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Distinct epigenetic signatures 
between adult‑onset 
and late‑onset depression
Hirotaka Yamagata1,2*, Hiroyuki Ogihara3, Koji Matsuo1,7, Shusaku Uchida1,2,8, 
Ayumi Kobayashi1, Tomoe Seki1,2, Masaaki Kobayashi1, Kenichiro Harada1, Chong Chen1, 
Shigeo Miyata4,5, Masato Fukuda5, Masahiko Mikuni5,6,9, Yoshihiko Hamamoto3, 
Yoshifumi Watanabe1,10 & Shin Nakagawa1

The heterogeneity of major depressive disorder (MDD) is attributed to the fact that diagnostic 
criteria (e.g., DSM-5) are only based on clinical symptoms. The discovery of blood biomarkers has the 
potential to change the diagnosis of MDD. The purpose of this study was to identify blood biomarkers 
of DNA methylation by strategically subtyping patients with MDD by onset age. We analyzed 
genome-wide DNA methylation of patients with adult-onset depression (AOD; age ≥ 50 years, age at 
depression onset < 50 years; N = 10) and late-onset depression (LOD; age ≥ 50 years, age at depression 
onset ≥ 50 years; N = 25) in comparison to that of 30 healthy subjects. The methylation profile of 
the AOD group was not only different from that of the LOD group but also more homogenous. Six 
identified methylation CpG sites were validated by pyrosequencing and amplicon bisulfite sequencing 
as potential markers for AOD in a second set of independent patients with AOD and healthy control 
subjects (N = 11). The combination of three specific methylation markers achieved the highest accuracy 
(sensitivity, 64%; specificity, 91%; accuracy, 77%). Taken together, our findings suggest that DNA 
methylation markers are more suitable for AOD than for LOD patients.

Depressive disorders are among the most common psychiatric diseases. However, it is often difficult to dis-
criminate major depressive disorder (MDD) from other depressive disorders based on operational diagnostic 
criteria (e.g., Diagnostic And Statistical Manual of Mental Disorders, Fifth Edition [DSM-5]) because these 
criteria mainly rely on patients’ symptoms and do not include laboratory findings. Moreover, MDD is probably 
a heterogeneous entity because the pathophysiology of depression includes multiple factors such as genetics and 
environment1. The onset age is a key factor to heterogeneity in various diseases, for example, diabetes mellitus2 
and asthma3. Systematic reviews reported that patients with late-onset depression (LOD) have a lower frequency 
of family history4, decrease in cognitive executive function5, and more frequent and pronounced white matter 
hyperintensities in magnetic resonance imaging6 compared to patients with early-onset depression, suggesting 
different pathophysiologies. Recently, we discovered a validated gene expression marker for MDD in patients 
aged 50 years or older with confirmed MDD diagnosis, without a manic episode, and onset before the age of 
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50 years7. Other reports also suggest heterogeneity of MDD because leukocytic gene-expression profiles differ 
between adult-onset depression (AOD) and LOD7,8.

DNA methylation is one of the most common epigenetic modifications, controlling gene expression9,10. 
DNA methylation is known to control the resilience to early life stress and depression-like behavior in mice11. In 
humans, several reports show changed DNA methylation in the peripheral blood of patients with depression12,13. 
As an indicative result, we reported alterations in mRNAs of DNA methyltransferases14. However, few studies 
have focused on stratifying MDD by DNA methylation.

We postulate that epigenetic factors have a more significant influence on AOD than on LOD. The aim of this 
study was the analysis of the differences in methylation profiles of patients with AOD and LOD. We also identi-
fied DNA methylation markers from probes of patients with AOD.

Results
The demographic and clinical data of Group 1a (discovery samples) are shown in Table 1a. Participants with AOD 
were significantly younger than those in the healthy control (HC) group. The mean percentage of neutrophils 
was higher in the LOD than the HC group.

We identified specific methylation sites associated with AOD and LOD compared to HC from 411,383 probes 
using the Fisher ratio (F-ratio), which compares the variance between classes relative to the variance within 
classes. An increase in the F-ratio generally suggests that a feature distinguishes better between compared classes. 
The comparison between the top-ranked probes of the AOD and LOD groups and the HC group are shown in 
Table 2 and Supplementary Table S1. The F-ratios of the top-ranked probes distinguishing the AOD from the 
HC group were higher than those discriminating between the LOD and HC groups. Similarly, the F-ratios of the 

Table 1.   Participants’ demographics and characteristics in Group 1a and 1b (discovery and training samples, 
respectively). Characteristics of the participants for the genome-wide methylation array (a) and for the 
validation using pyrosequencing and amplicon bisulfite sequencing (b). Statistical analyses performed using 
the EZR software (version 1.37) (http://www.jichi​.ac.jp/saita​ma-sct/Saita​maHP.files​/statm​edEN.html). Data are 
shown as the mean ± standard deviation. *p < 0.05 compared to HC. #p < 0.05 compared to AOD. AOD, adult-
onset depression; HC, healthy controls; LOD, late-onset depression; MDD, major depressive disorder; SIGH-D, 
Structured Interview Guide of the Hamilton Depression Rating Scale score; WBCs, white blood cells.

HC AOD LOD

(a)

No. of subjects 30 10 25

Sex (Male/Female) 13/17 5/5 9/16

Age (years) 63.3 ± 8.0 56.0 ± 6.8* 61.8 ± 7.5

Age at onset (years) – 35.7 ± 8.9 57.8 ± 6.7#

Total duration of all MDD episodes  (months) – 7.0 ± 6.4 13.2 ± 16.4

Number of episodes – 3.0 ± 1.7 2.1 ± 2.1

Number of WBCs 4928 ± 1430 4757 ± 1495 5109 ± 1773

Neutrophils (%) 58.1 ± 8.7 58.4 ± 9.1 63.9 ± 6.6*

Lymphocytes (%) 33.2 ± 8.1 33.1 ± 7.5 28.3 ± 6.4

Eosinophils (%) 3.0 ± 1.7 3.0 ± 2.1 2.4 ± 2.0

Basophils (%) 0.45 ± 0.25 0.51 ± 0.29 0.55 ± 0.53

Monocytes (%) 5.2 ± 1.3 5.0 ± 1.5 4.8 ± 1.0

SIGH-D 0.7 ± 0.9 21.7 ± 2.2* 22.4 ± 4.3*

Equivalent dose of imipramine (mg) – 221 ± 131 183 ± 147

(b)

No. of subjects 10 10 10

Sex (Male/Female) 5/5 5/5 5/5

Age (years) 59.7 ± 6.2 56.0 ± 6.8 59.2 ± 4.6

Age at onset (years) – 35.7 ± 8.9 55.5 ± 4.5#

Total duration of all MDD episodes  (months) – 7.0 ± 6.4 21.8 ± 22.5

Number of episodes – 3.0 ± 1.7 2.3 ± 2.5

Number of WBCs 5171 ± 1180 4757 ± 1495 5333 ± 1667

Neutrophils (%) 59.9 ± 9.0 58.4 ± 9.1 60.5 ± 6.3

Lymphocytes (%) 32.3 ± 8.8 33.1 ± 7.5 32.3 ± 5.7

Eosinophils (%) 2.4 ± 1.7 3.0 ± 2.1 1.9 ± 2.0

Basophils (%) 0.48 ± 0.28 0.51 ± 0.29 0.42 ± 0.30

Monocytes (%) 4.9 ± 1.5 5.0 ± 1.5 4.9 ± 1.1

SIGH-D 0.7 ± 0.7 21.7 ± 2.2* 23.0 ± 4.7*

Equivalent dose of imipramine (mg) – 221 ± 131 218 ± 198

http://www.jichi.ac.jp/saitama-sct/SaitamaHP.files/statmedEN.html
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top-ranked RefSeq genes differentiating the AOD from the HC group were also higher than those distinguishing 
the LOD from the HC group (Supplementary Table S2).

To validate the methylation levels of these probe sites determined by the genome-wide DNA methylation 
array, we analyzed some identified sites of Group 1b participants using pyrosequencing. The demographic and 
clinical data of Group 1b are shown in Table 1b. The sensitivity to detect methylation by pyrosequencing is 

Table 2.   The 20 top-ranked DNA methylation sites in the AOD versus HC group (a) and the LOD versus HC 
group (b). AOD, adult-onset depression; HC, healthy controls; LOD, late-onset depression.

ID Fisher Ratio HC average AOD average CHR MAPINFO UCSC_REFGENE_NAME UCSC_REFGENE_GROUP

RELATION_TO_
UCSC_CPG_
ISLAND

(a)

cg15794987 3.85 0.954 0.937 8 6,534,897

cg07763047 3.71 0.046 0.025 5 160974837 GABRB2;GABRB2 5′UTR;5′UTR​ Island

cg21347377 3.59 0.014 0.006 10 96,305,691 HELLS 1stExon Island

cg17458347 3.53 0.099 0.083 1 42,928,946 Island

cg14567489 3.41 0.021 0.014 20 43,977,078 SDC4 TSS200 Island

cg02221310 3.33 0.013 0.004 13 41,363,578 SLC25A15;SLC25A15 5′UTR;1stExon Island

cg16579770 3.29 0.934 0.917 16 72,058,938 DHODH 3′UTR​

cg01320648 3.22 0.548 0.517 4 123091375 KIAA1109 TSS1500

cg05974695 3.19 0.026 0.017 11 130786536 SNX19 TSS200 Island

cg15525503 3.13 0.020 0.008 1 3,773,166 DFFB;KIAA0562 TSS1500;5′UTR​ N_Shore

cg26655295 3.08 0.045 0.034 2 677,162 TMEM18 Body Island

cg12867237 3.07 0.146 0.128 11 44,087,540 ACCS;ACCS TSS200;TSS1500 Island

cg16234726 3.06 0.937 0.922 14 102099176 N_Shore

cg20452738 3.04 0.922 0.947 1 226828650 ITPKB Body N_Shore

cg23543123 2.99 0.023 0.013 4 48,485,569 SLC10A4;SLC10A4 5′UTR;1stExon Island

cg22115465 2.91 0.983 0.979 7 2,170,343 MAD1L1;MAD1L1;MAD1L1 Body;Body;Body

cg04147027 2.90 0.030 0.022 6 82,462,442 FAM46A TSS200 Island

cg15971980 2.89 0.571 0.676 6 150254442

cg24934561 2.89 0.064 0.055 1 3,663,902 KIAA0495 TSS200 Island

cg23531049 2.81 0.845 0.892 15 42,075,277 MAPKBP1;MAPKBP1 Body;Body

ID Fisher Ratio HC average LOD average CHR MAPINFO UCSC_REFGENE_NAME UCSC_REFGENE_GROUP

RELATION_TO_
UCSC_CPG_
ISLAND

(b)

cg06557376 3.14 0.959 0.949 17 8,384,607 MYH10 Body

cg23854456 2.87 0.936 0.920 19 39,806,075 LRFN1 TSS200 S_Shore

cg09597022 2.46 0.884 0.855 6 33,288,332 DAXX;DAXX;DAXX;DAXX Body;Body;Body;Body N_Shore

cg04521026 2.21 0.958 0.948 2 240067196 HDAC4 Body

cg15390741 2.06 0.986 0.976 1 51,822,535 EPS15;EPS15 Body;Body

cg06034437 2.03 0.521 0.474 3 10,183,196 VHL;VHL TSS200;TSS200 N_Shore

cg25996553 1.99 0.889 0.869 8 13,133,084 DLC1 Body N_Shore

cg18394552 1.92 0.648 0.577 5 159428643

cg04262179 1.89 0.975 0.971 1 178482030 C1orf49;C1orf49;C1orf49;
C1orf49 TSS200;TSS200;TSS200;TSS200

cg03473408 1.88 0.769 0.696 6 30,588,689 MRPS18B Body S_Shelf

cg27318635 1.83 0.949 0.937 16 3,781,749 CREBBP;CREBBP Body;Body S_Shore

cg16011480 1.78 0.151 0.139 10 97,667,594 C10orf131 TSS200 Island

cg27088822 1.75 0.799 0.752 12 121731226
CAMKK2;CAMKK2;CAMK
K2;CAMKK2;CAMKK2;CA
MKK2;CAMKK2

5′UTR;5′UTR;5′UTR;5′UTR;5′
UTR;5′UTR;5′UTR​ N_Shelf

cg13081381 1.72 0.480 0.502 13 82,264,192

cg01345727 1.71 0.759 0.695 13 52,734,018 NEK3;NEK3;NEK3;NEK3 TSS1500;TSS200;TSS200;
TSS200 S_Shore

cg11855759 1.70 0.205 0.234 17 9,548,802 USP43 TSS200 Island

cg22389270 1.70 0.263 0.244 8 101162769 POLR2K TSS200

cg11558107 1.69 0.932 0.912 15 60,700,124

cg20420249 1.66 0.808 0.758 1 172378938 DNM3;DNM3 3′UTR;3′UTR​

cg15587947 1.66 0.861 0.844 19 10,220,948 PPAN-
P2RY11;P2RY11;PPAN Body;TSS1500;Body Island
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about 5%15. Therefore, we chose the four probes cg15971980, cg07584066, cg20903900, and cg10294474 whose 
averaged methylation levels in the AOD group were significantly elevated by at least 5% compared to those in 
the HC group. The methylation levels of these sites determined by pyrosequencing significantly correlated with 
those determined by the methylation beads array. The correlation coefficients between the methylation levels of 
beads array and pyrosequencing, p-values, and scatter plots are shown in Supplementary Table S3a and Fig. S1, 
respectively. These results indicated that the findings of the methylation beads array were valid.

However, many of the target methylation sites with a high discrimination rate between AOD and HC pre-
sented only small differences of less than 5% in the methylation beads array analysis (Table 2). To validate small 
differences in methylation levels, we analyzed them additionally by amplicon bisulfite sequencing. We checked 
the six identified probes cg15794987, cg07763047, cg21347377, cg17458347, cg14567489, and cg16579770. The 
site cg15971980 was used as the positive control of the amplicon bisulfite sequencing procedure. The methyla-
tion levels in the amplicon bisulfite sequencing of the two sites cg07763047 and cg16579770 were significantly 
correlated with those in the methylation beads array (Supplementary Table S3b). Scatter plots demonstrate the 
relationships between clinical parameters and each methylation level (Supplementary Figs. S2-7). The methyla-
tion levels of the cg07763047 and cg10294474 sites correlated with the age at onset (Supplementary Table S4).

We focused on discriminating between the AOD and HC groups, while the methylation levels from Group 
1b were used as the training sample. Each receiver operating characteristic (ROC) curve of the six cytosine 
methylation sites cg15971980, cg07584066, cg20903900, cg10294474, cg07763047, and cg16579770 in Group 
1b was obtained by calculating their sensitivity and specificity. All values for cut-off point, sensitivity, specificity, 
and discrimination accuracy are displayed in Table 3. All six cytosine methylation sites demonstrated a high 
discrimination accuracy (≥ 70%).

Next, we employed a different, independent data set from Group 2 (test sample) to validate the above estab-
lished cut-off points in discriminating between AOD and HC participants. The demographic and clinical data 
of Group 2 are shown in Table 4, whereas sensitivity, specificity, and discrimination accuracy are presented in 
Table 3. The methylation of cg07584066, cg16579770, and cg07763047 demonstrated also in Group 2 a relatively 
high accuracy (≥ 68%).

Next, we assessed the discrimination performance in Group 2 using combinations of two cytosine meth-
ylation sites. We constructed the Bayes classifier using the training samples from Group 1b; the independent 
test samples from Group 2 were diagnosed using this Bayes classifier. The values for sensitivity, specificity, 
and discrimination accuracy of these combinations are shown in Table 5. The combination of cg16579770 and 
cg07763047 demonstrated with 73% a high accuracy. We further assessed the discrimination performance using 
combinations of three cytosine methylations (Table 5). The group consisting of cg07584066, cg16579770, and 
cg07763047 exhibited the highest accuracy (sensitivity, 64%; specificity, 91%; accuracy, 77%). Furthermore, we 
visualized the discrimination results for the test samples with the selected probe set, i.e., the target marker set 
(Supplementary Fig. S8a, b). The axes d1(x)andd2(x) , which are described in detail in the “Statistical analysis” 
paragraph of our Methods section, are the distances between a test sample x from Group 2 and the distribution of 

Table 3.   Sensitivity, specificity, and accuracy in the independent second set (Group 2) for discrimination 
between AOD and HC. The optimal cut-off points of Group 1b (training samples) were determined by 
maximizing the Youden index. Sensitivity, specificity, and discrimination accuracy for Group 2 (independent 
test samples) were calculated. AOD, adult-onset depression; HC, healthy controls.

Probe ID Cut-off points

Performance for training samples Performance for test samples

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

cg07584066 0.308 >  0.70 0.70 0.70 0.82 0.73 0.77

cg07763047 0.018 >  1.00 0.40 0.70 0.91 0.46 0.68

cg10294474 0.789 <  1.00 0.60 0.80 0.55 0.36 0.46

cg15971980 0.691 <  0.90 0.80 0.85 0.36 0.46 0.41

cg16579770 0.889 >  0.80 0.70 0.75 0.73 0.64 0.68

cg20903900 0.828 >  1.00 0.50 0.75 0.55 0.73 0.64

Table 4.   Participants demographics and characteristics in Group 2 (independent test samples). Data are 
shown as the mean ± standard deviation. *p < 0.05 compared to HC. AOD, adult-onset depression; HC, healthy 
controls; SIGH-D, Structured Interview Guide of the Hamilton Depression Rating Scale score.

HC AOD

No. of subjects 11 11

Sex (Male/Female) 5/6 5/6

Age (years) 53.8 ± 9.1 53.5 ± 7.6

Age at onset (years) – 30.3 ± 9.6

SIGH-D 1.8 ± 1.9 21.3 ± 7.6*

Equivalent dose of imipramine (mg) – 155 ± 91
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the HC and AOD samples from Group 1b, respectively. Our data show that the triple combination of cg07584066, 
cg16579770, and cg07763047 discriminates better than the dual combination of cg16579770 and cg07763047.

To confirm that the spread of the AOD distribution is smaller than that of the LOD distribution, the values 
of the determinant were calculated for both classes using cg16579770 and cg07763047 as specific AOD markers. 
The value of the determinant signifies the spread of the corresponding distribution. The ratio of AOD to HC was 
0.066, whereas the ratio of LOD to HC was 3.187 (both p < 0.001; Supplementary Fig. S9). These results suggest 
that AOD was more homogeneous than HC, but LOD was less homogenous than HC.

Discussion
Under the assumption that AOD is more strongly influenced by DNA methylation than LOD, we searched for 
methylation markers in AOD patients using a genome-wide DNA methylation array. As expected, the methyla-
tion levels of specific sites discriminated better between AOD and HC than between LOD and HC. Besides, we 
showed that the spread of the distribution in AOD is smaller than that in LOD.

The identification of specific DNA methylations may facilitate subtyping mental disorders. For example, 
several DNA methylation sites have been implicated in an increased risk of suicidal behavior in patients with 
bipolar disorder16. The DNA methylation of FKBP5 was reported to be a potential indicator for the responsive-
ness to treatment by mindfulness-based stress reduction in post-traumatic stress disorder17. To our knowledge, 
the current study is the first demonstrating that the methylation profiles differ between AOD and LOD. Our 
results suggest that the vulnerability for AOD may be attributed to DNA methylation. LOD is associated with 
other illnesses, such as menopausal syndrome or cerebrovascular diseases rather than genetic risk18. Thus, DNA 
methylation markers may be suitable to diagnose AOD rather than LOD.

Several studies have examined genome-wide DNA methylation in the peripheral blood19–28. However, most 
of these studies were designed for symptomatic depression, did not validate their methylation markers by other 
methods such as pyrosequencing, or did not assess the accuracy using independent subjects. We included only 
patients who were diagnosed with MDD by psychiatrists, and we re-assessed six identified AOD methylation 
markers by pyrosequencing or amplicon bisulfite sequencing. Two methylated cytosines were validated by ampli-
con bisulfite sequencing, although the difference was small (< 5%) compared to HC. Furthermore, we vali-
dated the accuracy of these markers using independent subjects. In particular, the combination of cg07584066, 
cg16579770, and cg07763047 showed the highest accuracy. The locus cg07763047 is annotated to the gamma-
aminobutyric acid (GABA) type A receptor β2 subunit (GABRB2) gene, cg16579770 to dihydroorotate dehy-
drogenase (DHODH), and cg07584066 to DEAH-box helicase 40 (DHX40).

GABRB2 has been associated with schizophrenia29,30 and bipolar disorder31. One study in postmortem brains 
of elderly patients with depression reported that the GABRB2 expression is significantly decreased in the anterior 
cingulate cortex in both MDD and bipolar disorder32. The GABA and glutamate neurotransmitter systems are 
also implicated in MDD and suicidal behavior33. GABRB2 transcription is regulated by epigenetic mechanisms 
including methylation32,34. Our findings support a role for GABRB2 in AOD.

The enzyme DHODH is involved in pyrimidine biosynthesis35. Pyrimidine biosynthesis pathways are con-
nected to cell proliferation and metabolism, therefore DHODH is a focus for the development of new drugs 
against neoplastic or immunological disorders36. Until now, DHODH has not been known to be directly asso-
ciated with MDD. However, DHODH and its pathways play a fundamental role in cellular homeostasis. For 
example, DHODH is essential for T cell proliferation, and inhibition of DHODH is beneficial in autoimmune 
diseases37. It has been suggested that inflammation contributes to the pathophysiology of depression38. A recent 
genome-wide methylation study showed that DNA methylation is altered at multiple immune-related loci in indi-
viduals with a history of depression19. Thus, DHODH may be associated with depression via neuroinflammation.

The protein DHX40 is an ATP-dependent DExD/H RNA helicase that exerts essential roles in RNA 
metabolism39. Unfortunately, these roles have not been well established yet; however, DExD/H RNA helicases 
are known to regulate ribosome biogenesis40. A recent blood transcriptome study reports that ribosomal genes 
are upregulated in stress41. Thus, ribosomal biogenesis may contribute to AOD pathophysiology.

Table 5.   Sensitivity, specificity, and accuracy using combinations of two or three DNA methylation sites for 
discrimination between AOD and HC. AOD, adult-onset depression; HC, healthy controls.

Sensitivity of test samples Specificity of test samples Accuracy of test samples

cg16579770, cg07763047 0.64 0.82 0.73

cg16579770, cg20903900 0.45 0.73 0.59

cg16579770, cg10294474 0.64 0.45 0.55

cg07763047, cg20903900 0.27 0.82 0.55

cg15971980, cg07584066 0.27 0.82 0.55

cg20903900, cg07584066 0.18 0.91 0.55

cg16579770, cg07584066, cg07763047 0.64 0.91 0.77

cg16579770, cg15971980, cg07584066 0.64 0.73 0.68

cg16579770, cg07763047, cg20903900 0.36 0.91 0.64

cg16579770, cg10294474, cg07584066 0.45 0.82 0.64

cg16579770, cg20903900, cg07584066 0.55 0.73 0.64
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A recent meta-analysis of epigenome-wide studies in middle-aged and elderly subjects associated the meth-
ylation of three CpG sites with depressive symptoms12. Unfortunately, we did not replicate these findings. In our 
study, we diagnosed MDD strictly and selected for the epigenome-wide analysis only MDD patients with an age 
of 50 years or older. By contrast, the meta-analysis consisted of nine population-based cohort studies including 
a cardiovascular study, most of the participants were not diagnosed with MDD, and their depressive symptoms 
were only assessed by self-reported questionnaires.

Several limitations of this study should be mentioned. First, the sample size was small compared to the 
number of analyzed CpG sites. It is likely that some false positive markers were detected or some false negative 
markers remained undetected. Second, we only examined methylation markers using leukocytic DNA based 
on future applicability for clinical use. The functions in the brain of the annotated genes and their methylation 
remain unclear. Third, most patients received antidepressants. We cannot exclude the possibility that antidepres-
sants might have altered the methylation levels of candidate CpG sites. Fourth, clinical parameters might have 
influenced the methylation levels. A few factors were indicated to influence the AOD and HC classification by 
scatter plots representing the relationships between age, age of onset, number of depressive episodes, Structured 
Interview Guide of the Hamilton Depression Rating Scale (SIGH-D) score, white blood cell (WBC) count, ratio 
of neutrophils, and methylation levels. Specifically, the methylation levels of the cg07763047 and cg10294474 
sites correlated with age at onset, suggesting that the detected markers were onset-age-dependent. However, other 
clinical factors might have influenced the methylation status. Finally, we did not validate that the methylation 
markers can distinguish AOD from other psychiatric diseases including schizophrenia and bipolar disorder.

In summary, we detected several methylation markers to discriminate AOD from HC populations with high 
accuracy. The alteration of DNA methylation in AOD differed from that in LOD. The spread of the distribution 
in AOD was smaller than those in HC and LOD. These results suggest that methylation markers of MDD should 
be examined under specific consideration of the onset age.

Materials and methods
Subjects.  The Institutional Review Boards of Yamaguchi University Hospital and Gunma University Hospi-
tal approved this study, and all subjects were fully informed about study aims and procedures before providing 
written informed consent for participation. This study was carried out in accordance with the latest version of 
the Declaration of Helsinki.

Participants in Group 1.  All participants were recruited between 2012 and 2013. Elderly (age ≥ 50 years) 
patients with MDD and healthy participants were enrolled as previously described8. Briefly, patients with MDD, 
as well as HC participants, were assessed using clinical interviews, as well as a structured interview of the Inter-
national Neuropsychiatric Interview (M.I.N.I., Japanese version 5.0.0), which is structured in accord with the 
DSM-IV42. We also defined a depressed state by a score of more than 18 using the SIGH-D43. Patients in remis-
sion met the DSM-IV criteria for full remission. Exclusion criteria for MDD patients included current or history 
of substance abuse/dependence, other psychiatric illnesses, other medical conditions (e.g., neurological diseases, 
severe liver failure, unstable hypertension), or family history of hereditary neurological disorders.

The samples of AOD participants (age of onset < 50 years) in a depressed state (N = 10), LOD participants 
(onset age ≥ 50 years) in a depressed state (N = 25), and HC participants (N = 30) were analyzed by genome-wide 
DNA methylation assays. Their demographic data are summarized in Table 1a (Group 1a; discovery samples). 
The AOD participants (N = 10), a part of the LOD group (N = 10), and some HC participants (N = 10) were 
additionally evaluated using amplicon bisulfite sequencing and pyrosequencing. Their demographic data are 
summarized in Table 1b (Group 1b; training samples). In Group 1a, the following values were missing: the total 
duration parameter in the LOD group (1); the number of episodes in the AOD group (1); and the percentages 
of each WBC type in the HC (4), AOD (1), and LOD (2) groups. In contrast, the following values were missing 
in Group 1b: the number of episodes in the AOD group (1) and the percentages of each WBC type in the HC 
(1) and AOD (1) groups.

Participants in Group 2.  The second group consisted of 11 AOD and 11 HC participants at the Yamaguchi 
site and the Gunma site. We enrolled 5 patients with AOD and 5 HC participants at the Yamaguchi site, as well 
as 6 AOD and 6 HC subjects at the Gunma site8,44, and the samples were collected between 2012 and 2015. All 
AOD patients and HC participants met the inclusion and exclusion criteria according to the protocol described 
for Group 1 with the only differences being the age restriction (age ≥ 20 years) and the SIGH-D scores (≥ 14). The 
demographic data are summarized in Table 4 (Group 2; independent test sample).

Genome‑wide DNA methylation array.  Venous blood samples were collected from all participants 
between 9:00 am and 12:00 pm. Genomic DNA was purified from peripheral blood cells using the QIAamp 
DNA Blood Midi Kit (Qiagen, Chatsworth, CA, USA) according to the manufacturer’s manual. The DNA qual-
ity was determined using a Spectrophotometer U-2900 (Hitachi High-Technologies, Tokyo, Japan), and an O.D. 
260/280 ratio ≥ 1.5 was obligatory to consider samples for further analyses. DNA quantity was determined using 
the Quant-iT dsDNA Assay Kit, broad range (Thermo Fisher Scientific Inc., Waltham, MA, USA). Bisulfite 
conversion of 500 ng genomic DNA was performed using the EZ DNA Methylation Kit (Zymo Research, Irvine, 
CA, USA). The DNA methylation level was assessed according to the manufacturer’s protocols using Infinium 
HumanMethylation450 BeadChips (Illumina Inc., San Diego, CA, USA). DNA methylation data were analyzed 
with GenomeStudio (version 2011.1) and Methylation Module (version 1.9.0; both Illumina Inc.). The raw data 
were normalized using the beta-mixture quantile normalization method45. The methylation ratio of each CpG 
site was determined as a beta-value from 0 (completely unmethylated) to 1 (fully methylated). The probes for the 
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analysis of methylation markers were excluded according to the following conditions: (1) the detection p-value 
was less than 0.01 in at least one sample, (2) the beta-value could not be calculated for at least one probe, and (3) 
all probes of single-nucleotide polymorphisms (rs#). The final data included 411,383 probes of CpG sites. The 
probes for the RefSeq analysis were excluded as follows: (1) the detection p-value was less than 0.01 in at least 
one sample and (2) all probes of single-nucleotide polymorphisms (rs#). These data finally included 481,247 
probes. The RefSeq genes were identified according to the accession numbers of the probes. If multiple probes 
were associated with a promotor region, the median methylation frequency was calculated.

Pyrosequencing.  Pyrosequencing was performed using the standard methods cited in a previous study46. 
Polymerase chain reaction (PCR) and sequencing primers (see Supplementary Table S5) were designed using 
Pyrosequencing Assay Design Software v2.0 (Qiagen).

Genomic DNA (200 ng) was bisulfite-treated using the EZ DNA Methylation-Gold Kit (Zymo Research) 
according to the manufacturer’s protocol. Briefly, the reaction was performed 10 min at 98 °C and 2.5 h at 64 °C, 
then samples were stored at 4 °C. The converted samples were washed and desulfonated with M-wash and 
M-desulfonation buffers on a Zymo-Spin IC Column. The converted genomic DNA was eluted by adding 20 µl 
elution buffer. DNA samples were stored at -20 °C until further use.

PCRs were carried out in a volume of 20 µl with 20 ng or more of converted DNA, 2.5 µl 10 × Taq buffer, 5 
units Hot Start Taq Polymerase (Qiagen), 2 µl 2.5 mM dNTP mixture, 1 µl 10 pmol/µl Primer-S, and 1 µl 10 pmol/
µl biotinylated-Primer-As. The amplification was carried out according to the general guidelines suggested 
for pyrosequencing: denaturation at 95 °C for 10 min, followed by 45 cycles at 95 °C for 30 s, at 48 °C for 30 s, 
and at 72 °C for another 30 s, and a final extension at 72 °C for 5 min. The ssDNA template was prepared from 
16 to 18 µl biotinylated PCR product using Streptavidin Sepharose High Performance beads (GE Healthcare, 
Chicago, IL, USA) following the PSQ 96 sample preparation guide. Gel images of the PCR products are shown 
in Supplementary Fig. S10. For the analysis, 15 pmol of the respective sequencing primer were added. Sequenc-
ing was performed using a PyroMark ID system with the PyroMark Gold Reagents kit (Qiagen) according to 
the manufacturer’s instruction without further optimization. The methylation percentage was calculated as the 
average of the degree of methylation at each CpG site formulated in pyrosequencing.

Amplicon bisulfite sequencing.  For validation of the whole-genome methylation array data, we selected 
the loci of seven identified genes. Each primer for amplicon bisulfite sequencing was designed using the Methyl 
Primer Express software v1.0 (Thermo Fisher Scientific Inc.). Sodium bisulfite conversions of 500 ng genomic 
DNA were performed using the MethylEasy Xceed Rapid DNA Bisulphite Modification Kit (Genetic Signatures, 
New South Wales, Australia). PCR amplification of bisulfite-treated DNA was performed using TAKARA Epi-
Taq HS (Takara Bio Inc., Kusatsu, Japan). The list of primer sequences and the summary of the PCR conditions 
are presented in Supplementary Table S6. The PCR products were directly cleaned up using NucleoSpin Gel 
(Takara Bio Inc.) and a PCR Clean-up kit (Macherey–Nagel GmbH & Co. KG, Düren, Germany). Gel images of 
the PCR products are shown in Supplementary Fig. S11. The sequence libraries were produced using the TruSeq 
Nano DNA LT Library Prep Kit (Illumina Inc.). The qualities of the libraries were checked using an Agilent 
2100 BioAnalyzer (Agilent Technologies Inc., Santa Clara, CA, USA). Sequencing of 250 bp paired-end reads 
was generated using the Illumina MiSeq platform with MiSeq Reagent Kit ver3 (Illumina Inc.). Sequence data 
were analyzed using Genedata Expressionist for Genomic Profiling ver9.1.4a (Genedata Inc., Basel, Switzer-
land). Each read was trimmed to 150 bp, and mapping was performed relative to the h19/GRCh37 assembly of 
the human genome using Bismark Bisulfite Mapper ver0.14.447. Percentages of methylcytosines were calculated 
using Bismark Bisulfite Mapper ver0.14.4.

Statistical analysis.  Age distributions, total durations of all MDD episodes, and numbers of episodes of 
the participants were evaluated using the unpaired Student’s t-test or the one-way analysis of variance (ANOVA) 
with the Tukey’s post hoc test, whereas the sex distribution was analyzed by Fisher’s exact test using the EZR 
software (version 1.37)48. The number of WBCs and the percentage of each WBC type were evaluated using the 
one-way ANOVA with the Tukey’s post hoc test. Missing values were deleted using pairwise deletion methods.

We selected candidate methylation markers from 411,383 probes of CpG sites using the F-ratio as previously 
reported49. The F-ratio has been used as a popular criterion in feature selection of statistical pattern recognition. 
The F-ratio, fj , for probe, j , is defined by:

where µij and σ 2
ij are the sample mean and sample variance, respectively, estimated from probe, j , using training 

samples from class, i(i = 1, 2) . The F-ratio measures the difference between two sample means normalized by 
the averaged sample variances. In feature selection, the F-ratio for each probe is first computed and probes are 
then ranked in order of decreasing F-ratio magnitude. The best probe set is given by some of the highest F-ratios.

The normal distribution of the methylation array data was checked using the Kolmogorov–Smirnov test. 
Pearson’s correlation coefficients were used to measure correlations between participant age, onset age, number 
of episodes, total duration of all MDD episodes, SIGH-D scores, number of WBCs, percentages of each WBC 
type, and methylation level of each site. A false discovery rate method (Benjamini–Hochberg adjustment) was 
used to correct p-values.

A ROC analysis was carried out using EZR. We determined the optimal cut-off points by maximizing the 
Youden index (sensitivity + specificity − 1)50.

fj =
(µ1j − µ2j)

2

σ 2
1j + σ 2

2j
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The discrimination performance was assessed as follows: two or three target markers were selected from the 
six identified probes (cg15794987, cg07763047, cg21347377, cg17458347, cg14567489, and cg16579770). Using 
the methylation levels of pyrosequencing or amplicon bisulfite sequencing as distinguishing features, we had 
a two- or three-dimensional vector x, whose components were the methylation levels. First, the sample mean 
vector µi and the sample covariance matrix 

∑
i of class ωi were estimated using 10 training samples from AOD 

and HC participants in Group 1b. The resulting Bayes classifier was assigned to a test sample x being classified 
to class ω1 , i.e., HC, if

where di = 1
2
(x − µi)

T∑−1
i (x − µi), i = 1, 2.

For the methylation distribution analysis, we calculated the values of determinants using the methylation lev-
els of the probes cg16579770 and cg07763047. In these calculations, 10 AOD samples were fixed, and 10 samples 
were 100 times randomly extracted from either the 30 HC samples or 25 LOD samples to calculate the average 
determinant of HC or LOD. The one-tailed t-test was performed with the null hypothesis that the ratio to HC is 1.

A summary of the statistical strategy used in this study is shown in Supplementary Fig. S12.

Data availability
All data in this published article (and its Supplementary Information files) are available. The other data analyzed 
in the current study are not publicly available for ethical reasons.
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