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Abstract: The main task of this work is to study the tribological performance of nanolubricants formed
by trimethylolpropane trioleate (TMPTO) base oil with magnetic nanoparticles coated with oleic acid:
Fe3O4 of two sizes 6.3 nm and 10 nm, and Nd alloy compound of 19 nm. Coated nanoparticles (NPs)
were synthesized via chemical co-precipitation or thermal decomposition by adsorption with oleic
acid in the same step. Three nanodispersions of TMPTO of 0.015 wt% of each NP were prepared,
which were stable for at least 11 months. Two different types of tribological tests were carried out:
pure sliding conditions and rolling conditions (5% slide to roll ratio). With the aim of analyzing the
wear by means of the wear scar diameter (WSD), the wear track depth and the volume of the wear
track produced after the first type of the tribological tests, a 3D optical profiler was used. The best
tribological performance was found for the Nd alloy compound nanodispersion, with reductions of
29% and 67% in friction and WSD, respectively, in comparison with TMPTO. On the other hand, rolling
conditions tests were utilized to study friction and film thickness of nanolubricants, determining that
Fe3O4 (6.3 nm) nanolubricant reduces friction in comparison to TMPTO.

Keywords: friction; wear; film thickness; magnetic nanoparticles and nanolubricant

1. Introduction

In 2014, the worldwide energy consumption was around 396 EJ for different uses such as transport,
residential consumption or industrial activity [1]. In all these sectors, mechanical systems suffer energy
losses, mostly due to friction and wear, and therefore their reduction is decisive. Thus, in economic
terms the annual total losses originating from tribological contacts are estimated to be 2,536,000 million
euros, being 73% due to friction and 27% due to wear [2]. Friction and wear losses can be reduced
substantially by using new tribological solutions. In recent years, nanotechnology has been introduced
in the development of numerous applications due to the physical and chemical properties of the
nanomaterials being quite different from those of the bulk materials [3,4]. Recently several articles
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showed that the addition of nanoparticles (NPs) to current lubricants of mechanical elements can
considerably reduce both friction and wear [4–7]. The main advantages of using NPs as additives
with respect to other materials are due the higher capabilities to reduce friction and wear and even to
repair the worn surface. This is due to the small size of NPs that allows them to enter the contact area,
resulting in a positive lubrication effect [8]. Moreover, the nanoparticles used as additives can be less
chemically reactive than the common additives since the NP films are formed mechanically, so they are
more durable and less reactive than those with other additives [9]. In addition, NPs interact less with
other additives present in a lubricant and since their film formation is largely mechanical, they may
form films on many different types of surface [9] Another of the advantages of using NPs as lubricant
additives is their low volatility which avoid losses at high temperature conditions [9]. Accordingly, NPs
not only provide the nanolubricants with higher anti-wear and anti-friction capabilities and but also a
higher ability for heat dissipation. NPs as friction modifier additives can work by different lubrication
mechanisms: rolling effect and tribofilm formation, owing to the direct effect of the nanoparticle on the
surface, and mending and polishing effects, due to surface enhancement [10].

Stribeck curves are used to explain how nanoparticles play a role in friction over
elasto-hydrodynamic lubrication (EHL), mixed lubrication (ML) and boundary lubrication (BL)
regimes. Normally, boundary lubrication occurs under low-speed and high-load conditions, so
nanolubricant additives are essential in this lubrication regime due to the high friction coefficient in
these conditions [11,12]. The improvement produced by the nanoparticles is due to their high affinity for
the metal surfaces, so they adhere to them preventing the metal–metal contact. Zin et al. [13] studied the
tribological properties through Stribeck curves of nanolubricants formed by an engine oil and carbon
nano-horns as additives. These authors conclude that nanolubricants containing carbon nano-horns
exhibit better anti-friction properties in all the different lubrication regimes (boundary, mixed and
elasto-hydrodynamic lubrication). Furthermore, Ghaednia et al. [14] analyzed the tribological behavior
of nanolubricants also through Stribeck curves. These lubricants consist of CuO nanoparticles in
mineral base oil using sodium oleate as a surfactant. These authors deduced that CuO additives
decrease the friction coefficient deeply into the boundary lubrication regime in comparison to the
mineral base oil.

Despite the numerous studies and advances that have been made with nanoparticles in the field of
lubricants, there is still a serious problem with the stability of the nanodispersions against sedimentation,
since nanoparticles tend to agglomerate with each other [15]. It is well known that dispersants have
been used in order to increase the stability time of nanoparticles [16–19]. Better results can be obtained
modifying the nanoparticles’ surface by reacting with a surfactant. The resulting nanoparticles are
known as coated or functionalized nanoparticles. Chen et al. [15] recently reviewed the time stability of
numerous nanolubricants. For this task, these authors analyzed different characteristics of nanoparticles
such as material nature, particle size, and surface modification, concluding that surface modification is
essential to disperse nanoparticles into a lubricating oil. This modification can be done mainly through
reaction with surfactants [20] or alkoxysilanes [21] as surface modifiers.

Carbon-based and metallic-based nanoparticles are two of the most utilized nanomaterials for
anti-friction and anti-wear applications [22–25]. Magnetic metal nanoparticles are broadly studied
due to their numerous applications such as magnetic records, drug-delivery agents and anti-wear
additives of lubricants, among others [26]. In the case of lubricants, there are several articles about
iron oxide nanoparticles with good anti-friction and anti-wear properties: Hu et al. [16] analyzed
the tribological properties of non-coated ferric oxide (Fe2O3, particle size around 20–50 nm), used
as an additive in a lubricating mineral oil (SN500) using sorbitol monostearate as dispersing agent.
These authors observed that the anti-wear properties of the base oil were improved slightly (11.6%) by
the addition of Fe2O3. Zhou et al. [26] analyzed the tribological behavior of coated Fe3O4 magnetic
nanoparticles (particle size around 10 nm) with oleic acid dispersed in a liquid paraffin, showing that
the coefficient of friction and the wear can be effectively reduced up to 25% and 65%, respectively,
with the addition of the nanoparticles. Recently, Zhang et al. [27] studied the tribological performance



Nanomaterials 2020, 10, 0 3 of 22

of PAO 6 (a polyalphaolefin, whose kinematic viscosity at T = 373.15 K is around 6 mm2 s-1) with
graphene oxide/Fe3O4 nanocomposites as additives obtaining reductions of 7% and 52% in friction
and wear, respectively, in comparison to PAO 6.

The aim of this work is to analyze the tribological behavior in different lubrication regimes
of nanolubricants composed by different types and sizes of functionalized superparamagnetic
nanoparticles with an oleic acid coating. For this purpose, Fe3O4 with sizes of 6.3 and 10 nm
and Nd alloy compound with average sizes of 19 nm and trimethylolpropane trioleate (TMPTO)
were chosen. This biodegradable base oil is a non-flammable hydraulic fluid, which is known as a
good boundary lubricant [28] with a high viscosity index [29]. In addition, there is expected to be a
good affinity between the trioleate group of the oil and the oleic coating of the nanoparticles. There
are no previous studies about the anti-friction and anti-wear properties of the Nd alloy compound
nanoparticles as a lubricant additive. For this work, ball-on-three-plates tests were performed at
20 ◦C to determine the friction coefficient at boundary conditions as well as to quantify the wear
by means of a 3D profiler. Moreover, the wear track surface was analyzed through confocal Raman
microscopy in order to know the role that nanoparticles play in the reduction of the wear. For mixed and
elastohydrodynamic lubrication regimes, Stribeck curves were measured in a ball-on-disk tribometer
under rolling conditions at operating temperatures of 30, 50 and 80 ◦C. These conditions were selected
because rolling elements usually work at temperatures around 80 ◦C while the behavior at low
temperatures can occur if the equipment needs to make a cold start. Additionally, film thickness
measurements of prepared nanolubricants were performed at different temperatures in order to analyze
their lubrication capacity. There are no previous research works on Stribeck curves or film thickness
measurements with ferrites as additives of lubricants. Rolling bearing tests were also performed for
the coated Fe3O4 (6.3 nm) nanolubricant.

2. Materials and Methods

2.1. Base Oil

The TMPTO base oil sample was provided by Croda (Snaith, United Kingdom). A
high-performance liquid chromatograph (HPLC) coupled to a quadrupole orthogonal acceleration
time-of-flight mass spectrometer micrOTOFQ™ (Bruker Daltonics Inc., Billerica, MA, USA) equipped
with an electrospray ionization source (ESI) was used to characterize the sample. The procedure used
is the same as that previously reported for a different lot [30]. The analysis shows that the base oil used
in the present work is composed by 69.2% of trimethylolpropane trioleate (Figure S1), 26.5% of a very
similar compound with a C–C bond more than TMPTO (i.e., two H atoms less) and 4.3% of another
compound with two extra C–C bonds (i.e. four H atoms less).

2.2. Synthesis and Characterization of Nanoparticles

2.2.1. Chemical and Materials

All chemicals used were of analytical grade and without purification. Iron (III) acetylacetonate
(Fe(acac)3), 1,2-hexadecanediol, oleic acid, phenyl ether, cyclohexane, tri-n-octylamine (TOA), ferrous
sulfate (FeSO4·7H2O), hydrochloric acid (HCl) and ammonium hydroxide (NH4OH) were purchased
from Sigma (Saint Louis, MO, USA). Oleylamine was obtained from Acros Organics (Geel, Belgium).
Ethanol was purchased from Panreac (Madrid, Spain) and ferric chloride (FeCl3·6H2O) was obtained
from Alfa Aesar (Madrid, Spain).

2.2.2. Synthesis

Two different sets of Fe3O4@Oleic_acid NPs were prepared according to a modification of Sun’s
method [31] in order to produce samples with tailored size, with average diameters around 6 nm and
10 nm. The oleic acid was used as a surfactant to stabilize the NPs.
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To produce Fe3O4@Oleic_acid NPs with an average diameter around 6 nm (S1), 10 mmol of
Fe(acac)3, 50 mmol of 1,2-hexadecanediol, 30 mmol of oleic acid, 20 mmol of oleylamine, and 100 mL of
phenyl ether, were mixed and magnetically stirred under a flow of nitrogen. The mixture was heated
to 250 ◦C for 4 h before being cooled down to room temperature. After the addition of ethanol to
induce the precipitation of Fe3O4 nanoparticles, the individually formed dispersed nanoparticles were
magnetically separated and washed several times with ethanol (4×) and cyclohexane (3×). Finally,
NPs were resuspended in cyclohexane.

In the case of the coated Fe3O4@Oleic_acid NPs with average diameter of 10 nm (S2), a
coprecipitation procedure following Massart´s method [32] was employed with some modifications.
Fe3O4 NPs of 10 nm, the coprecipitation method was used, according to the Massart´s method with
some modifications. A solution containing 45 mmol of FeCl3·6H2O and 30 mmol of FeSO4·7H2O and
100 mL of HCl (0.01 M) were mechanically stirred (250 rpm) and heated to 60 ◦C. Then, 750 mmol of
NH4OH and 8 mmol of oleic acid were added to obtain the hydrophobic character of the magnetic
nano-particles and the reaction was stirred for 1 h. Afterwards, the mixture was transferred to a beaker
and placed on a hot plate at 100 ◦C to allow for precipitation. The magnetic nanoparticles obtained
were washed with Milli-Q water (3×) and were resuspended in cyclohexane.

The Nd alloy compound was prepared by thermal decomposition. Typically, 6 mol of Nd oleate
were added to a flask containing oleic acid and TOA. After being filled with nitrogen atmosphere,
the flask was then heated at 330 ◦C for 72 h. Nanoparticles were precipitated magnetically separated
and washed with ethanol (4×) and cyclohexane (4×). Finally, the NPs were resuspended in cyclohexane.

All prepared nanoparticles were fully characterized with different techniques. The morphology
and size of coated Fe3O4 and Nd alloy compound (Figure 1) were determined by transmission electron
microscopy (TEM), using a JEOL JEM-1011 microscope operating at 100 kV (JEOL, Tokyo, Japan).
The micrographs of Fe3O4 and Nd alloy compound NPs are presented in Figure 1a–c, together
with their corresponding histograms from Figure 1e to Figure 1g. It can be clearly observed that
Fe3O4@Oleic_acid NPs have a spherical core, are individually dispersed, and show a moderate size
distribution with averaged sizes around 6.3 nm, in one case, and 10 nm in the other case. Nd alloy
compound nanoparticles have a nearly cubic shape with narrow size distribution and an average size
around 19 nm.
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Figure 1. (a–c) Transmission electron microscopy (TEM) micrographs and (e–g) size distributions of
the Fe3O4@Oleic acid with average sizes of 6.3 nm (a and e); 10 nm (b and f) and Nd alloy compound
with size of 19 nm (c and g) nanoparticles. The size distribution was performed using Image J software.
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The Fourier transform infrared spectroscopy (FT-IR) technique was used to characterize the
nanoparticles using a Thermo Nicolet Nexus spectrometer (Thermo Fisher Scientific, Madrid, Spain)
and the attenuated total reflectance (ATR) method in the range 400–4000 cm−1. As can be seen in
Figure 2, the FT-IR spectra of coated Fe3O4 nanoparticles present the characteristic bands of oleic acid
groups and Fe3O4. For both samples, an absorption peak appears around 572 cm−1 which corresponds
to the Fe-O vibration of the magnetic Fe3O4 phase [33]. Two absorption peaks can be observed at 2925
and 2848 cm−1 that can be attributed to the asymmetric and symmetric CH2 stretching in oleic acid,
respectively [33,34]. Besides, the CH3 umbrella mode appears around 1406 cm−1 [34]. In addition,
two peaks appear around 1598 and 1521 cm−1 which correspond to the asymmetric and symmetric
stretching vibrations of COO− groups of the oleic acid [34]. Furthermore, the wavenumber separation
(∆) between the Vas(COO−) and Vs(COO−) bands can be used to study the type of the interaction
(monodentate, bridging bidentate, chelating bidentate or ionic interaction) between the carboxylate
head and the metal atom [35]. In this case, the ∆ of 77 cm−1 is ascribed to a chelating bidentate
interaction between the COO− group and the Fe or Nd atoms. This result is in concordance with
previous works, in which a strong chemical bond between carboxylic acid and the amorphous iron
oxide or neodymium alloy nanoparticles’ surface has been shown [36,37].
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Figure 2. Fourier transform infrared spectroscopy (FT-IR) spectra of coated Fe3O4 nanoparticles: (S1)
Fe3O4 (6.3 nm), (S2) Fe3O4 (10 nm) and (S3) Nd alloy compound (19 nm).

Also, thermogravimetric analysis (TGA) was used to estimate the oleic acid content in the
synthesized nanoparticles as well as the number of oleic acid molecules per surface area of each
nanoparticle (Table 1). For this aim, a Perkin Elmer Pirys 7 TGA (Perkin, Waltham, MA, USA) was
employed heating from 50 to 850 ◦C at 10 ◦C/min under a nitrogen flow of 20 mL/min. Figure 3 shows
a schematic representation of the oleic acid-particle structure.

Table 1. Oleic acid content in each synthesized nanoparticle.

Sample Oleic Acid Content (wt%) Number of Oleic Acid Molecules
per NP Surface Area in nm2

Fe3O4@OA (6.3 nm) 29.10 5
Fe3O4@OA (10 nm) 19.30 6

Nd alloy 14.45 1
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Figure 3. Representation of the oleic acid-particle structure.

Additionally, crystallinity and the phase structures of coated Fe3O4 nanoparticles were also
characterized by X-ray powder diffraction (XRD) using a Philips PW1710 diffractometer (Cu Kα

radiation source, λ = 1.54186 Å) with a step size of 0.02◦ and counting time of 2 s per step from 10 to
80◦ (2θ). In Figure 4, the diffractograms of both samples S1 and S2, show a set of peaks corresponding
to those of the crystalline Fe3O4 phase (Joint Committee on Powder Diffraction Standards, JCPDS
79-0417) [36]. Moreover, the widening of the peaks, indicate the ultra-fine nature and small crystallite
size of the particles [37]. An additional broad band appearing at low angles 2θ< 20◦ is related to the
presence of oleic acid. The Nd alloy compound is formed by a mixture of NdFe12B6 and Fe3O4.
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Figure 4. X-ray powder diffractogram (XRD) for the coated F3O4 nanoparticles: (S1) 6.3 nm and (S2)
10 nm.

Magnetization of the coated NPs was also measured. For this task, dried samples were magnetically
characterized using a vibrating sample magnetometer (VSM) (DMS/ADE Technologies, Massachusetts,
USA) at room temperature with applied magnetic fields between −10 and 10 kOe. In Figure 5 the
typical hysteresis loops of the coated nanoparticles, normalized to their magnetite mass content, can
be observed. It was concluded that these species were superparamagnetic owing to their almost
zero coercivity and zero remanence in the magnetization curve. Saturation magnetization (MS) of
these Fe3O4 coated NPs (S1 and S2) is lower than bulk magnetite saturation (~92 emu/g). This fact is
in accordance to that expected for the reduction of magnetization caused by a dead magnetic layer
in small magnetic nanoparticles and the non-magnetic contribution of the oleic acid coating shell.
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The magnetization of Nd alloy NPs (S3) shows a nearly superparamagnetic behavior and a saturation
magnetization around 20 emu/g.
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Figure 5. Magnetization curves at room temperature for the coated F3O4 nanoparticles: (S1) 6.3 nm
and (S2) 10 nm and (S3) Nd alloy.

2.3. Preparation of the Nanolubricants

In order to obtain homogeneous nanolubricants, the nanoparticles suspended in cyclohexane
after the synthesis were added to the oil through the elimination of the solvent by boiling with a
rotary evaporator. For this aim, the first step was to find a solvent which can be easily and completely
separated from the oil. Different organic solvents with lower boiling point than that of the TMPTO
base oil, such as cyclohexane, ethanol, ether or chloroform, were tested. For this purpose, TMPTO
was mixed with each one of these solvents and then was separated with the rotary evaporator at
different temperature conditions. In order to know whether the solvent was completely removed,
the viscosity of the TMPTO obtained was measured with a rotational viscometer Stabinger SVM3000
(Anton Paar, Graz, Austria) and compared with that of the neat TMPTO. Chloroform was the solvent
for which the viscosity of the base oil remained unchanged. Hence, it has been concluded that the
best solvent to incorporate the nanoparticles in TMPTO is chloroform. Therefore, the nanoparticles
that after synthesis were dispersed in cyclohexane were transferred to chloroform. Subsequently,
concentration is determined by thermogravimetry and the chloroform dispersion was added to the
TMPTO base oil and mixed by ultrasonic agitation for 15 min. Then, the chloroform was eliminated
from the oil using a rotary evaporator. Using this procedure, three nanodispersions of TMPTO with
0.015 wt% of each NP were obtained. Once all the solvent has been removed, the dispersion of oil and
nanoparticles are sonicated with a homogenizer Fisherbrand ultrasonic bath, in a continuous shaking
mode for 240 min with an effective power of 180 W and a fixed sonication frequency of 37 kHz to
obtain the nanolubricants. Density and viscosity of the nanolubricants and TMPTO base oil measured
with the Stabinger SVM3000 deviceare shown in Table 2 at reference temperatures and Tables S1 and
S2 from 278.15 K to 373.15 K. For this device, the expanded uncertainties (k = 2) are 0.02 K for the
temperature from 288.15 to 378.15 K and 0.05 K outside this range, 0.0005 g·cm−3 for density and 1%
for dynamic viscosity.

Table 2. Main physical properties of trimethylolpropane trioleate (TMPTO) base oil and the three
nanodispersions of TMPTO with 0.015 wt% of each coated nanoparticle (NP).

Physical Property TMPTO Base Oil 0.015 wt%
(Fe3O4-6.3 nm)

0.015 wt%
(Fe3O4-10 nm)

0.015 wt%
(Nd alloy-19 nm)

Density at 293.15 K/g cm−3 0.9161 0.9172 0.9167 0.9177
Viscosity at 313.15 K/mPa s 45.32 46.04 45.81 46.22
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2.4. Tribological Behavior: Ball-on-Three-Pins Test

Tribological tests were carried out under pure sliding conditions in a modular compact rheometer
MCR 302 from Anton-Paar equipped with a tribology cell T-PTD 200, in combination with a Peltier
hood H-PTD 200 for a precise temperature control. This rheometer has an outstanding speed and
torque control, an accurate normal force detector as well as a fast temperature control in a wide range.
All these characteristics are utilized for the tribology tests. In this work, the test configuration used was
ball-on-three-pins. The ball is fixed on a shaft and driven by the MCR rheometer motor, then rotating
on the three pins under the fixed normal force. The resulting torque is associated with the friction force
by using simple geometric calculations. The axial force of the rheometer is transferred into a normal
force acting perpendicular to the bottom pins at the contact points. Zero distance is determined by a
‘zero-gap measurement’, in which the measuring system (ball) is lowered by the rheometer until softly
touching the sample surface (i.e., a normal force will be detected). The height at which the normal force
is sensed corresponds to zero height. The distance resolution is better than 0.01%. More details can be
found in the literature [38]. The diameter of the ball is 12.7 mm, the cylindrical-shaped pins have 6 mm
in both diameter and height. Balls and pins were cleaned with a stream of hexane and dried with air
before the tests. Samples were fully submerged by adding 1.3 mL of lubricant. The ball rotates on the
three pins with a total normal force of 45 N, resulting in a force of 21 N acting normally to each pin
surface during the tests, which corresponds to a maximum contact pressure of about 1 GPa and a mean
contact pressure around 0.7 GPa [39]. Tests were performed at a constant rotational speed 213 rpm
(corresponding to a linear speed 0.1 m/s) and a sliding distance of 340 m at 20 ◦C. Three replicates were
run for each concentration of lubricant.

In order to analyze the worn surface after the ball on three-pins tests, a 3D Optical Profiler Sensofar
S Neox was used to quantify the wear of pins in different terms such as wear scar diameter (WSD),
wear track depth (WTD) and the volume of the wear hole. In order to obtain representative average
values, these parameters have been measured in three different zones using a confocal mode with
a 10× objective. Furthermore, a WITec alpha300R+ confocal Raman microscopy was used to obtain
information about the composition in the pins worn track.

Roughness (Ra) of worn surfaces of pins lubricated with the studied nanolubricants and the
base oil were also analyzed to characterize the anti-wear capability of the nanolubricants with this
device. For this purpose, the ISO4287 standard (International Organization for Standardization, Vernier,
Switzerland) was used employing a Gaussian filter with a long wavelength cut-off of 0.08 mm.

2.5. Film Thickness Measurements

A ball-on-disc tribometer, EHD2 model from PCS Instruments, equipped with optical
interferometry, was employed in order to measure the lubricant film thickness of the contact formed
between a steel ball (19.05 mm in diameter) and a rotating glass disc (coated with a 20 nm chromium
and 500 nm silica layer). The disc and ball are driven by two electric motors for carrying out tests
under rolling/sliding conditions, the load-applying system being based on moving the ball against
the disc. Thus, the normal load is measured with a load cell, positioned below the ball carriage,
measuring the normal load applied on the ball against the disc. The friction force is also measured
on the ball, through a torque cell mounted on the ball shaft with the disc rotating faster than the ball,
and afterwards, at the same entrainment/rolling speed, the friction force is measured again with the
ball rotating faster than the disc. Therefore, the friction coefficient is then calculated from the normal
force and the friction force. The central film thickness is obtained by optical interferometry through
the wavelength of the light returned from the central plateau of the contact [40]. The glass disc can
be tested up to approximately 0.7 GPa of maximum Hertz pressure and the ball specimen presents
a high-grade surface finish. The ball and disc characteristics (provided by the manufacturer) are
presented in Table 3.
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Table 3. Main characteristics of the ball and discs.

Parameters Ball Glass Disc
Steel Disc

Polished Rough

Elastic modulus/GPa 210 75 210
Poisson ratio 0.29 0.20 0.29
Radius/mm 19.05 50 50 50
Surface roughness, Ra/nm 20 5 50 500

The zero distance is evaluated before each film thickness test. The ball is loaded against the disc
(same load as the test load 50 N), without lubricant between the disc and the ball. The space layer
coating thickness is then evaluated through interferometry. The corresponding wavelength is recorded
and set as the zero point. Measured wavelengths above that value means that the film thickness is
higher than zero, and below that value mean the space layer is worn out.

Film thickness measurements were carried out under fully flooded lubrication (130 mL of lubricant
oil) for the base oil and the magnetic nanolubricants at three operating temperatures (30, 50 and
80 ◦C) using a load of 50 N which corresponds to a maximum Hertz pressure of 0.66 GPa and for 5%
slide-to-roll ratio (SRR) defined as:

SRR(%) = 2×
(Udisc −Uball)

(Udisc + Uball)
× 100, (1)

being Udisc and Uball the speed of disc and ball on the contacting surfaces respectively.
The entrainment speed (Us) is defined by the following equation:

US =
(Udisc + Uball)

2
, (2)

For each temperature the same entrainment speed ramp was used: 0.01 m/s to 2 m/s. These
conditions allow a very thin lubricant film thickness to be worked with. The lowest ball speed is
0.097 m/s and the highest ball speed is 1.950 m/s for the three studied temperatures. On the other hand,
the lowest disc speed is 0.102 m/s and the highest disc speed is 2.049 m/s. The tribometer adjusts disc
and ball speeds automatically, being the disc speed faster in order to get positive SRR and the disk
slower to obtain negative SRR, while the entrainment speed is maintained constant. The result is the
average of three measurements, two ramps increasing speed and one decreasing.

2.6. Tribological Behavior: Stribeck Curves

Friction coefficient measurements were also performed with the EHD2 ball-on-disc described
in the previous section. For these measurements, the ball runs against a steel disc under 50 N
load producing contact pressures up to 1.11 GPa. The used balls and discs are made of carbon
steel (American Iron and Steel Institute, AISI 52100 100Cr6) with 19.05 mm and 100 mm diameters,
respectively. The disc properties were provided by the manufacturer and the surface roughness was
measured with a Hommelwerke Profiler for both polished and rough samples (Table 3), while the
characteristics of the ball are the same as for the lubricant film thickness measurements. Friction
coefficients of nanolubricants and base oil were also measured at 30, 50 and 80 ◦C. For both discs
(rough and polished) the friction properties have been studied through Stribeck curves for a 5% SRR
value and entrainment speeds from 0.01 to 2 m/s. For this test, the range of the ball and disc speeds
and the SSR are the same as for the film thickness measurements. The friction coefficient values are
also given by the average of measurements with 5% SSR.
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2.7. Rolling Bearing Test Rig

To carry out the rolling bearing tests a modified four-ball machine by Marques et al. [41] was
employed. The machine configuration was replaced by a rolling bearing assembly in order to test a
different kind of rolling bearings [41]. This device consists mainly of two different parts, the upper
part is directly connected to the machine shaft and the second part is where the bearing system is
fitted, 50 mL of sample volume assures that the lubricant level reaches the middle of the rollers. In this
work, SKF 51107 thrust ball bearings have been used. The friction torque and operating temperature
at different points were continuously measured during the tests; the first one was measured with a
piezoelectric torque cell Kistler 9339, which ensured high-accuracy measurements even at very low
friction torque [41,42]. The temperature was measured by three thermocouples in real time at different
strategic locations: inside the oil sump, near the rolling bearing raceway and the lubricant, and the
third measured the room temperature. More details were reported by Marques et al. [41].

The machine initially worked at 500 rpm for 10 min at very low load (5 kg applied in a dead
weight lever system, the resulting force being approximately 1000 N) in order to ensure the warm-up of
the system. Subsequently, an axial load of 7 kN was applied, producing a maximum contact pressure
of around 2.3 GPa in each ball contact. At the same time the heater was switched on to reach the
required oil bath temperature of 70 ◦C. Subsequently, five friction torque measurements were carried
out for each of the five speed steps (100, 200, 500, 1000 and 1500 rpm) for each lubricant in order to
obtain better repeatability. Friction torque measurements were taken after 30 min once the chosen
speed, load and temperature had been reached.

3. Results

3.1. Stability of the Nanolubricants

In a first step, the stability of the nanolubricants against sedimentation was studied by visual
observation. For the three prepared nanodispersions no signs of sedimentation appeared for 11 months
just after sonication as can be seen in Figure 6. In the Chen et al. [15] review about the stability of
numerous nanolubricants, nevertheless, none of them showed time stabilities as large as those for
the nanolubricants presented in this work. Indeed, the stability times were much longer than those
required to perform ball on three pins and rolling test bearing, 4 and 6 h respectively.
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Refractometry is the second method to analyze the stability against sedimentation of prepared
nanodispersions. For this aim a Mettler Toledo Refractometer was used to measure the refractive
index of nanodispersions over time. This procedure was previously explained [43]. Figure 7 shows
an amazing stability over time for all the nanodispersions, showing an important improvement of
the stability in comparison with other nanodispersions previously studied [44,45]. Specifically, for
TMPTO-based nanolubricants, the refractive index increases 0.44 and 0.08 for graphene oxide, GO and
reduced graphene oxide, rGO nanoparticles after 50 h [45]. Meanwhile for this period, in this work the
refractive index evolution shows increases of 0.02, 0.03 and 0.02 for Fe3O4 (6.3 nm), Fe3O4 (10 nm) and
Nd alloy (19 nm) nanolubricants, respectively. These great stabilities can be attributed to the oleic acid
coating of the nanoparticles as well as to its affinity with the trioleate group of the TMPTO.
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Figure 7. Temporal evolution of the refractive index, n, for TMPTO + 0.015 wt% (Fe3O4 (6.3 nm),
Fe3O4 (10 nm) or Nd alloy (19 nm), TMPTO + 0.05% (graphene oxide, GO or reduced graphene oxide,
rGO) [45].

3.2. Friction Behavior in Ball-on-Three-Pins

Friction coefficients (µ) obtained with the tribology cell T-PTD 200 from Anton-Paar for the three
nanolubricants composed by coated Fe3O4 (6.3 nm), Fe3O4 (10 nm) and Nd alloy (19 nm) with TMPTO
base oil over time are presented in Figure 8. It can be seen clearly that for the three nanodispersions the
friction coefficients obtained are lower than those of the base oil without additives, the greatest friction
reduction being obtained for the nanolubricant formed by the Nd alloy nanoparticles in TMPTO base
oil. The average friction values are given in Table 4 and plotted in Figure 9. The lowest average friction
coefficient is 0.067. This result leads to a friction reduction of 29% due to the Nd alloy additives.
In the case of coated magnetites, reductions of 4% and 18% in the average coefficient of friction were
obtained for Fe3O4 (6.3 nm) and Fe3O4 (10 nm), respectively.
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Table 4. Mean values of friction coefficient (µ) and of the diameter (wear scar diameter, WSD), depth
(wear track depth, WTD) and volume of the wear hole and their respective standard deviations (σ) for
all nanolubricants for the TMPTO base oil and the three nanolubricants with 0.015 wt% of each NP.

Lubricant µ σ WSD/µm σ/µm WTD/µm σ/µm Vol/103µm3 σ/103µm3

Neat TMPTO 0.094 0.006 358 15 1.57 0.11 58.1 3.4
Fe3O4 (6.3 nm) 0.090 0.005 226 17 1.52 0.21 23.7 1.1
Fe3O4 (10 nm) 0.078 0.005 145 17 1.17 0.13 13.7 0.8
Nd alloy (19 nm) 0.067 0.006 119 13 1.02 0.11 0.56 0.5
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three nanolubricants with 0.015 wt% of each NP. Error bars indicate the standard deviation of the mean
friction coefficient or of the WSD.

3.3. Surface Analysis of Worn Pins

Profiles of the wear tracks produced in the pins due to the ball-on-three-pins tests for the studied
nanolubricants and TMPTO oil are shown in Figure 10. The wear in the pins was evaluated through
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the diameter, depth and volume below the unworn surface of the track (Table 4). Figure 11 shows
cross-section profiles of the wear tracks in the pins lubricated with TMPTO base oil and with the
nanolubricants. It can be observed that, using the nanolubricants, the obtained wear is lower than for
the TMPTO base oil, in terms of diameter, depth and volume of wear scar. For diameter and depth
of the wear track, the maximum reductions were obtained with the Nd alloy nanolubricant, being
67% and 35% respectively. For the magnetite nanolubricants, improved results were also observed in
comparison with the base oil. Thus, for Fe3O4 (6.3 nm) reductions of 37% and 3% were observed for
diameter and depth of the wear scar respectively whereas for Fe3O4 (10 nm) reductions of 59% and
25% were obtained respectively. These results show a close relationship between friction and wear
behaviors, as it can be seen in Figure 9.
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Figure 10. Three-dimensional (3D) profile (10×) and 2D images (10×) of the wear tracks of pins for:
(a) TMPTO, (b) TMPTO + 0.015 wt% Fe3O4 (6.3 nm), (c) TMPTO + 0.015 wt% Fe3O4 (10 nm) and
(d) TMPTO + 0.015 wt% Nd alloy (19 nm).
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Figure 11. Cross section profiles of the wear tracks on the pins lubricated with (a) TMPTO, (b) TMPTO
+ 0.015 wt% Fe3O4 (6.3 nm), (c) TMPTO + 0.015 wt% Fe3O4 (10 nm) and (d) TMPTO + 0.015 wt% Nd
alloy (19 nm).

Roughness (Ra) of worn surfaces of pins has been also analyzed to characterize the anti-wear
capability of the nanolubricants. Table 5 shows that the worn surfaces lubricated with the nanolubricants
are smoother than those lubricated with TMPTO. An Ra value of 61 nm was obtained for the worn
surface lubricated with TMPTO whereas for the track corresponding to the Nd alloy nanolubricant
the lowest Ra was found (37 nm), which leads to a 54% reduction in roughness. As a result, it can be
concluded that a polishing effect occurs due to the presence of nanoparticles. In the case of the Nd alloy
this effect seems to be stronger than for the other nanoparticles. As regards magnetites, the smoother
surface was obtained with the bigger size of the nanoparticles (10 nm).

Table 5. Roughness parameters, Ra, and their uncertainties σ of worn surfaces lubricated with the three
studied nanodispersions and neat TMPTO.

Lubricant Ra/nm σ/nm Gaussian Filter/mm

TMPTO 60.9 5.2 0.08
TMPTO + 0.015 wt% Fe3O4 (6.3 nm) 47.9 4.1 0.08
TMPTO + 0.015 wt% Fe3O4 (10 nm) 41.8 4.2 0.08

TMPTO + 0.015 wt% Nd alloy (19 nm) 37.3 3.8 0.08
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Raman spectra of the base oil (Figure S2) and the three studied magnetic nanopowders
(Figures S3 and S4) as well as elemental mapping of the worn pin surfaces lubricated with the
three nanolubricants (Figures 12–14) were carried out with the confocal Raman microscope at a
wavelength of 532 nm to know the role that nanoparticles play in the reduction of surface wear of
pins. The Raman spectrum of both magnetites (Figure S4) exhibits characteristic bands at 289 cm−1

which is due to the Eg phonon mode and at 682 cm−1 that is associated to the A1g phonon mode [46].
In addition, the peaks observed at 1580 cm-1 and 1309 cm−1 are consistent with the presence of the
oleic acid coating, specifically these peaks are associated to C=C alkyl stretching and C-H ethylene,
respectively [47]. As regards the Nd alloy (Figure S4), there is no previous characterization about
this compound.
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Figures 12–14 show the mapping of worn surfaces lubricated with the nanolubricants containing
both magnetites and Nd alloy. Important tribofilms are evidenced owing to a significant presence of
nanoparticles (red color). Furthermore, the presence of TMPTO base oil (blue color) is observed. Both
magnetite and Nd alloy nanoadditives are mainly placed along several furrows on the worn surface,
especially in the case of the Fe3O4 (10 nm)-based nanolubricant. This fact indicates that a mending
effect takes place [43]. Moreover, the major presence of nanoparticles can be observed in Figure 12,
which corresponds with the smallest nanoparticle size (6.3 nm). This fact seems to indicate that these
nanoparticles have a high affinity to the surface although the tribofilm is less effective at protecting
it which is evidenced by the poorer anti-friction and anti-wear performances. Taking into account
the Raman and roughness results it can be concluded that the mechanisms which explain the role of
these nanoparticles as lubricant additives are the tribofilm formation, which is a direct effect of the
nanoparticle on the worn surface, as well as mending and polishing effects which are related to surface
enhancement [43].

3.4. Film Thickness

Figure 15 shows the typical graph log(film thickness) versus log(entrainment speed). As expected,
the higher is the entrainment speed, the thicker is the film. All studied lubricants (base oil and
nanolubricants) show similar film thickness values for each operating temperature (30 ◦C, 50 ◦C
and 80 ◦C) during the tests performed, due to their very similar viscosities (Table 1 and Table S2).
Specifically, the maximum viscosity increase is only 2.8%, which was obtained for the Nd alloy at
278.15 K in comparison to the base oil. Viscosity increase is common when a base oil is additive
with nanoparticles [44]. On the other hand, the viscosity, pressure-viscosity coefficient and film
thickness of the lubricants decrease when temperature rises [48]. Similar film thickness values of the
nanolubricants with respect to those of the base oil is an advantage when it is needed to replace the oil
by the nanolubricant in the mechanical elements such as gearboxes or bearings.
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(SRR) of 5%.

3.5. Friction Behaviour: Stribeck Curves

The Stribeck curves for all lubricant samples were studied at temperatures of 30, 50 and 80 ◦C and
SRR of 5%. The coefficient of friction is presented against the specific film thickness, Λ, which in this
work, is given by:

Λ =
h0

σ
, (3)

where h0 is the central film thickness and σ is the average roughness given by σ =
√
(σdisc)

2 + (σball)
2.

Other authors use the minimum film thickness instead to calculate Λ, but for the purpose of this
analysis, this would only shift the curves to the left.

Full Stribeck curves (Figure 16) were obtained for nanolubricants and base oil: boundary to mixed
(for rough disc) and full film lubrication (smooth disc). As expected, the friction tests made with rough
discs produced higher friction values than those made with smooth discs. At operating temperature of
30 ◦C it can be observed that the addition of the studied nanoparticle hardly changed the coefficient of
friction of the nanolubricants in comparison with the TMPTO base oil, and there is no difference since
viscosity of all dispersions is very similar. As temperature increases, at 50 and 80 ◦C the Fe3O4 (6.3 nm)
nanolubricant shows smaller friction than the base oil for both polished and rough discs, in accordance
with the slightly higher film thicknesses (Figure 16). This result is mainly interesting for oil engine
applications, habitually operating at high temperatures (around 100 ◦C) [49]. Considering these facts,
the tribological behavior of the Fe3O4 (6.3 nm) nanolubricant was also analyzed in a real application of
rolling bearings (Section 3.6).
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3.6. Friction Behavior: Rolling Bearing Test Rig

Figure 17 shows the friction torque results for rolling bearings lubricated with TMPTO base oil
and Fe3O4 (6.3 nm) nanolubricants at 70 ◦C under 7000 N. The surface roughness of the cylindrical
roller thrust bearing is 0.14 µm so that, considering Equation (3), tests were performed under boundary
lubrication conditions (Λ ≈ 0.06) for both lubricants. The central film thickness (h0) at this temperature
has been predicted through Hamrock and Downson’s equation for elliptical contacts [50]. As Figure 17
shows, friction torque values obtained for the nanolubricant with Fe3O4 (6.3 nm) at 70 ◦C are much
lower than those for TMPTO base oil, especially at very low speed (200 rpm) likely due to the fact
that at boundary conditions the nanoparticles play an anti-friction and anti-wear role. As the speed
is increased (500 rpm and 1000 rpm) the behavior is still better than that for the base oil but not as
much as for the lowest speed. Finally, at the highest speed (1500 rpm) there is a hardly difference in the
friction torque between both lubricants due to the thick lubricant film. The friction torque reduction is
about 35% for the first studied speed (200 rpm), 23% for both the speeds of 500 rpm and 1000 rpm.
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4. Conclusions

In this work the following features were achieved:

- Magnetic nanoparticles: Fe3O4 (6.3 nm), Fe3O4 (10 nm) and Nd alloy (19 nm) functionalized with
oleic acid have been synthesized.

- Dispersions of TMPTO base oil with 0.015 wt% of Fe3O4 (6.3 nm), Fe3O4 (10 nm) and Nd alloy
(19 nm) were prepared showing that through chemical modification with oleic acid, a greater
stability of the nanodispersions is achieved, which can validate their use for many industrial
applications. This is one of the highest time stabilities in the literature for nanolubricants [15].

- For pure sliding/boundary tests at 20 ◦C, for the three nanolubricants the friction coefficient is
lower than that obtained with the base oil, the best friction behavior being obtained with the Nd
alloy nanolubricant with a friction reduction of 29% in comparison with the base oil.

- The diameters and depths of the wear scar obtained with the three nanolubricants are lower
than those corresponding to the base oil, obtaining maximum wear reductions for the Nd alloy
nanolubricant, being 67% and 35% in terms of diameter and depth of the wear scar, respectively

- Protective tribofilm formation was confirmed by confocal Raman microscopy on the worn surfaces.
- Film thickness values for all studied nanolubricants are very similar due to their similar viscosities,

so lubrication capacity will be analogous for all lubricants.
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- Under rolling conditions of 5% SRR and 30 ◦C, the full Stribeck curves for all lubricants are
similar whereas at the higher temperatures the Fe3O4 (6.3 nm) nanolubricant shows lower friction
coefficient than the base oil and the other nanolubricants.

- Fe3O4 (6.3 nm) nanolubricant leads to a lower friction torque in comparison with the base oil,
especially at low speed when the film is thin and the nanoparticles play an important role in the
reduction of friction.
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