitive
ability and academic attitudes contribute to engagement in
middle-school classrooms. One possibility is that lower-ability
students find academic learning more difficult than their
higher-ability peers and over time this leads to less positive
academic attitudes and less investment in academic learning.
The long-term result would be disengagement in classroom
settings and with schooling more generally. If correct, then
longitudinal studies should show a cross-grade decline in in-
class attentive behavior that is mediated by intelligence and
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academic attitudes. If so, then interventions associated with
improving engagement in the classroom might prove useful for
these students.

Learning Difficulties
As noted, individual differences in achievement are continuous
and thus cutoffs for learning difficulties are necessarily arbitrary
to some extent (Grigorenko et al., 2020). Nevertheless, on the
basis of the relation between various outcomes in adulthood and
actual academic competencies at different levels of achievement,
the 25th percentile is a reasonable cutoff for identifying
adolescents who are at risk for long-term educational and
occupational issues (Rivera-Batiz, 1992; Ritchie and Bates, 2013;
Richmond-Rakerd et al., 2020).

Students with difficulties in both reading and mathematics
are at significantly higher long-term risk than are students with
difficulties in only one domain. The focus on these students
added to the individual differences analyses by identifying
the core factors contributing to group membership. The
combination of low-average intelligence (M = 90, Table 2)
and poor in-class attentive behavior was a potent predictor of
whether a student fell into the comorbid learning difficulty or
typically achieving group (D = 2.44). The use of a typically
achieving group with high-average intelligence and mathematics
achievement likely inflated the size of the multivariate effect.
Nevertheless, in comparison with the overall sample (Table 2),
the students with comorbid learning difficulties were still
about 1 SD below average on both intelligence (d = 1.13)
and in-class attentive behavior (d = 1.17), indicating the
combination would remain a substantive discriminator of
difficulty status relative to students with average intelligence
and achievement.

The identification of intelligence and in-class attentive
behavior as contributors to learning difficulties confirms prior
results (Geary et al., 2012; Willcutt et al., 2013; Peng et al.,
2019). The unique contribution here is the identification
of their combined contributions to achievement difficulties.
Although the logistic regression indicated that they contributed
equally to group membership, the finding that intelligence is a
strong predictor of attentive behavior suggests a more dynamic
relationship, as noted above.

As with comorbid learning difficulties, the combination of
intelligence and in-class attentive behavior also discriminated
students with mathematics learning difficulties from
their typically achieving peers (Willcutt et al., 2013).
The difference was that in-class attentive behavior was a
stronger predictor of mathematics difficulties than was
intelligence, relative to equal contributions for students
with comorbid difficulties. As noted, it is possible that low-
average intelligence contributes to student disengagement
from and less positive attitudes toward academic learning.
In this situation, interventions that incorporate components
of self-regulation (Wang et al., 2019), enhance academic
attitudes (Sisk et al., 2018), or enhance classroom management
strategies (Korpershoek et al., 2016) might be particularly
helpful for students with both comorbid and mathematics
learning difficulties.

Intelligence also contributed to risk of reading difficulties.
However, in contrast to students with comorbid or mathematics
difficulties, in-class attentive behavior did not emerge as a core
discriminator of these students from their typically achieving
peers. Rather, the combination of relatively low visuospatial
attention and verbal short-term memory, along with intelligence,
discriminated them. The finding for verbal short-term memory
(Helland and Asbjørnsen, 2004) and visuospatial attention
(Friedrich et al., 1985) is in keeping with prior results and
demonstrates that their combined effect is more important
than either effect in isolation. The null result for in-class
attentive behavior is surprising, given the individual differences
results and Willcutt et al.’s (2013) finding of increased rates
of attention-deficit disorder among students with reading
disability. The differences are likely related to the multiple factors
that can disrupt reading achievement and the heterogeneity
of reading difficulties groups across studies. The reading
difficulty group here appears to have circumscribed deficits
in the top-down control of visual attention and in verbal
short-term memory.

Limitations
The correlational nature of the data is the primary limitation
and precludes strong causal statements. We assessed a broader
array of domain-general cognitive and non-cognitive predictors
of reading and mathematics achievement than is typical for this
type of study, but this does not preclude the contributions of
other factors that we did not assess. The inclusion of other
factors, such as the contributions of the home environment and
other known predictors of academic achievement (e.g., rapid
automatic naming), might change the relative importance of the
factors that we identified, although this remains to be determined.
Moreover, the emergence of in-class attentive behavior as a
predictor of academic outcomes should not be interpreted
as an indicator of attentional deficits, as the participants’
classroom behavior could simply reflect disengagement from
schooling rather than attentional deficits per se. Despite these
limitations, our broad assessments and analytic approaches
enabled a thorough evaluation of the cognitive and non-
cognitive factors that are common to mathematics and reading
achievement and learning difficulties, as well as factors that
disproportionately contribute to achievement in one domain or
the other. The combination has implications for the identification
of at-risk students and for the development of interventions to
reduce these risks.
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