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ABSTRACT

Although proteins may be artificially improved by
random insertion and deletion mutagenesis meth-
ods, these procedures are technically difficult, and
the mutations introduced are no more variable than
those introduced by the introduction of random point
mutations. We describe here a three-step method
called RAISE, which is based on gene shuffling and
can introduce a wide variety of insertions, deletions
and substitutions. To test the efficacy of this method,
we used it to mutate TEM p-lactamase to generate
improved antibiotic resistance. Some unique inser-
tion or deletion mutations were observed in the
improved mutants, some of which caused higher
activities than point mutations. Our findings indicate
that the RAISE method can yield unique mutants and
may be a powerful technique of protein engineering.

INTRODUCTION

Through several billion years, living things have evolved to
achieve an enormous diversity. The driving force in creating
this diversity is random mutations in their genes. In recent
decades, the evolution of proteins by random mutation has
been reproduced in vitro by using random mutagenesis and
screening and selection techniques (1-6). These methods can
yield mutants with evolved properties, similar to those created
through natural evolution by random mutations. This process,
which is called directed evolution, is one of the most potent
methods for artificially improving protein properties.

The creation of mutant libraries are important in directed
molecular evolution (7). The most popular methods for library
construction involve random point mutagenesis, such as error-
prone PCR (8). These methods are easy to perform, since they
consist of only a few steps that involve standard techniques,
making them quite useful for improving proteins.

Recently, random mutagenesis methods have been
developed to introduce fixed length of insertions or deletions
in DNA sequences (7). The introduction of insertions and
deletions (indels) can change the structures and properties
of proteins more drastically than do point mutations (9).
However, none of these methods have been shown to surpass
the efficacy of traditional point mutations. This may be due to
their introduction of a limited variation of mutations, since the
possibility of the mutations are limited with insertions of fixed
sequences or deletions of fixed length (10—14). Thus, a novel
method to generate random indels with flexible sequences and
length has been desired.

To enhance the ability to introduce random mutations
containing indels into proteins, we have developed a simple
method, the RAndom Insertional-deletional Strand Exchange
mutagenesis (RAISE) method based on gene shuffling (15).
The protocol of RAISE consists of only three steps that do not
require any specific skills. We utilized terminal deoxynuc-
leotidyl transferase (TdT), a DNA polymerase (16,17)
found to be a key enzyme to introduce random insertions
into the antibody hyper-variable regions in mammals (18),
to introduce random nucleotides at the 3’ terminus of the
digested DNA before the self-priming PCR step. By adding
this step, we succeeded in introducing various lengths of
random insertions, deletions and substitutions into an entire
target gene.

TEM p-lactamase is an enzyme that cleaves P-lactam
antimicrobial agents such as ampicillin. This enzyme is clin-
ically important because it accounts for antibiotic resistance of
bacteria. Substrate specificity of this enzyme is changed easily
by point mutation and has been studied by isolating naturally
occurring antibiotic-resistant bacteria (19) (http://www.lahey.
org/Studies/temtable.asp), by site-directed mutagenesis (20)
and by random point mutagenesis (21,22).

We used RAISE to mutate TEM [B-lactamase to generate
enzymes with improved activity against another B-lactam
antibiotic, ceftazidime. Although mutations in this enzyme
have been studied extensively, we found that RAISE generated
many novel mutations. Some of the deletion mutations
generated caused higher activities than point mutations.
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MATERIALS AND METHODS
Materials

Escherichia coli strains DHSo [F~ 080dlacZAM15 A(lacZYA-
argFH)uU169 deoR recAl endAl hsdR17(rxk— mg+) phoA
supE44 A~ thi-1 gyrA96 relAl], as well as RNase-free
DNase I and restriction enzymes were purchased from
TaKaRa (Otsu, Japan). TdT, KOD Dash and KOD plus
DNA polymerases were purchased from Toyobo (Osaka,
Japan). Deep Vent (exo ) DNA polymerase was purchased
from New England Biolabs (Beverly, MA). Ampicillin sodium
salt, ceftazidime pentahydrate and tetracycline were purchased
from Nacalai Tesque (Kyoto, Japan) and Sigma (St. Louis,
MO). The MinElute Reaction Cleanup and Gel Extraction Kits
were purchased from QIAGEN (Hilden, Germany). Plasmid
vectors, pUC19 [possessing TEM B-lactamase gene (bla)]
pBR322 (possessing bla gene and a tetracycline-resistant
gene) and were purchased from TaKaRa.

RAISE method

TEM p-lactamase was examined for a target of RAISE. The
bla gene was amplified by PCR using the primers 5-TATAT-
GAGTAAACTTGGTCTGACAG-3' (primer A) and 5'-
AGGGCCTCGTGATACGCCTATTTTTATAGG-3" (primer
B) using pUCI19 as a template and the PCR product
(1080 bp) was purified by using a MinElute Kit. Twenty
micrograms of the PCR product were digested with 0.5 U
RNase-free DNase I at 16°C for 10 min in 1 ml of buffer
containing 50 mM Tris—HCI (pH 7.0) and 10 mM MnCl,.
MnCl, was used as a DNase I co-factor to control the size
of the digestion products in order to avoid introduction of too
many point mutations in the ensuing self-priming PCR step
(23). When the average size of the fragments was 100-300 bp,
as determined by agarose gel electrophoresis, the reaction was
terminated by adding 40 pul of 0.5 M EDTA. The fragments
were purified with a MinElute Reaction Cleanup Kit. The
concentrations (by weight) of the fragments were determined
by measuring their absorbance at 260 nm, and their molar
concentrations were estimated from the concentration by
weight and the average size. The fragments (135 ng,
2 pmol) were 3’-tailed by the addition of 2.5 U of TdT in a
20 pl solution containing buffer and dNTPs at 37°C for 1 h.
The concentrations of the ANTPs were adjusted to 10 times the
molar concentrations of the fragments (20 pmol), which
yielded tails of average 5 bases at each 3’ terminus of the
fragments. The 3'-tailed fragments were purified with a
MinElute Reaction Cleanup Kit and reassembled by self-
priming PCR with a DNA polymerase possessing no
proofreading activity. The fragments (72 ng) were reassembled
with 2 U of Deep Vent (exo ) DNA polymerase or 2.5 U of
KOD Dash in 10 ul containing 200 uM of each dNTP and
buffer. The amplification protocol consisted of an initial
denaturation at 96°C for 2 min, followed by 40 cycles of
denaturation at 96°C for 30 s; annealing at 60°C for 30 s;
and extension at 75°C for 30 s.

Then the full-length of the mutated bla gene (RAISE
product) was amplified by PCR as following. A 1 ul aliquot
of the reaction mixture of the self-priming PCR was mixed
with 1 U KOD Plus in a 50 pl solution containing 200 uM
of each dNTP, 1 mM MgSO,, buffer and 0.3 pmol/ul of
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primers A and B, followed by the amplification using a
protocol consisting of an initial denaturation at 96°C for
2 min, followed by 10 cycles of denaturation at 96°C for
15 s, annealing at 56°C for 30 s, and extension at 68°C
for 1 min. The 1.1 kb RAISE product was separated by 2%
agarose gel electrophoresis and extracted with a MinElute Gel
Extraction Kit.

Cloning and in vitro selection

The RAISE product was inserted into pBR322 or pUC19 by
overlap extension PCR (24). The pBR322 vector was used to
clone the mutant and to determine mutation frequency,
whereas the pUC19 vector was used to select mutants with
improved B-lactamase activity. The linear fragments of the
vectors excluding the bla gene were produced by PCR of
each plasmid with primers complementary to primers A and
B. One picomole (710 ng) of RAISE product was mixed with
1 pmol of each vector fragment in a 10 pl solution containing
200 uM of each dNTP, 1 mM MgSQO,, 0.2 U KOD Plus and
buffer, followed by self-priming PCR using the amplification
protocol (96°C for 2 min, followed by 10 cycles of 96°C for
15 s; 56°C for 30 s; and 68°C for 1 min). The product was
purified with a MinElute kit.

E.coli DH5a. competent cells were electroporated with the
PCR product (100400 ng), and the transformants were plated
on Luria—Bertani (LB) plates containing 20 pg/ml tetracycline
(for cloning) or an arbitrary concentration of ceftazidime (for
selection). After 24 h of incubation at 37°C, colonies were
picked, and their plasmid sequences were determined.

Determination of minimum inhibitory concentration
(MIC) of ceftazidime

A colony of E.coli harboring pUC19 variants was diluted 1:
10%,1:10*, 1:10° and 1:10° in sterilized water. A 2 pl aliquot of
each was spotted onto a fresh LB plate containing ceftazidime,
which was incubated for 24 h at 37°C. A spot that generated
10-100 colonies was used to determine the MIC.

RESULTS
Theory of the RAISE method

This method is composed of only three steps: DNA fragmenta-
tion, attachment of a random short sequence and reconstruc-
tion (Figure 1). First, the target DNA was fragmented
randomly by DNase I. Second, several random nucleotides
were attached to the 3’ terminus of the fragment using TdT.
Finally, each fragment with a tail of random nucleotides was
reconstructed into a full-length sequence by self-priming PCR
(15). The experimental protocol of RAISE is similar to that of
the DNA shuffling (15) except the tailing by TdT before the
self-priming PCR step. The series of manipulations of DNase I
digestion, TdT modification and self-priming PCR was defined
as RAISE.

We suppose that the additional random sequences caused
the random mutations by the following mechanism. The single
strand fragment (primer) having a flanking tail produced
by TdT (random sequence) was annealed with one of its
complementary fragments (template) at the proper position
of the primer, where the 3’ terminus of the random sequence
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was annealed randomly close to the position to be extended by
DNA polymerase in the self-priming PCR step as shown in
Figure 2A. Then, the region of the template between the
primer and the random sequence (strand X) was substituted
with the random sequence (strand Y) by extending the primer
with DNA polymerase. If the tailed random sequence was
longer than the replaced region, an insertion was included
(Figure 2B). A deletion was included if the tailed sequence
was shorter. If the lengths were the same, it was a simple
substitution. We call these mutations ‘region-exchanged
mutations’.

l Fragmentation by DNasel

l Attaching random nucleotides by TdT

l Reconstruction by self-priming PCR

RAISE product

Figure 1. Schematic diagram of the RAISE method.
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Mutation frequency and mutation length

We estimated the mutation frequency with the RAISE method
by reading some DNA sequences of RAISE product. The
mutated P-lactamase gene was inserted into pBR322 and
was cloned on a tetracycline plate. Approximately 2000
colonies were grown on the plate and 41 colonies were
randomly picked. The region of the RAISE product in each
clone (1 kb) was sequenced. We detected two types of
mutations, region-exchanged mutations and point mutations.
Point mutations can be introduced automatically in the self-
priming PCR step as the DNA shuffling (15,23). We found
29 region-exchanged mutations (Table 1) located independ-
ently in 19 clones. Number of the region-exchanged mutations
in each clone was 1 (12 clones), 2 (6 clones), or 5 (1 clone).
We also found 79 point mutations widely spread over the
sequences in 34 clones, 15 of which had both mutations.
Three clones did not possess mutations. Their mutation
frequencies were 0.7 = 0.1/kband 2.1 + 0.2/kb, respectively
(the standard errors were calculated assuming that the values
follow a Poisson distribution: square root of the number of
mutation/sequenced length). The region-exchanged mutations
included frameshifts, such as 1 or 2 bp indels, whereas the
point mutations included silent mutations. Approximately
two-thirds of the region-exchanged mutations included
frameshifts, and almost two-thirds of the point mutations
were silent; therefore, in terms of amino acids, the frequencies
of significant region-exchanged mutations and point muta-
tions were 0.2 = 0.1 and 0.6 = 0.1 amino acids/kb DNA,
respectively.

Improving ceftazidime-hydrolyzing activity of TEM
B-lactamase by RAISE

To verify that RAISE could be used for in vitro evolutionary
experiments, we tested its ability to enhance the activity

P —d—

Y-X bases of insertion + X bases of substitution

o} 22

X (=Y) bases of substitution

v | )

X-Y bases of deletion + Y bases of substitution

Figure 2. Region-exchanged mutation. (A) Mechanism to form region-exchanged mutation. (B) Types of region-exchanged mutation.
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of TEM B-lactamase in the hydrolysis of the antibiotic
ceftazidime. The lactamase gene was inserted into a plasmid
and mutated by RAISE, and the plasmid was used to transform
E.coli DH5o cells. The transformants were cultured on plates
containing ceftazidime to select mutants with improved
antibiotic resistance. The mutant showing the greatest

Table 1. Examples of mutations introduced by RAISE

Length of
strand X* (bp)

Length of
strand Y* (bp)

Sequence

20 10 ATGAACGAAATAGACAGATC-
CTGGTTTATT

GTGGGTCTCG-
CGCTGCCGTCCCGCTC

ATCTCAAC-CT

TATTGAC-GGA

AACAATT-CTC

TACACG-GCTCCT

ATGAAC-GTGGAA

ACGTT-TGGAAG

GC-AA

GA-AT

TA-CC

AC-GT

AG-C

GT-C

T-AA

G deletion (2)°

C deletion

A deletion (4)°

T deletion (3)°

G insertion (2)°

T insertion (2)°

—_
[e=]
—_
=)}

QO === = RNV
=, O OOON = NN WWN

“See Figure 2A.
"Number of each mutation found.
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enhancement of TEM B-lactamase activity was used as a
parent for the next generation of RAISE. Totally 10°-10°
mutants were selected in each generation. This selection
cycle was repeated for three generations.

The selected mutants were classified as those improved by
region-exchanged mutations and those improved by point
mutations. Region-exchanged mutations are specific to the
RAISE method, whereas point mutations can be reproduced
by other conventional random point mutagenesis methods,
such as error-prone PCR (8). Therefore, region-exchanged
mutations can be regarded as representative of RAISE, and
point mutations can be regarded as representative of traditional
random point mutagenesis methods. The effects of region-
exchanged mutations were compared with those of point
mutations.

We characterized the DNA sequences and MICs of the
selected mutants. Those improved by each generation of
region-exchanged and point mutations are shown in
Figure 3. We found that the best region-exchanged mutations
showed higher activity than point mutations in the second and
third generations. To our knowledge, this is the first method
showing greater efficacy than point mutagenesis.

The region-exchanged mutations generated by this method
are shown in Figure 4. These mutations consisted of insertions,
deletions and substitutions. Many deletion mutations were
observed at amino acids 173-179 and 240-242, indicating
that these positions are hot spots for deletion mutations. The
amino acid substitution L21T and C77V, which were accom-
panied by DNA substitutions such as CT(55,56)AC and
TGT(223-225)GTG, respectively, are impossible to be gener-
ated by the traditional random mutagenesis methods such as
the error-prone PCR, because substitutions of at least two bases
in a codon are necessary to change Leu to Thr or Cys to Val.

3 [silent, ERG(240-242)SR]
MIC = 2000 pg/ml

T294C, GAGCGTG(709-715)AGCA

C109A, G630G, G709C
(Q39K, silent, E240Q)
MIC = 1000 pg/ml

ATA(511-513)deletion
2 (1173deletion)
MIC = 300 pg/ml

/

C509A
(A172E)
MIC = 250 pg/ml

/

AAAAGATGCGGGC

1 [IPNDERD(173-179)KKMRA]

and

MIC = 6 pg/ml

TACCAAACGACGAGCGTGA(512-530)

C342A, C399A, A414C, T675G,
TGG(714-716)deletion, T720C
(silent, silent, silent, silent, G242deletion, silent)

A182G, A264G, G304A, G485A
(E63G, silent, E104K, R164H)
MIC = 60 pg/ml

The best mutants improved by

Generation mutations specific to RAISE

The best mutants improved
by point mutations

Wild-type pUC19
MIC = 0.2 pg/ml

Figure 3. Mutants with the best MICs for ceftazidime, improved by region-exchanged and point mutations. The amino acid positions are based on the standard

numbering for class A B-lactamase (30).
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Table 2. Probabilities of finding mutants with improved ceftazidime resistance

Nucleic Acids Research, 2006, Vol. 34, No. 4 30

Generation Ceftazidime in DNA amount for Library size Mutants improved by region- Mutants improved by
selection plate (Lg/ml) transformation (ng) exchanged mutation point mutation

Number of Probability to Number of mutants Probability to
mutants find mutants find mutants

1 1 27 4 x 10* 6 2x 107" 108 3x107°

2 120 4 6% 10° 2 4% 107" 7 1x107°

2 140 12 2 x 10* 2 1x107" 10 6x107*

2 150 18 2% 10* 1 4%107° 3 1x107*

3 300 10 1x10* 9 7x 107! 18 1x107°

3 500 68 9 x 10* 2 2x107° 2 2x107°

TEM,uci9 B-lactamase was mutated by RAISE and inserted into pUC19, which was used to transform E.coli DH50: cells. Clones were selected on a ceftazidime
plate. The parent of each generation is shown in Figure 3. The probabilities of finding improved mutants were determined by dividing the number of improved

mutants by the total number of transformants.

IPNDERD(173-179)KKMRA
1173 deletion
P174 deletion

FCL(19-21)LTAAC

G242 deletion
ERG(240-242)KR
ERG(240-242)AR
ERG(240-242)SR

L21T ERG(240-242)TR
EP(166,167)VS ERG(240-242)PS
ER(240,241)K
C77V
l ! 1 ! | !
I ] 1 I l :
0 50 100 150 200 250

Amino acid sequence of TEM B-lactamase

Figure 4. Region-exchanged mutations identified from the mutants with
improved ceftazidime resistance. The amino acid positions are based on the
standard numbering for class A B-lactamase (30).

We found that the probabilities of generating region-
exchanged and point mutations were 1:10°-1:10° and
1:10°-1:10° per transformant, respectively (Table 2).

DISCUSSION

We here demonstrate a novel random mutation method,
RAISE, consisting in simple procedures. RAISE has an
advantage over conventional mutation methods in that it
can produce a wide variety of mutations, including insertions,
deletions and substitutions. The sequences of the mutations are
random, and the length of these mutations can vary from one to
several amino acids. In addition, indels and substitutions are
often combined. For example, the replacement of IPNDERD
at amino acids 173-179 by KKMRA consists of two amino
acid deletions and five amino acid substitutions. These
long substitutions can greatly expand the variation of
mutations. For example, 5 amino acid substitutions can
yield 20° varieties.

Short indels within a few amino acids were frequently pro-
duced by this method (Table 1). Because a few amino acid
indels are often found during natural protein evolution (9,25),
the variation of indels by RAISE seems appropriate for the
evolution of proteins.

The RAISE method is suitable for high-throughput screen-
ing/selection methods because of its ability to introduce an
almost infinite variety of mutations. The more mutants are
assayed, the better mutants will be found. In addition, high-
throughput screening/selection will make it easier to identify

mutations in what is an inefficient method, generating a
low frequency of region-exchanged mutations (0.3 amino
acids/kb) and a high frequency of frameshifts (0.7 amino
acids/kb), which cause a catastrophic effect on a protein.
The probability of finding efficient region-exchanged
mutations was about 1:10* per transformant, indicating
that significant mutants will be found by assaying more
than 10 000 mutants. This number of assays is now common-
place in protein engineering (26-29).

This method will not only improve enzyme properties but
also will constitute a unique prospect for protein engineering.
We found hot spots for deletions around amino acids 173-179
and 240-242, positions close to hot spot for point mutations at
amino acids 173, 179 and 240 (22), indicating that region-
exchanged mutations are extensions of point mutations. When
the 3D structure of lactamase is examined, these deletions are
found to be located near the bulky side-chain of ceftazidime
(20), indicating that these deletions enlarge the cleft to accom-
modate the bulky substrate. These findings have never been
produced by any other mutagenesis methods, although TEM
B-lactamase is among the enzymes most studied for mutations.
Our findings thus indicate that the RAISE method will give
unique information on proteins.

The RAISE method can introduce not only indels but also
point mutations and long substitutions. Furthermore, it can be
utilized for DNA recombination because it includes DNA
fragmentation and reconstruction steps as well as DNA
shuffling (15).
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