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Arterial Spin Labeling (ASL) perfusion image series have recently been utilized for

functional connectivity (FC) analysis in healthy volunteers and children with autism

spectrum disorders (ASD). Noise reduction by using nuisance variables has been

shown to be necessary to minimize potential confounding effects of head motion and

physiological signals on BOLD based FC analysis. The purpose of the present study is

to systematically evaluate the effectiveness of different noise reduction strategies (NRS)

using nuisance variables to improve perfusion based FC analysis in two cohorts of healthy

adults using state of the art 3D background-suppressed (BS) GRASE pseudo-continuous

ASL (pCASL) and dual-echo 2D-EPI pCASL sequences. Five different NRS were

performed in healthy volunteers to compare their performance. We then compared

seed-based FC analysis using 3D BS GRASE pCASL in a cohort of 12 children with

ASD (3f/9m, age 12.8 ± 1.3 years) and 13 typically developing (TD) children (1f/12m;

age 13.9 ± 3 years) in conjunction with NRS. Regression of different combinations of

nuisance variables affected FC analysis from a seed in the posterior cingulate cortex

(PCC) to other areas of the default mode network (DMN) in both BOLD and pCASL

data sets. Consistent with existing literature on BOLD-FC, we observed improved spatial

specificity after physiological noise reduction and improved long-range connectivity using

head movement related regressors. Furthermore, 3D BS GRASE pCASL shows much

higher temporal SNR compared to dual-echo 2D-EPI pCASL and similar effects of noise

reduction as those observed for BOLD. Seed-based FC analysis using 3D BS GRASE

pCASL in children with ASD and TD children showed that noise reduction including

physiological and motion related signals as nuisance variables is crucial for identifying

altered long-range connectivity from PCC to frontal brain areas associated with ASD.

This is the first study that systematically evaluated the effects of different NRS on ASL

based FC analysis. 3D BS GRASE pCASL is the preferred ASL sequence for FC analysis

due to its superior temporal SNR. Removing physiological noise and motion parameters

is critical for detecting altered FC in neurodevelopmental disorders such as ASD.

Keywords: functional connectivity (FC), noise reduction, default mode network (DMN), arterial spin labeling (ASL),

blood oxygenation level dependent (BOLD), cerebral blood flow (CBF)
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INTRODUCTION

Functional connectivity (FC) analysis to compute functionally
connected networks (FCNs) has become a major imaging
approach to investigate the brain’s organization and function.
Moreover, comparing different cohorts such as elderly subjects
to young adults, or healthy control groups to psychiatric
populations, have identified patterns of altered connectivity
within specific FCNs. In the past few years, however, it has
become evident that there are several potential confounding
factors that may lead to spurious findings when not properly
addressed. Physiological noise such as fluctuations in respiratory
and cardiac cycles or headmovements can influence BOLD signal
intensities in fMRI. This is particularly relevant since different
study cohorts could exhibit different patterns or amounts of
such confounding factors (e.g., children, elderly, and psychiatric
patients tend to have more difficulties to lay motionless inside the
MR scanner). Accordingly, using nuisance variables to account
for noise related signal fluctuations in BOLD-fMRI based FC
analysis has been shown to be imperative to minimize or avoid
potential confounding effects of motion or other physiological
factors (e.g., respiration and heart rate) on network connectivity
measures (Murphy et al., 2013).

Physiological fluctuations or changes in cardiac pulsation
and respiratory cycles can cause changes in blood CO2

pressure (Wise et al., 2004), which in turn influences the
BOLD signal. Hence variability in respiration and cardiac
pulsation could give rise to spuriously correlated signals in
distributed brain areas (Birn, 2012). Furthermore, the set of
brain areas affected by these physiological fluctuations could
resemble the patterns associated with certain FCNs (Birn
et al., 2008). Accordingly, separating physiological noise from
BOLD signal fluctuations increases sensitivity for detecting
neuronal related FCNs. While these variations in physiological
parameters are ideally measured by concurrent recordings
with pulse oximetry and respiration belt (Chang and Glover,
2009b), data driven techniques have been proposed to estimate
nuisance regressors from the fMRI data itself. Furthermore,
regions that are unlikely to exhibit neuronal related BOLD
signal changes such as in cerebro-spinal fluid (CSF) or white
matter (WM) have been used to efficiently remove these
physiological variations (Birn et al., 2008; Weissenbacher et al.,
2009).

In addition to physiological noise, recent observations
indicate also that head movements during the MR acquisition
can have detrimental effects on FC measures (Power et al.,
2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). Head
motion in the magnetic field perturbs the spin history and
can introduce spurious signal variances that tend to be more
similar locally than between distant brain areas. This biases
FC analyses toward increased local correlations and reduced
long-range correlations, a critical issue when comparing subject
cohorts that might differ in their ability to lie still (e.g., children
or psychiatric patients). Indeed children and psychiatric cohorts
have displayed this pattern of increased local but reduced long-
range FC, raising the critical question as to whether and to
what extent these findings reflect motion effects. A variety of

approaches to deal with motion effects in FC analyses have
since been proposed, most of which include nuisance variables
to regress out potential signal fluctuations related to head
movements by using motion parameters estimated from rigid
body volume alignments (for review see Power et al., 2015). In
summary, in BOLD fcMRI several confounding factors have been
identified and strategies have been proposed to minimize their
influences.

Besides BOLD fcMRI, Arterial Spin Labeling (ASL) datasets
have been recently used to compute FCNs (Viviani et al., 2011;
Liang et al., 2012; Jann et al., 2015a) (review Chen et al.,
2015).This approach was made feasible by technical advances
in state-of-the-art ASL pulse sequences resulting in improved
signal-to-noise ratio (SNR) and temporal stability (Chen et al.,
2011; Vidorreta et al., 2013). These technical advances include
pseudo-continuous ASL (pCASL) (Wu et al., 2007; Dai et al.,
2008), background suppression and three-dimensional (3D)
fast imaging sequences such as GRASE (a hybrid of gradient
and spin echo) or stack of spirals. In addition to improved
acquisition techniques, physiological noise regression in ASL
has been shown to increase temporal SNR (Wang, 2012). To
date, however, no study has systematically investigated the
effect of noise reduction, using the same nuisance variables as
proposed for BOLD, on ASL based FC. Therefore, the primary
purpose of this study was to investigate the effect of motion
and physiological noise reduction on ASL based FC. A second
goal of this study was to apply the optimal noise-reduction
strategy for ASL based FC analysis in a cohort of children
with autism spectrum disorders (ASD) and typically developing
children.

METHODS

All adult neurotypical participants in this study gave written
informed consent according to a research protocol approved
by the UCLA Institutional Review Board. Inclusion criteria
of healthy volunteers included no history of psychiatric or
neurological disorders, and no contraindications to MRI scan.
Scans were performed on a 3T Siemens TIM Trio scanner,
using body coil as the transmitter and 12-ch head coil as
the receiver. We acquired ASL and BOLD data in 10 healthy
young participants (6f/4m; age [mean ± sd] = 22 ± 3
years) with a 3D background-suppressed (BS: 85% suppression)
GRASE pCASL sequence (60 label/control pairs, TR/TE/τ/PLD
= 4000/22/1200/1000ms; 26 slices, 64 × 64 matrix, voxel-size
3.44 × 3.44 × 5mm3) and a standard 2D EPI BOLD sequence
(240Volumes, TR/TE = 2000/30ms, 30 slices, 64 × 64 matrix,
slice thickness = 4mm with 1mm gap). For comparison, a
separate cohort of 10 healthy volunteers (7f/3m; age [mean ±

sd] = 25.7 ± 8 years) underwent resting state fMRI scans using
a dual-echo 2D EPI pCASL sequence (128 label/control pairs,
TR/TE1/TE2/τ/PLD= 4000/10/25/1200/1500ms; 18 slices, 64×
64 matrix, voxel-size 3.44 × 3.44 × 6mm3) to simultaneously
acquire ASL and BOLD data. All datasets were first realigned to
account for spatial motion displacements (for ASL separately for
label and control images). Five different regression models using
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different sets of nuisance variables [here termed Noise Reduction
Strategies (NRS)] were then performed:

- NRS1: no nuisance variables for noise reduction.
- NRS2: 6 motion parameters (3 translations x, y, z and 3
rotations α, β, γ) and their 1st derivatives.

- NRS3: same as NRS2 plus additional regressor for Framewise
Displacement (FD). FD was computed following the procedure
described by Power et al. (2012). Rotational displacements
were recomputed to millimeters of displacement on a sphere
with 5 cm radius. The volume by volume (framewise) head
displacement in translational and recomputed rotational
parameters were then calculated and summed up. Mean FD
(±SD) in mm for the groups in each dataset were: 3D GRASE
pCASL 0.244 (±0.065), standard BOLD 0.192 (±0.060), 2D
dual-echo pCASL 0.179 (±0.066) and dual-echo BOLD 0.153
(±0.049). T-tests did not reveal a significant difference between
ASL and BOLDwithin the groups (t3D = 1.81; p = 0.086/t2D =

0.996; p = 0.333), nor between groups for BOLD (t = 1.612;
p = 0.124). There was a small difference showing slightly
higher motion in 3D pCASL than 2D pCASL (t = −2.194;
p = 0.042).

- NRS4: White matter and CSF fluctuations (mean signal
fluctuations within brain segmentation tissue probability
masks thresholded at 0.95 for WM and 0.85 for CSF and
coregistered/resampled to functional images).

- NRS5: NRS3+ NRS4.

CBF images were computed for all NRSs (one compartment
model, pair-wise subtraction of Label/Control images) (Alsop
et al., 2015). BOLD and CBF images were coregistered
to individual anatomical scans, normalized to MNI
template and smoothed with an 8mm FWHM Gaussian
kernel.

Connectivity Analysis
FC analysis was performed with Seed Based Correlation Analysis
(SBA) using the posterior cingulate cortex (PCC) as a seed
(template seed from Shirer et al., 2012) to identify the Default
Mode Network (DMN). DMN maps for each NRS in all
four datasets as well as overall DMNs for the four datasets
were calculated by one-sample t-tests to identify all areas with
correlations significantly greater than zero across all subjects.
We determined the similarity of the DMN maps derived using
different NRSs between each other as well as to a template BOLD-
DMN (Shirer et al., 2012) and template ASL-DMN (Jann et al.,
2015a) using Dice Similarity Coefficients (Dice, 1945; Jann et al.,
2015a), which compares the number of common voxels between
two maps based on the formula DSC (A,B) = 2(A∩B)/(A + B),
where A and B are the two maps.

To investigate the effect of NRS on the often-discussed long-
range connectivity between PCC and anterior cingulate/medial
prefrontal cortex (ACC/mPFC) (Power et al., 2012, 2015;
Satterthwaite et al., 2012; Van Dijk et al., 2012), we calculated
the correlation between those two ROIs based on the template
DMNnodes (Shirer et al., 2012) using different NRSs. FC changes
due to different NRSs were further investigated by a voxel-wise
analysis on the individual subjects’ SBA connectivity maps for

each NRS by computing voxel-wise repeated-measures ANOVA
and post-hoc ROI based paired t-tests.

Distance Related Effects of Motion
We further investigated the relationship between spatial distance,
the use of head motion related nuisance variables and FC
changes in BOLD and pCASL data, respectively. Specifically, we
parcellated the brain into 264 spherical ROIs defined by the
Power-Atlas (Power et al., 2012). For the parcellated data we
then computed the cross-correlation matrix using data processed
with NRS4 (WM/CSF regression only) and NRS5 (WM/CSF
regression + motion regression), respectively. Subtraction of
the two cross-correlation matrices provides the difference in
connectivity between any two ROIs (1FC) between NRS5 and
NRS4. Plotting these 1FC values against the Euclidean distance
between the respective ROIs and fitting a linear equation to these
plots examined the presence of a relation between 1FC and
spatial distance (Power et al., 2014, 2015).

Effects on Temporal SNR and Global-CBF
Quantification
Finally, we estimated tSNR within gray matter and performed
an ANOVA on these values to test for significant improvements
in tSNR following noise reduction. Global mean CBF was also
compared to test whether NRS affects mean CBF quantification
between the two pCASL sequences.

Application of NRS in Children with ASD
To investigate the effects of NRS on seed-based FC analysis in
a clinical cohort, we compared FC differences between a group
of 12 children with ASD (3f/9m, age 12.8 ± 1.3 years; IQ =

107.0 ± 14.9) and an age and IQ matched group of 13 typically
developing (TD) children (1f/12m; age 13.9 ± 3 years; IQ =

104.8 ± 14.4). Subjects and parents provided written consent
according to the guidelines specified by the UCLA Institutional
Review Board. Clinical diagnosis of ASD was confirmed with
the Autism Diagnostic Observation Schedule (ADOS; Lord et al.,
2000), Autism Diagnostic Interview-Revised (ADI-R; Lord et al.,
1994) and best clinical judgment. Mean ADOS severity score was
7.6 (range 6–10). Statistical tests to compare group characteristics
were not significant: Mann-Whitney U-Test for age (U = 44,
z = 1.822, p = 0.068) and IQ (U = 73.5, z = −0.2178,
p = 0.826) and Chi-square test with Yates correction for small
samples for gender (0.401, p = 0.527).

We used the 3D BS GRASE pCASL sequence to acquire
CBF data in these two groups given its favorable temporal
characteristics shown in the above analyses. Preprocessing
was identical as described above and NRS4 and NRS5 were
compared to NRS1 in these cohorts. FC from the PCC-seed
was computed for each subject and NRS. Within group analyses
included comparisons between NRSs using voxel-wise paired-
sample t-tests. In addition, between-group comparisons were
performed by voxel-wise two-sample t-tests (correction for
multiple comparison at α < 0.05 was done by cluster-size
estimation, CSE for NRS0 = 133 voxels, NRS4 = 115 voxels
and NRS5 = 114 voxels). This analysis will reveal the effects of
different NRSs on the outcome of ASL-FC differences between
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FIGURE 1 | Statistical t-maps displaying the spatial pattern of the DMNs as identified by Seed based Correlation analysis from a PCC seed (Lower left,

green) on pCASL and BOLD datasets.

ASD and TD. To minimize the effects of differences in head
motion between the groups, the ASD and TD groups were
also matched for the amount of motion: mean frame-wise
displacement (FD) for ASD was 0.453 ± 0.238 and TD 0.392 ±

0.241 (t-test t = −0.641, p = 0.528).

RESULTS

Both pCASL and BOLD data showed correlation maps using the
PCC as the seed that resemble the DMN. Figure 1 displays the
PCC-Seed and the DMNs computed as t-maps across all NRSs
for each dataset thresholded at family wise corrected p < 1e−10.
Dice Similarity Coefficients (DSCs) to the template BOLD-DMN
(Shirer et al., 2012) and the template ASL-DMN (Jann et al.,
2015a), respectively, are listed in Table 1. NRS1–3 showed low
similarity while NRS4&5 showed greater overlap with the DMN
templates. Furthermore, 2D pCASL showed the lowest DSC
values, especially to the template ASL-DMN. Figure 2 displays
the cross-comparison of NRSs within each dataset to the template
BOLD-DMN. Notably, DSC values between the separate NRS-
DMNs showed that the DMN-maps withoutWM/CSF correction
(NRS1–3) were highly similar to each other, while the DMNswith
WM/CSF correction (NRS4, 5) showed high similarity to each
other.

TABLE 1 | Dice Similarity Coefficients (DSCs) for all NRS in each condition

to a template BOLD-DMN (Shirer et al., 2012) and a template ASL-DMN

(Jann et al., 2015a), respectively.

NRS1 NRS2 NRS3 NRS4 NRS5 Combined

TEMPLATE BOLD-DMN

BOLD conventional 0.10 0.12 0.12 0.18 0.19 0.25

3D BS GRASE pCASL 0.12 0.11 0.11 0.19 0.19 0.17

BOLD dual-echo 0.09 0.09 0.09 0.28 0.39 0.39

2D pCASL 0.09 0.08 0.08 0.19 0.21 0.19

TEMPLATE ASL-DMN

BOLD conventional 0.24 0.27 0.27 0.40 0.43 0.51

3D BS GRASE pCASL 0.36 0.40 0.40 0.51 0.49 0.55

BOLD dual-echo 0.24 0.23 0.23 0.51 0.55 0.58

2D pCASL 0.29 0.26 0.26 0.33 0.32 0.35

The column termed combined represents the DMN t-maps across all subjects and NRSs

as displayed in Figure 1.

Effects of NRS on FC
Analysis of the connectivity between PCC and ACC/mPFC
ROIs in both BOLD datasets showed a general decrease of FC
after WM/CSF regression [FBOLDconv(4, 9) = 25.53, p < 1e-10,
tNRS0vsNRS4 = 5.34, p = 0.0005; FBOLDdual−echo(4, 9) = 12.49,
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FIGURE 2 | Dice Similarity Coefficients (DSCs) between the spatial maps of the DMNs after different stages of noise reduction (NRS1–5). Template DMN

derived from Shirer et al. (2012). Combined DMN computed as one-sample t-test across spatial correlation maps of all subjects and NRS. Clusters along the diagonal

indicate that WM/CSF regression has large effect on similarity. Specifically after WM/CSF correction (NRS4/5) DSC values to the template DMN are increased (green

rectangle and also bar-plots below cluster-plots), indicating increased spatial specificity of the DMN.

p < 1e−10, tNRS0vsNRS4 = 2.69, p = 0.025], while motion
parameter regression showed a tendency to slightly increase FC
(t-test between NRS5 and NRS4 = tBOLDconv = 1.55, p = 0.155;
tBOLDde = 1.14, p = 0.284). The same trend was observed for 3D
GRASE pCASL [F3DpCASL(4, 9) = 75.5, p < 1e−10; tNRS0vsNRS4 =

14.19, p < 0.0001 and t-test NRS5 vs. NRS4: t3DpCASL = 1.51,
p= 0.165]; however, FC values were overall lower. For 2D pCASL
there was little to no correlation between the two ROIs and no
significant effect in the ANOVA (F2DpCASL = 1.4, p = 0.254).
Mean values of correlation coefficient across subjects for all NRSs
and datasets are displayed in Figure 3.

A more detailed analysis of NRS effects throughout the
DMN was performed by voxel-wise repeated-measures
ANOVA (Figure 4). Results revealed that FC between PCC
and mPFC/ACC were modified by NRS. Details for all ROIs
including the results of the repeated-measures ANOVAs are
listed in Table 2. For every ROI showing an effect of NRS, the
boxplots represent the FC values (median and 75% interval across
subjects) after different NRSs, revealing the directions of FC
changes (i.e., increases or decreases). Moreover, the horizontal
lines above the boxplots indicate the significance of post-hoc
paired t-tests (p < 0.05) between any NRSs (t and p values for all
post-hoc t-tests can be found in Supplemental Table 1). Similar
to the analysis of connectivity between the PCC and ACC/mPFC
ROIs, the voxel-wise ANOVA and post-hoc t-tests indicated that
WM/CSF signal regression significantly reduces FC throughout
the DMN. Furthermore, using head movement related nuisance
variables in addition to WM/CSF (comparison between NRS5
and NRS4) tended to increase long-range FC from PCC to
frontal areas while reducing local (within PCC) FC (Table 2).
This distance-related effect was further investigated in a highly
parcellated seed based approach.

Distance Dependence of
Motion-Regression Effects
The scatter plots in Figure 5 suggest a relationship between
motion correction effects (after WM/CSF signal regression) and
the distance between the connected ROIs. Specifically, 1FC was
increasingly positive the farther apart any two areas, thus yielding
increased long-range connectivity and reduced or constant local
short-range connectivity.

NRS Effects on Temporal SNR and Global
CBF
Global tSNR in BOLD was expectedly higher than that of
pCASL; furthermore, 3D pCASL showed 4.4 ± 0.4 times
higher global tSNR than 2D pCASL. Differences in tSNR after
NRS were observed for all modalities and with a similar
behavior suggesting that motion regression increases tSNR and
combining motion regression with WM/CSF regression results
in highest increase in tSNR (Figure 6). This observation is
supported by repeated-measures ANOVA analyses for both
BOLD and 3D GRASE pCASL sequences: F(4, 9)BOLD−S =

7.5, p < 0.001, FBOLD−DE = 21.92, p < 5e−10,
FASL−3D−BS = 7.78, p < 7.5e−5, whereas there was no
significant effect for 2D dual-echo pCASL: FASL−2D−DE = 0.73,
p = 0.58.

Along with the increase in temporal SNR for 3D GRASE
pCASL, global mean CBF was also slightly higher for NRS4&5
than those observed for NRS1–3 [F(4, 9) = 63.36, p < 0.00001].
An opposite effect was observed for 2D dual-echo pCASL
where regression of WM/CSF signals (NRS4&5) slightly reduced
global mean CBF [F(4, 9) = 3.36, p < 0.02], as shown in
Table 3.
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FIGURE 3 | Region-to-Region correlation between two template areas

of the DMN: the PCC and the ACC/mPFC (shown in green in the small

inlet figure). Overall BOLD exhibits stronger correlation values than ASL.

Noise reduction shows similar behavior in FC changes for both BOLD datasets

(solid lines) as well as the 3D BS GRASE pCASL data (blue dashed line), while

showing little effect for 2D pCASL. A more regionally detailed analysis of these

effects is displayed in Figure 4.

Results of NRS in Children with ASD vs. TD
Children
Within-group

Comparing correlation maps seeded from the PCC revealed
differences in long-range connections to the frontal cortex
after noise reduction in both groups (TD and ASD children).
Specifically, differences between NRS4 and NRS5 revealed
increased long-range and decreased local correlations within the
DMN, which are in accordance with the general observations
of motion-regression effects (Supplemental Figure 1). In TD
children, we found increased correlation to superior frontal gyri
and to the hippocampi, as well as reduced local connectivity in
PCC. In ASD children, we observed increased correlations with
the orbitofrontal cortex (OFC) and similarly reductions in FC in
PCC. Furthermore, we observed increases in anti-correlation to
areas associated to other large-scale networks in autism: from
PCC to the dorsal ACC, part of salience network, as well as
regions of the motor network. Hence, in addition to within
network effects (DMN), noise reduction might also increase the
separation between networks.

Between-group

Direct comparisons between the TD and ASD groups revealed
evidence highlighting the importance of noise reduction
(Figure 7). While group differences without any noise-reduction
(NRS1) showed decreased local FC in the precuneus and
increased FC to lateral temporal areas bilaterally in the ASD
group as compared to the TD group, group differences after noise
regression (NRS4&5) revealed areas with reduced long-range FC

from PCC to the dorsal portion of the prefrontal cortex and
parahippocampal gyri in the ASD vs. the TD group. The areas
showing reduced connectivity with the lateral temporal lobes in
the ASD group were no longer evident.

DISCUSSION

FC analysis has become a major tool to assess the functional
organization of brain networks as well as their integrity or
alterations in clinical populations. However, to be clinically
applicable, possible confounding factors for FC analysis need to
be identified, understood and accounted for. For BOLD based
FC such effects include physiological noise related to pulsatile
fluctuations of the blood flow caused by heart beat (Shmueli et al.,
2007; Chang et al., 2009) as well as changes in BOLD signal due
to variations in rate and depth of respiration (Birn et al., 2006;
Birn, 2012). More recently, it has been shown that even slight
head movements can affect FC analysis outcomes (Power et al.,
2012; Van Dijk et al., 2012).

By using different sets of nuisance variables (here termed
Noise Reduction Strategies: NRS) representing noise from
physiological noise sources and head movements in two separate
BOLD and pCASL implementations, our study showed that
accounting for physiological noise and motion-induced effects
could indeed alter the connectivity strength and hence spatial
maps of the DMN. For BOLD rs-fMRI, these effects have been
described and were replicated in our study. For ASL, so far little
has been known regarding how noise reduction affects ASL signal
and ASL based FC analysis.

Noise Reduction Effects in Bold Based FC
Our findings generally align well with what has been described
with regard to noise reduction effects in BOLD based FC analysis.
First, regression of physiological noise related nuisance variables
from WM and CSF signal fluctuations (Dagli et al., 1999;
Windischberger et al., 2002; Birn et al., 2008; Weissenbacher
et al., 2009; Jo et al., 2010) reduces connectivity in several brain
areas but at the same time increases the spatial specificity of
FC maps (Chang and Glover, 2009a; Birn, 2012; Power et al.,
2015). The correlation maps generated by NRS4 and NRS5 are
highly restricted to areas of the DMN while NRS1–3 display
more widespread correlation maps that comprise areas affected
by respiratory and heart rate pulsatility (Birn et al., 2008).
Statistical comparisons usingDCSs further demonstrated that the
spatial maps for NRSs including physiological noise regression
improved their similarity to the template DMN. A decrease in
connectivity strength after removing physiological fluctuations is
expected since noise induced spurious correlations are removed
from the signal (Weissenbacher et al., 2009). Furthermore,
temporal SNR was improved by noise reduction indicating
reduced signal variance.

Using head motion nuisance regressors showed less
pronounced effects. For conventional BOLD and dual-echo
BOLD, frontal regions showed a trend of FC increases between
NRS4 and NRS5 as well as FC decreases in the medial posterior
cortex and PCC. Significant increases were only observed in
ACC for the conventional BOLD dataset and the right angular
gyrus for dual-echo BOLD (Table 2). However, the data overall
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FIGURE 4 | Voxel-wise repeated-measures ANOVA F-maps highlighting the areas with significant FC changes after NRS. Results are limited to areas

within the DMNs as displayed in Figure 1. Box plots display the regional FC values for NRS1–5. Generally physiological noise reduction (WM and CSF fluctuations)

reduced FC significantly (bars above box plots indicate significance between NRS-FC values). Motion correction had more subtle effects on FC but nevertheless

significant increases can be seen in several areas mainly in the frontal cortex.

suggest that reduction of head movement related signals
improves FC strength between anterior and posterior areas. This
effect has attracted wide interest in recent years since the head
movement effects are subtle and can cause group differences
between cohorts with different movement profiles (e.g., patient
populations or children Van Dijk et al., 2010; Satterthwaite et al.,
2012). Notably, in this study, there were no head movement
differences within the neurotypical adult groups nor between
the ASD and TD groups as evidenced by mean framewise
displacement. Moreover, the spatial extent of DMN and regional
effects of NRS onto FC within the DMN were compared within
datasets separately (except for the between-group comparison of

ASD vs. TD discussed below). Our participants further showed
only small amount of motion hence changes were expected to
be subtle. In a further analysis, we segregated the cortex into 264
regions and computed the distance dependence of FC due to
reduction of head motion effects. This confirmed that long-range
connections show proportionally larger increase in FC than
connections between more proximal areas. This finding is in line
with prior evidence that motion affects long- and short-range
connections differently (Power et al., 2012, 2014; Van Dijk et al.,
2012). Comparing our linear fitting results to recent work by
Power et al. (2012, 2015) confirms that the distance dependency
effects are in the same order of magnitude.
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TABLE 2 | Clusters showing a change in functional connectivity across noise reduction strategies (NRS).

Cluster size Peak MNI coordinate peak F Anatomical area BA rm-ANOVA Effects of motion regression

Cluster #voxels x y z F(4, 9) P Post-hoc t-test

NRS5-NRS4

p

3D BOLD

1 91 34.0 −70.1 −23.9 47.3898 Fusiform_R 19 6.02 8.10E-04 −0.40 0.6996

2 329 −52.0 −14.1 −9.9 61.1242 Temporal_Mid_L 21 4.45 0.005 −0.01 0.9912

3 5290 0.0 −60.1 56.1 97.9045 Precuneus/posterior cingulate (7/31) 15.95 1.34E-07 −1.20 0.2598

4 54 −18.0 −44.1 −11.9 38.5708 Fusiform_L 19 13.77 6.60E-07 −1.22 0.2534

5 53 −6.0 41.9 2.1 29.5438 Cingulum_Ant_L 32/10 4.03 0.0084 2.42 0.0386*

6 52 10.0 43.9 8.1 46.4137 Cingulum_Ant_R 32 11.14 5.56E-06 0.08 0.9390

7 259 28.0 −76.1 40.1 28.0085 Occipital_Sup_R 19 7.67 1.41E-04 −0.59 0.5716

8 86 −20.0 −62.1 38.1 42.1778 Parietal_Sup_L 7 4.37 0.0055 −0.72 0.4925

3D ASL

1 129 14.0 63.9 6.1 23.8028 Frontal_Sup_Medial_R (11/10) 6.67 4.03E-04 0.54 0.6032

2 184 −10.0 45.9 −3.9 44.5863 Cingulum_Ant_L 32 6.29 6.03E-04 3.34 0.0087*

3 4003 4.0 −44.1 46.1 37.23 Precuneus/posterior cingulate 7,31 3.17 0.0248 −0.61 0.5562

4 864 50.0 −46.1 28.1 28.0536 SupraMarginal_R 39 11.67 3.55E-06 0.11 0.9122

5 70 28.0 −34.1 12.1 33.0022 sub lobar 4.31 0.0059 −0.05 0.9604

6 1338 −56.0 −54.1 28.1 27.4496 SupraMarginal_L 39 6.06 7.78E-04 2.00 0.0770

2D BOLD

1 333 −60.0 −24.1 −5.9 40.2981 Temporal_Mid_L 21 0.86 0.499 1.35 0.2113

2 81 −46.0 25.9 −9.9 50.8921 Frontal_Inf_Orb_L 47 4.32 0.0059 0.13 0.8987

3 91 −6.0 43.9 −3.9 19.2798 Cingulum_Ant_L 10.11 2.27 0.0805 0.59 0.5717

4 5609 4.0 −28.1 44.1 243.5297 Cingulum_Mid_R 31 0.85 0.5048 −1.46 0.1791

5 975 8.0 31.9 24.1 85.5258 Cingulum_Ant_R 10,32,9 2.74 0.0435 1.56 0.1521

6 833 48.0 −56.1 40.1 97.0885 Angular_R 39 2.97 0.0321 2.64 0.0268*

7 1014 −40.0 −54.1 34.1 66.9547 Angular_L 19,39 2.91 0.0347 0.99 0.3491

8 314 −22.0 15.9 44.1 251.0319 Frontal_Mid_L 8 4.41 0.0053 −0.15 0.8875

9 74 26.0 23.9 52.1 55.824 Frontal_Sup_R 8 3.12 0.0265 2.03 0.0735

10 188 8.0 −44.1 64.1 154.553 Paracentral_Lobule_R 6 0.49 0.745 −2.46 0.0363*

2D ASL

1 2273 4.0 −36.1 58.1 72.8902 Posterior Cingulate 31,7 6.14 7.11E-04 −3.26 0.0099*

Listed are cluster coordinates, size, and anatomical location as well as statistical test results for repeated measures ANOVA and post-hoc T-test between NRS5 vs. NRS4 (FC changes

due to motion regression). *Indicate significant differences between NRS5 vs NRS4.

TABLE 3 | Mean global CBF for both pCASL sequences and all NRSs.

Global CBF [ml/100g/min] NRS1 NRS2 NRS3 NRS4 NRS5

2D EPI pCASL 59.66± 11.45 59.79± 11.45 59.79±11.45 58.21± 9.77 58.17± 9.88

3D BS GRASE pCASL 59.99± 9.70 59.98± 9.68 59.99±9.69 64.37± 10.78 64.37± 10.78

No differences were observed.

In summary, in both BOLD datasets the observed effects
of noise reduction are in agreement with previous work,
highlighting the importance of taking into account the effect of
physiological and motion related confounds in FC analyses.

Noise Reduction Effects in ASL based FC
ASL based FC has recently gained interest in the research
community (Chuang et al., 2008; Zou et al., 2009; Viviani et al.,
2011; Jann et al., 2013; Dai et al., 2015; Jann et al., 2015a, for recent
review see Chen et al., 2015) and in clinical studies (Orosz et al.,
2012; Kindler et al., 2013; Jann et al., 2015b), since it provides
not only assessments of functional brain networks but also a
surrogate measure of metabolism, cerebral blood flow (CBF).
Moreover, there appears to be a relation between connectivity

strength and local CBF suggesting that increased connectivity of
a region is more energy demanding (Liang et al., 2013; Tomasi
et al., 2013; Jann et al., 2015a). While the feasibility of ASL
based FC and the similarity of the identified networks to BOLD
networks has been previously demonstrated (Chuang et al., 2008;
Zou et al., 2009; Viviani et al., 2011; Jann et al., 2013, 2015a; Dai
et al., 2015), it remains unknown how noise regression in ASL
could benefit these analyses. Our results show that 3D GRASE
pCASL with background suppression (BS) benefits from noise
reduction as temporal SNR (tSNR) significantly increases in a
similar manner as for BOLD (Figure 6). For 2D pCASL without
BS there was a minor gain in tSNR (Wang et al., 2008; Wang,
2012) although this did not reach significance. Furthermore, we
observed that 3D BS GRASE pCASL offers a four-times higher
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FIGURE 5 | Distance dependence of FC changes between NRS4 and NRS5 (indicating motion correction effects only, after correction for physiological

noise). Scatter plots reveal that FC between more distant areas is increased more than for proximal areas. Red lines represent the linear fit between distance and

1FC (see also equations).

tSNR than that of 2D pCASL. This higher tSNR across all NRSs
can mainly be attributed to the background suppression (brain
tissue signal suppressed by 85%), while the 3D readout mainly
contributes to improved spatial SNR (Vidorreta et al., 2013; Chen
et al., 2015; Wang et al., 2015). Based on tSNRmeasurements, 3D
BS GRASE pCASL should be more suitable for CBF based FC
analyses than 2D pCASL without BS.

The FC analysis on the CBF datasets demonstrated that the
DMN can be detected in both pCASL implementations, albeit
with less statistical power in the 2D pCASL due to lower tSNR
and/or small sample size of this study. Removing WM and
CSF fluctuations to minimize cardiac and respiration related
noise prior to FC analysis resulted in reduced FC between PCC
and ACC in the ROI based analysis for 3D BS GRASE pCASL
whereas no significant effect was found for 2D pCASL. Notably,
at the selected statistical threshold, 2D dual-echo pCASL did
not show significant correlations between CBF signals in the
seed area in the PCC and the anterior part of the DMN (i.e.,
the mPFC/ACC). It remains to be determined whether using
larger samples or lower statistical thresholds will make 2D ASL
based FC analysis feasible. Furthermore, as discussed above, the
BOLD images acquired at the second echo of the dual echo ASL
sequence used in our study showed highly similar network maps,
correlation strength and behavior to NRS as the conventional
BOLD sequence. On the other hand, the FC strength decrease

between PCC and the frontal ROI in 3D BS GRASE pCASL
mirrors the effects observed for BOLD. Not surprisingly, the
CBF-FC was generally lower than that of BOLD in both ASL
implementations, in agreement with other studies comparing
ASL and BOLD FC (Viviani et al., 2011; Jann et al., 2015a). This
globally decreased FC strength is a consequence of intrinsically
lower tSNR in ASL and due to the subtraction of label and
control images that generates shorter timeseries for FC analysis
in CBF data. However, while FC strength is lower, comparison
of the spatial maps using DSC analysis revealed that the DMNs
were similar between CBF and BOLD datasets. Similar to BOLD
rs-fMRI, physiological noise reduction by using WM and CSF
derived nuisance variables in 3D BS GRASE pCASL also resulted
in improved spatial specificity when compared to a template
DMN. Including head movement related nuisance variables into
the preprocessing pipeline resulted in slight improvements of
FC in anterior-posterior connections in 3D BS GRASE pCASL.
This effect again was similar to the effect observed in the BOLD
data (Van Dijk et al., 2010, 2012; Power et al., 2012, 2015). The
voxel-wise repeated-measures ANOVA across NRSs confirmed
the template-ROI based analyses between PCC and frontal areas
and revealed additional areas in the inferior parietal lobes (IPL)
where noise reduction had effects on FC. Voxel-wise maps were
dominated by effects from physiological noise reduction that
generally reduced FC in all DMN areas. Furthermore, the two
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FIGURE 6 | Boxplots indicating tSNR increases after different noise reduction strategies (NRS1–5) in all analyzed MRI sequences. Significant effects

were found for all but the 2D dual-echo pCASL datasets.

FIGURE 7 | Group differences between typically developing (TD) children and children with autism spectrum disorder (ASD) for different NRS in 3D BS

GRASE pCASL data: NRS1 no noise reduction, NRS4 WM/CSF fluctuations removed, NRS5 WM/CSF and motion regression. While seed based FC (from

PCC) in NRS1 did not reveal differences in frontal areas, NRS5 clearly delineates reduced long-range connections in ASD compared to TD.

frontal areas in 3D BS GRASE pCASL showed an increase
in FC after motion correction although only the right mPFC
ROI reached significance (Figure 4B1). The IPLs showed minor
increases in FC whereas the PCC exhibited a minor reduction
of local FC (Table 1). In 2D pCASL only the PCC was above
the threshold for defining the DMN (compared to Figure 1).
It showed significant decrease of local connectivity strength
following motion regression in addition to physiological noise
removal, and thus results are in agreement with the general
observations of this study.

Finally, the whole brain parcellated connectivity analysis
showed a similar motion related distance dependence of FC
changes (Figure 5), with effects more pronounced for long-range
than short-range connections. Notably, since this analysis was
not limited to the DMN areas, the effect was observed in both the

3D BS GRASE and 2D dual-echo pCASL datasets. This suggests
that although 2D pCASL shows low connectivity overall, on a less
stringent threshold for connectivity results, it could still benefit
from motion regression prior to FC analysis in the same fashion
as the other datasets.

In summary, 3D BS GRASE pCASL revealed similar DMN
maps at the same statistical threshold as BOLD, albeit with
generally reduced FC strength. Moreover, 3D BS GRASE
pCASL displayed similar FC changes as a function of different
sets of nuisance variables used in the preprocessing, showing
improved spatial specificity after physiological noise reduction
and improved long-range connectivity with motion correction.
In contrast, 2D dual-echo pCASL showed weak connectivity
overall, which did not survive the same statistical threshold set
for this study. This is most likely a problem of low tSNR for this
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ASL implementation that has no background suppression or the
small sample size.

Results for Clinical Cohort: Children with
ASD vs. Matched TD Children
In both ASD and TD groups, motion regression reduced
local connectivity in posterior DMN areas while it significantly
increased connectivity with superior frontal areas in the
TD group and with orbitofrontal areas in the ASD group.
Furthermore, in ASD we observed an increased anti-correlation
between PCC and areas of the anterior salience network as well
as areas of the somatomotor network. This suggests that noise
reduction might affect not only within network effects (DMN),
it may also benefit the separation between functional networks
in autism. These alterations in FC due to noise reduction were
also observed in direct group comparisons, leading to marked
changes in observed group differences, both in terms of hyper-
and hypoconnectivity. While all NRS (NRS 1,4,5) yielded altered
connectivity in somatomotor network in ASD, NRS4&5 revealed
reduced long-range FC from PCC to the dorsal portion of the
prefrontal cortex and parahippocampal gyri, with suppression
of hyperconnectivity with lateral-temporal areas. Overall, noise
reduction altered the pattern of temporal lobe hyperconnectivity
highlighting instead long-range hypoconnections to frontal
areas and the medial temporal lobes (i.e., parahippocampal
gyri). Similar motion related effects on FC were found in a
study using independent component analysis to identify BOLD-
DMN subnetworks in ASD (Starck et al., 2013). They reported
that after accounting for motion effects, group differences
between posterior and anterior DMN subnetworks, as well as
in a ventral subnetwork including the parahippocampal gyrus
were accentuated. Moreover, altered connectivity from PCC to
superior frontal and the parahippocampal gyri in ASD have also
been related to deficits in social functioning (Monk et al., 2009;
Weng et al., 2010).

Recently, an anterior-posterior gradient of hyper-
and hypoconnectivity received considerable attention in
neuroimaging studies of ASD (Keown et al., 2013; Rudie and
Dapretto, 2013; Di Martino et al., 2014) and is discussed in
the context of improved selective cognitive abilities (local
hyperconnectivity) and impaired social functioning (long-range
hypoconnectivity between frontal and posterior cortices) (Jann
et al., 2015b).

CONCLUSION

Noise reduction affected FC analysis from a seed in the PCC to
other brain areas of the DMN in all datasets (BOLD and pCASL).
First, changes in FC strength and spatial maps of the DMN with
regard to physiological nuisance variables (WM/CSF signals)
and head movement related nuisance variables were replicated
in two separate BOLD datasets, one with a conventional EPI
implementation and another based on data acquired in a 2D
dual-echo pCASL sequence. Second, analysis of NRS effects on
FC analysis of CBF data demonstrated that 3D BS GRASE
pCASL shows similar behavior as that observed for BOLD.

The favorable noise properties of 3D BS GRASE pCASL as
compared to 2D dual-echo pCASL and the improved tSNR
after noise reduction render this pCASL implementation more
suitable for CBF based FC analyses showing similar networks
(Dai et al., 2015; Jann et al., 2015a) and dependence on noise
reduction as BOLD. The dual-echo 2D pCASL used here provides
perfusion and BOLD images with optimal contrasts, hence can
provide proper BOLD based FC results and quantitative CBF
(Zhu et al., 2013). FC analysis on the CBF timeseries of 2D
pCASL should be treated with caution due to intrinsically low
tSNRin conjunction with small sample size. However, a potential
advantage of dual-echo ASL, that was not investigated here, is
that the TE dependence of signal relaxation might be utilized
to separate BOLD and non-BOLD signals (Kundu et al., 2012,
2013). The sensitivity of 2D pCASL can be improved in the
future with optimized background suppression strategies in
conjunction with multiband acquisitions (Shao et al., 2016).

Finally, applying the full spectrum of NRS in a cohort
of children with ASD and typically developing controls we
observed that 3D BS GRASE pCASL based FC analysis yielded
results that are in accordance with effects of head motion and
group differences between ASD and TD children observed in
BOLD-DMNs. These findings underline the complex changes in
functional organization in ASD and the impact that different
preprocessing steps could have on the research findings (Nair
et al., 2014).
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