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Abstract

Sphingosine-1-phosphate (S1P) signaling regulates lymphocyte egress from lymphoid organs into 

systemic circulation. Sphingosine phosphate receptor 1 (S1P1) agonist, FTY-720 (Gilenya™) 

arrests immune trafficking and prevents multiple sclerosis (MS) relapses. However, alternative 
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mechanisms of S1P-S1P1 signaling have been reported. Phosphoproteomic analysis of MS brain 

lesions revealed S1P1 phosphorylation on S351, a residue crucial for receptor internalization. 

Mutant mice harboring a S1pr1 gene encoding phosphorylation-deficient receptors [S1P1(S5A)] 

developed severe experimental autoimmune encephalomyelitis (EAE) due to T helper (TH) 17-

mediated autoimmunity in the peripheral immune and nervous system. S1P1 directly activated 

Janus-like kinase–signal transducer and activator of transcription 3 (JAK-STAT3) pathway via 

interleukin 6 (IL-6). Impaired S1P1 phosphorylation enhances TH17 polarization and exacerbates 

autoimmune neuroinflammation. These mechanisms may be pathogenic in MS.

Introduction

The development of FTY-720 (Fingolimod, Gilenya™) as a first-line oral therapy in 

multiple sclerosis (MS) has illuminated sphingosine-1-phosphate (S1P) signaling as a 

targetable pathway in autoimmune neuroinflammation1–4. One of the best-characterized 

functions of S1P pathway is the regulation of lymphocyte trafficking from secondary 

lymphoid organs into the systemic circulation5–7. Interaction of the sphingolipid ligand, S1P 

in the blood or lymph with the G protein-coupled receptor (GPCR) S1P receptor 1 (S1P1), 

on lymphocytes is necessary for their egress from the spleen and lymph nodes into the 

systemic circulation8–10. The critical role played by the S1P-S1P1 in trafficking is perturbed 

by FTY-720, a functional antagonist of S1P1 (refs. 5,11,12). FTY-720 sequesters lymphocytes 

in the secondary lymphoid organs by inducing receptor internalization and degradation, thus 

sparing the central nervous system (CNS) from immune attack by autoreactive 

lymphocytes13–15. FTY-720 effectively decreases relapse rate up to 50% and is superior to 

interferon- (IFN-β) therapy16–18. However, a subset of relapsing remitting MS (RRMS) 

patients on FTY-720 therapy developed severe relapses and even tumorfactive MS lesions 

despite severe lymphopenia19–21. This finding suggests that S1P signaling may participate in 

immune regulatory functions other than lymphocyte trafficking.

S1P1 receptor internalization is a critical step in initiating S1P signaling22,23. This process is 

dependent on post-translational modification of the C-terminal domain of the receptor24–26. 

Binding of S1P to S1P1 promotes the phosphorylation of C-terminal domain serine residues 

of S1P1 by protein kinase GRK2 (ref. 24). This covalent addition of phosphate residue 

modifies the physicochemical properties of S1P1 leading to internalization of the ligand-

receptor complex. Impaired internalization of S1P1 has been associated with arrested 

lymphocyte egress into the circulation and delayed lymphopenia in response to FTY720 

treatment25,27. However, the physiological function of receptor internalization, subsequent 

effects on intracellular signaling pathways and how it modulates autoimmune 

neuroinflammation are yet to be determined.

Here, an unbiased, phosphoproteomic analysis of MS patient brain samples during active 

inflammation revealed that S1P1 was phosphorylated in vivo on S351. S1P1 expression was 

also observed in brain-infiltrating T lymphocytes in MS lesions demonstrated by 

immunohistochemistry. Complementary to our findings in the human disease, induction of 

experimental autoimmune encephalomyelitis (EAE) in mice carrying the phosphorylation-

defective S1P1 receptor [S1P1(S5A)mice] resulted in severe degree of paralysis, more 
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interleukin 17 (IL-17) mediated inflammation in the peripheral immune system and higher 

numbers of IL-17–expressing CD4+ T cells infiltrating in the CNS. We also demonstrated 

that the severe autoimmune neuroinflammation in the S1P1(S5A) mice was due to the 

activation of Janus-like kinase–signal transducer and activator of transcription 3 (JAK–

STAT3)–IL-17 pathway and that signaling via S1P1 was directly responsible for this effect. 

Finally, we demonstrated that STAT3-mediated T helper 17 (TH17) polarization in 

S1P1(S5A) mice was dependent on IL-6 signaling. Collectively, these data suggest that S1P1 

signaling is crucial for TH17 polarization and the clinical outcome in MS.

Results

S1P1 was phosphorylated in MS brain lesions

We performed phosphoproteomic analysis of fresh-frozen brain tissue from autopsy samples 

of MS patients to identify dysregulated pathways during MS pathogenesis. We first 

characterized the histopathological and cellular features of MS brain lesion samples by 

conventional staining methods (Hematoxylin and Eosin, Luxol Fast Blue and Bielschowsky) 

and immunohistochemistry. The MS lesions included in our study were classically 

characterized as chronic active lesions, the most common lesion type observed in RRMS 

patients. There was evidence of active inflammation (infiltration of T cells and macrophages 

in the peri-venular region and the brain parenchyma), myelin loss, axonal damage, 

astrocytosis and microglia activation (Supplementary Fig. 1 a–d)28,29. Tissue containing six 

individual MS brain lesions (from three MS patients) was then pooled and subjected to 

phosphoproteomic analysis by mass spectrometry30. MS lesions and control brain samples 

were homogenized separately and respective protein extracts were digested with protease 

trypsin. Peptide pools were then fractionated, phosphopeptides were enriched, and fractions 

containing phosphopeptide mixtures were then analyzed by nanoflow liquid chromatography 

and mass spectrometry (Supplementary Fig. 2). Identified phosphopeptides were selected by 

stringent criteria based on Xcorr (the observed to theoretical mass spectrum cross-

correlation), ΔCn (the difference of normalized cross-correlation scored between the first 

and second peptide search hits), and a false-positive rate (FDR) less than 0.6% to ascertain 

the reliability of sequence identification and assignment of modifications31. This analysis 

identified a total of 7,404 unique phosphorylation sites, 6,035 from MS samples and 3,802 

from controls (Supplementary Table 1, page 1). MS samples contained more phosphorylated 

proteins and the number of phosphorylation sites within an individual protein. Serine 

phosphorylation sites were most abundant (4,766 for MS, 2,998 for control and a total of 

5,785 unique sites), followed by threonine (1,101 MS, 696 control, and 1,401 total) and 

tyrosine sites (168 MS, 108 control, and 218 total) (Supplementary Table 1, page 2). This 

analysis identified a total of 2,633 phosphoproteins; 2,243 were found in MS samples and 

1,639 in control brains (Supplementary Table 1, page 3). Many of these proteins were 

phosphorylated on multiple sites.

We further explored the functional roles of these phosphoproteins to identify dysregulated 

pathways. Phosphoproteins from MS and control samples were selected based on the 

spectral count of phosphorylation sites (Control > MS and MS > Control). These data were 

then uploaded into the Database for Annotation, Visualization and Integrated Discovery 
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(DAVID) bioinformatic analysis system and clustered32,33. We observed a differential 

functional enrichment pattern in MS and control samples based on the benjamini P values 

(Supplementary Fig. 3). Among these were several of the pathways involved in regulating 

immune response (such as T cell receptor signaling or chemokine signaling) and trafficking 

(including VEGF signaling, leukocyte transmigration, adherens or tight junction formation) 

were significantly up regulated in samples from active MS lesions.

Among the identified phosphopeptides from MS samples were four unique phosphopeptides 

belonging to the GPCR S1P1 (S1P1 342–352), a key regulator of immune cell egress (Fig. 1a). 

The fragmentation pattern and b and y ions from the mass spectra of S1P1 342–352 peptide 

unequivocally assigned the addition of a phosphate group on S351, on the carboxyl terminal 

tail of S1P1. The carboxyl terminus of S1P1 has previously been shown as a crucial region 

for S1P signaling by mediating phosphorylation-dependent receptor internalization24. This 

phosphopeptide was identified in the phosphopeptide fractions from the active MS brain 

lesions, suggesting that phosphorylation of S351 may play an important role in MS 

pathogenesis.

We then investigated which cells expressed S1P1 in active MS brain lesions. We performed 

immunohistochemistry on formalin-fixed, paraffin-embedded sections on the same brain 

samples we utilized in our phosphoproteomic analysis. We utilized antibodies against S1P1, 

T cells (anti-CD3) and glia [astrocytes, anti-glia fibrillary acidic protein (GFAP)] on serial 

sections from several MS brain samples containing active lesions to localize expression of 

S1P1 on different cell types in the CNS. We observed that S1P1 was strongly expressed in 

the infiltrating CD3+ T cells in the active MS brain lesions (Fig. 1b, c and Supplementary 

Fig. 4). S1P1 expression was also observed in GFAP-positive glia cells (Fig. 1d, e and 

Supplementary Fig. 5). We could not, however, investigate the state of S1P1 

phosphorylation in these cells utilizing this method due to the lack phospho-specific S1P1 

antibody. These findings suggest that S1P1 is expressed in T cells and astrocytes in MS 

during active CNS inflammation.

S1P1(S5A) mice developed more severe EAE

Phosphorylation events serve as molecular switches to propagate cellular signaling events 

under physiological and pathological conditions30,34,35. Phosphorylation on the C terminal 

serines of S1P1 has previously been shown to initiate receptor internalization and regulate 

lymphocyte egress from lymphoid organs into the circulation25,27. Mice harboring a mutated 

S1pr1 gene encoding a phosphorylation-defective S1P1 receptor with five serines in the C 

terminal peptide were modified to alanines, [S1P1(S5A)mice] had normal immune cell 

counts and receptor function under physiological conditions, but exhibited delayed 

lymphopenia in response to treatment with FTY-720 (ref. 25). The findings of S1P1 

phosphorylation in active MS brain lesions and S1P1 expression in T cells led us to 

investigate the effects of S1P1 phosphorylation in autoimmune neuroinflammation utilizing 

the S1P1(S5A) mice. We induced EAE in S1P1(S5A)and wild-type C57BL/6J mice with 

complete Freund’s adjuvant (CFA) and MOG35–55 peptide. We observed that S1P1(S5A) 

mice developed earlier onset of EAE and more severe degree of paralysis compared to their 

wild-type counterparts (Fig. 2a and Supplementary Table 2).
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We also observed a more robust proliferation of splenocytes from S1P1(S5A) EAE mice 

(day 8 post-immunization) in response to ex vivo reactivation with MOG35–55 peptide (Fig. 

2b). Analysis of culture supernatants by enzyme-linked immunosorbent assay (ELISA) also 

revealed that splenocytes from S1P1(S5A) mice expressed higher concentrations of 

inflammatory cytokines, IL-2, IL-6, TNF and IL-17 (Fig. 2c). Similar findings were also 

observed in the lymph node cell cultures of S1P1(S5A) EAE mice (Supplementary Fig. 

6a,b). Histopathological analysis revealed that the CNS of S1P1(S5A) EAE mice contained 

more numerous inflammatory foci compared to their wild-type counterparts (Fig. 2d,e). 

These data suggest that defective phosphorylation of S1P1 resulted in more severe 

autoimmune inflammation in the peripheral immune system and the CNS of S1P1(S5A) 

EAE mice.

Enhanced TH17-mediated neuroinflammation in S1P1(S5A) mice

S1P1 is ubiquitously expressed and participates in diverse cellular processes including 

maintaining vascular and immune functions in health and disease36–39. In order to determine 

if the increase EAE disease severity in the S1P1(S5A) mice was lymphocytes intrinsic, we 

performed an adoptive transfer experiment where we transferred encephalitogenic cells 

(MOG35–55-reactivated, expanded T cells) from wild-type C57BL/6J or S1P1(S5A) EAE 

mice into naïve Rag1−/− recipients. We observed that the recipients of cells from S1P1(S5A) 

EAE mice developed more severe paralysis, similar to the more severe disease course that 

we observed (Fig. 3a and Supplementary Table 3). These findings suggest that the primary 

determinant of the EAE phenotype in S1P1(S5A) mice was due to the T cell-intrinsic 

impaired S1P1 signaling.

We then investigated the cellular mechanism of immune activation in S1P1(S5A) mice by 

profiling the immune cells in the peripheral immune system and CNS during EAE disease 

course. There was a trend towards higher splenocyte counts in S1P1(S5A) EAE mice 

compared to their wild-type counterparts (Supplementary Fig. 7a). However, the CNS of 

MOG-immunized S1P1(S5A) EAE mice contained significantly more infiltrating immune 

cells compared to the CNS of wild-type EAE mice (Fig. 3b) throughout the EAE disease 

course [pre-symptomatic (day 8), peak of disease (day 13) and plateau stage (day 16)]

(Supplementary Fig. 7b). Characterization by flow cytometric analysis utilizing CD45 

staining suggested that these were indeed immune cells (Supplementary Fig. 7c). There were 

also higher number of myeloid lineage (CD45+CD11b+) cells suggesting enhanced immune 

cell trafficking and CNS inflammation in the S1P1(S5A) EAE mice (Supplementary Fig. 

7d).

Further characterization of CNS-infiltrating immune cells demonstrated that there were 

significantly higher numbers of CD4+ T cells in the CNS of S1P1(S5A) mice (Fig. 3c). 

Many of these cells expressed IL-17 demonstrated by intracellular cytokine staining 

compared to their wild-type counter parts (Fig. 3d,e). However, there was no significant 

difference in IFN-γ production in the CD4+ T cells in the CNS of S1P1(S5A) and wild-type 

EAE mice, suggesting selective activation of pathways involved in TH17 differentiation 

(data not shown).
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Nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK) and JAK-

STAT pathways contribute to the proinflammatory responses in autoimmune 

neuroinflammation40,41. To investigate which of these pathways were activated in 

S1P1(S5A) EAE mice, we performed immunoblot analysis of splenocytes from MOG35–55-

immunized, pre-symptomatic (day 8 post-immunization) wild-type and S1P1(S5A) EAE 

mice. We observed that there was significantly more STAT3 phosphorylation in the 

splenocytes of S1P1(S5A) EAE mice (Fig. 3f, top, Fig. 3g and Supplementary Fig. 8a, b).

We then investigated whether the surface residency of S1P1 had effects on other 

proinflammatory pathways involved in autoimmune neuroinflammation, such as the NF-κB 

and the p38 MAPK pathways. Immunoblot analysis of splenocytes from wild-type and 

S1P1(S5A) EAE mice revealed that neither p38, phosho-p38 nor IκBα expression were 

significantly altered in S1P1(S5A) EAE mice compared to their wild-type counterparts (Fig. 

3h and Supplementary Fig. 8c–e). These findings strongly suggest that enhanced 

inflammatory response in S1P1(S5A) mice is likely due to the activation of IL-17–STAT3 

signaling pathway.

S1P-S1P1 signaling directly activated TH17 polarization

We next addressed whether signaling via S1P1 was directly responsible for enhanced TH17 

polarization in S1P1(S5A) EAE mice. We utilized several different approaches including in 

vitro activation with the physiological ligand, S1P;in vivo treatment of EAE mice with the 

sphingosine lyase inhibitor, 2-Acetyl-5-tetrahydroxybutyl Imidazole (THI); suppression of 

IL-17 expression by S1P1-specific inhibitor W146;S1pr1–specific siRNA knockdown 

experiments; and in vitro activation assays utilizing S1P1-deficient T cells26,42–44

First, we cultured splenocytes from MOG35–55-immunized wild-type and S1P1(S5A) EAE 

mice (day 8 post-immunization) in the presence or absence of the physiological ligand S1P 

and quantified STAT3 phosphorylation by immunoblot analysis. We observed substantial 

STAT3 phosphorylation in both S1P1(S5A) and wild-type EAE splenocytes (Fig. 4a,b), an 

effect decreased by incubation in the presence of S1P1 inhibitor W146.

Next, we investigated whether enhanced S1P signaling promoted IL-17 production in vivo. 

S1P is metabolized into phosphatidylethanolamine and hexadecenal by S1P lyase (SL) under 

physiological conditions45. The SL inhibitor THI blocks this process, resulting in increased 

tissue concentrations of S1P and enhanced S1P1 signaling43. We treated MOG35–55-

immunized wild-type EAE mice with THI or vehicle control in vivo, isolated splenocytes on 

day 8, cultured in the presence of MOG35–55 peptide and analyzed the culture supernatants 

by ELISA. We observed that splenocytes from THI-treated mice expressed high 

concentrations of inflammatory cytokines, especially IL-17, suggesting that exposure to high 

concentrations of S1P in vivo enhanced IL-17 expression (Fig. 4c). Since W146 treatment 

decreased STAT3 phosphorylation, we next determined whether W146 antagonism of S1P1 

function could abrogate enhanced IL-17 expression in S1P1(S5A) mice. Activation of naïve 

S1P1(S5A) splenocytes in vitro with anti-CD3 and anti-CD28 in the presence of W146 

significantly decreased IL-17 expression in a dose-dependent manner (Fig. 4d). Similar 

results were also obtained with wild-type CD3+ cells (data not shown).
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Finally, we utilized genetic tools to investigate the connection between S1P1 signaling and 

the TH17 polarization. CD3+ T cells from naïve S1P1(S5A) mice were activated in vitro 

with anti-CD3 and anti-CD28 in the presence of S1pr1–specific siRNA. There was 

significantly less IL-17 expression in the culture supernatants when cells were incubated in 

the presence of S1pr1–specific siRNA (Fig. 4e–g). These findings were confirmed by 

experiments utilizing S1P1
−/− T cells. CD3+ T cells from S1P1 conditional knock out mice 

(S1pr1f/f Rosa26-CreERT2; S1pr1f/f crossed with Rosa26-CreERT2 following tamoxifen 

treatment) activated in vitro with anti-CD3 and anti-CD28, expressed less IL-17 compared 

to CD3+ cells from their wild-type counterparts (Fig. 4h). Collectively, these data support 

the premise that S1P1 signaling directly modulates IL-17 expression.

S1P1-mediated TH17 polarization was IL-6-dependent

We next investigated whether T cells or antigen-presenting cells (APCs) were crucial for 

S1P1-mediated TH17 polarization. We performed a mixed-lymphocyte culture experiment 

where we co-cultured CD3+ cells from MOG35–55-immunized (day 8, pre-symptomatic) 

wild-type and S1P1(S5A) mice with naïve irradiated-wild-type or S1P1(S5A) APCs in the 

presence of MOG35–55 antigen. We then quantified IL-17 expression in the culture 

supernatant by ELISA. We observed that cultures containing either T cells, APCs or both 

belonging to S1P1(S5A) mice expressed significantly more IL-17 than those containing 

wild-type T cells and APCs (Fig. 5a). These findings suggest that S1P1(S5A) T cells were 

crucial, however, S1P1(S5A) APCs also acted synergistically to enhance IL-17 expression.

We then investigated which cytokines expressed by APCs might promote Th17 

differentiation. We measured the elicited IL-1β, IL-6, IL-10 and TNF concentrations in the 

splenocyte cultures of S1P1(S5A) and wild-type EAE mice. We observed that IL-6 

concentrations were significantly higher in the cultures from S1P1(S5A) mice compared to 

the wild-type counterpart (Fig. 5b). Expression of the other cytokines was not significantly 

different between the mutant and wild-type cells (data not shown).

IL-6 is a critical factor in TH17 polarization. To determine the role of IL-6 signaling 

S1P1(S5A) EAE mice, we treated splenocytes from MOG35–55-immunized wild-type and 

S1P1(S5A) pre-symptomatic EAE mice in vitro with recombinant IL-6 or IL-6 neutralizing 

antibody and performed immunoblot analysis. We observed that IL-6 treatment enhanced 

STAT3 phosphorylation, especially in the S1P1(S5A) splenocytes, which was reversed by 

the addition of anti-IL-6 (Fig. 5c,d). Finally, we observed that IL-17 expression from the 

splenocytes of S1P1(S5A) pre-symptomatic EAE mice were abolished by direct inhibition of 

STAT3 (with STAT3 inhibitor Stattic) or by upstream regulator of STAT3, JAK (Jak 

inhibitor) (Fig. 5e,f). Similar results were also obtained from wild-type splenocytes (data not 

shown). These data suggest that S1P1-mediated TH17 polarization was dependent on the 

IL-6-JAK-STAT3 pathway.

Discussion

Here, we characterize the MS brain lesion phosphoproteome from histologically defined 

brain tissue samples from MS patients. To the best of our knowledge, this is the first time 

such approach has been undertaken to illustrate dysregulated pathways in diseased tissue 
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during MS pathogenesis. This unbiased approach has shed mechanistic insights on how S1P 

signaling modulates TH17 differentiation, a key determinant of disease severity in MS. This 

exemplifies how system-wide analysis of pathological samples could lead to the discovery 

of mechanistic underpinnings that could potentially guide patient care.

The question of whether S1P1 phosphorylation is detrimental or beneficial in the context of 

autoimmune demyelinating disease remains to be addressed. We observed enhanced S1P1 

phosphorylation in the human MS brain lesions suggesting S1P1 phosphorylation correlates 

with worse CNS inflammation. However, worse EAE clinical phenotype and severe 

inflammation in the peripheral immune system and CNS in S1P1(S5A) EAE mice implies 

receptor phosphorylation is crucial for down regulating autoimmune neuroinflammation. 

One possible explanation is that phosphorylation of S1P1 is an attempt to down regulate 

TH17 differentiation as a compensatory mechanism to shut down neuroinflammation. 

Reciprocal activation of S1P and STAT3 pathways resulting in aggressive tumor 

progression has previously been reported but how this applies in the context of MS needs to 

be further investigated46. The downstream effects of S1P1 phosphorylation may also be cell 

type-specific. We observed S1P1 expression in the brain infiltrating T cells and astrocytes in 

active MS lesions. Our current study mainly focuses on the role of S1P signaling in the 

immune cells. Future studies will investigate the effects of S1P signaling in the CNS cells 

including astrocytes where S1P1 was also abundantly expressed.

Our findings suggest that the S1P1-STAT3 connection is at least in part dependent on IL-6 

signaling. We have not yet explored how S1P signaling is linked to IL-6 expression. Our 

preliminary data suggest that S1P1 signaling does not seem to have major effects on the 

transcriptional regulation of IL-6 expression in T cells. Whether this is contributed by GPCR 

signaling and how S1P pathway cross talks with IL-6–JAK–STAT3 pathway remains to be 

investigated.

In summary, phosphoproteomic analysis of MS brain lesions unraveled the S1P1-STAT3 

connection and that impaired S1P1 receptor internalization function may worsen 

autoimmune CNS inflammation. These findings beg several clinically relevant questions 

such as whether FTY-720 therapy modulates TH17 polarization and if there is synergism 

with arresting lymphocyte trafficking. Since an amino acid change (serine to alanine) in 

S1P1 leads to worse CNS inflammation in EAE, whether MS patients carrying variations in 

S1PR1 gene develop aggressive forms of MS and their response to S1P receptor modulators 

should also be investigated to prognosticate disease course and response to immune 

modulatory therapies.

Methods

Materials

All solvents and reagents were mass spectrometry or ACS grade from Fisher. The 

generation of S1P1(S5A) mice (C57BL/6J background) was previously described in25. Anti-

CD3 (clone 145-2C11) and anti-CD28 (clone 37.51) were from eBioscience. Mouse 

recombinant IL-12 (419-ML) was from R&D Systems. Liberase enzyme cocktail was from 

Roche Biosciences. For flow cytometry, monoclonal antibodies against CD45 (clone 30-
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F11), CD3 (clone 145-2c11), CD8 (clone 53-6.7), CD11b (clone M1/70)and FoxP3 (clone 

MF23)were from BD Biosciences, and IL-17 (clone ebio17B7), CD4 (clone RM 4-5) and 

IFN-γ (clone XMG-1.2) were from eBioscience. Antibodies used for immunoblotting were 

S1P1/EDG-1 (sc25489) from Santa Cruz Biotechnology, pSTAT3 (#9131), STAT3 (#9132), 

IκBα (#9242), p38MAPK (#9212) from Cell Signaling, and β-actin (clone AC-74) from 

Sigma-Aldrich. Antibodies against CD3 (clone f.2.38) and GFAP (#z0334) for 

immunohistochemistry were from DakoCytomation28.

MS brain lesion phosphoproteome

MS brain lesion phosphoproteome was performed as previously described28,30. De-

identified autopsy brain samples were obtained and archived according to the guidelines 

approved by the Stanford Institutional Review Board. Briefly, frozen MS (pooled from three 

MS samples) and control (pooled from two age-, sex-, and brain region-matched) samples 

(each with a wet weight of ~1g) were pulverized on dry ice in a dounce homogenizer in lysis 

buffer containing 8 M urea, 25 mM Tris-hydrochloride, pH8, 100 mM sodium chloride, 25 

mM sodium fluoride, 10 mM sodium pyrophosphate, 50 mM β-glycerophosphate, 1 mM 

sodium orthovanadate, 1 mM EDTA-free protease inhibitor cocktail. The high-speed 

supernatant from tissue extract containing 20 mg total protein was subjected to reduction, 

alkylation followed by protease digestion with trypsin. Tryptic peptides were desalted with 

C18 SepPack extraction cartridges and phosphopeptide enrichment was performed. Peptides 

were subjected to offline HPLC separation on a strong cation exchange (SCX) column 

(polySULFEOTHYL A, 9.4 mm inner diameter, 200-mm length, 5 μM particle size, 200 Å 

pore size), desalted with C18 reverse phase SepPak cartridges, enriched on IMAC Select 

Affinity Gel (Sigma-Aldrich) and analyzed by nanoLC-MS/MS on an LTQ velos-Orbitrap 

(Thermo Fisher Scientific). Mass spectra were searched against a human IPI protein 

database (v 3.75) concatenated with a reversed database by the SEQUEST algorithm 

(Proteome Discoverer software v1.2, Thermo Scientific). Mass tolerance was setup as 10 

ppm for precursor ions, 0.8 Da for fragment ions activated by CID, and 0.02 Da for 

fragment ions activated by HCD, allowing dynamic modification of Oxidation (15.995 Da) 

on methionine and phosphorylation (79.966 Da) on Ser, Thr and Tyr and static modification 

of carbamidomethyl (57.021 Da) on Cys. A maximum of four modifications per peptide was 

tolerated. Peptides identified were filtered based on Xcorr, ΔCn, peptide charge, peptide 

length and peptide rank to achieve a false positive rate (FDR) less than 0.6% for unique 

phosphopeptides.

Immunohistochemistry of MS brain lesions

Immunohistochemistry of formalin-fixed, paraffin-embedded section from active MS brain 

lesions and control brain samples were performed as previously described in Han et al. 

utilizing the following primary antibodies; anti-S1P1 (1:50), anti-CD3 (1:25) and anti-GFAP 

(1:500)47.

EAE, treatment with THI, immune cell proliferation and cytokine analysis

S1P1(S5A) mice and wild-type (WT) C57BL/6J mice were housed in the Research Animal 

Facility at Stanford University. Animal experiments were approved by, and performed in 
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compliance with the National Institute of Health guidelines of the Institutional Animal Care 

and Use Committee at Stanford University.

EAE was induced in 8–9 weeks-old female WT or S1P1(S5A) mice (n = 10 per group) 

immunized with Complete Freund’s Adjuvant (CFA) and Myelin Oligoglycoprotein (MOG) 

peptide35–55 and Bordetella pertussis toxin (List Biological Laboratories) 400 ng per mouse 

on days 0 and 2 (ref. 28). For treatment with 2-Acetyl-5-tetrahydroxybutyl Imidazole (THI), 

the compound was dissolved in acidic aqueous solution, pH 3, and diluted 1:100 in PBS for 

dosing. C57BL/6J mice were administered 6.25 mg/kg THI intraperitoneal (i.p.) daily from 

the time of immunization up to day 8. EAE mice were scored according to: 0, normal; 1, tail 

paralysis; 2, hind limb weakness; 3, complete hind limb paralysis; 4, hind limb paralysis 

with forelimb weakness and 5, moribund or death28. Immune cell proliferation and cytokine 

analysis were performed as previously described28. Briefly, splenocytes and lymph node 

cells from WT and S1P1(S5A) mice were incubated in 96-well flat bottom plates in 

stimulation media and activated with increasing concentration of MOG35–55 peptide. For 

proliferation assays, cells were pulsed with 3[H]thymidine at 48 h and harvested 16 h later 

on a filter using a cell harvester. Incorporated radioactivity was counted using a beta 

scintillation counter. For cytokine analysis immune cells were incubated for 24, 48, 72, 96 

and 120 h. and cytokine concentrations were measured at different time points utilizing anti-

mouse ELISA kits (IL-2, IL-4, IL-6, IL-10, IL-12p40, IFN-γ; OptEIA, BD Pharmigen, 

IL-17, TNF; R&D Systems).

Adoptive transfer

WT C57BL/6J or S1P1(S5A) mice (female, 8–9 weeks old) were immunized with CFA and 

MOG35–55, splenocytes and lymph node cells were harvested on day 9 post-immunization 

and expanded in vitro with MOG 10 μg/ml and IL-12 (20 ng/ml)(R&D Systems) for 72 h47. 

Cells were then harvested, washed once with pre-warmed PBS, counted and injected into 5–

6 weeks old Rag1−/− naïve recipient mice (1×107 cells per mouse) intraperitoneally and 

followed clinically up to at least day 30. Pertussis toxin (400 ng/dose) was administered by 

intraperitoneal injections on days 0 and 2.

Quantification of inflammatory foci in CNS tissue of EAE mice

To assess the degree of CNS inflammation, brain and spinal cords from WT C57BL/6J and 

S1P1(S5A) mice were harvested and fixed in formaldehyde. Paraffin-embedded sections 

were prepared as previously described28. Tissue sections were stained with Hematoxylin and 

Eosin and Luxol Fast Blue. An investigator blinded to the experimental groups quantified 

the numbers of CNS inflammatory foci.

Characterization of CNS immune cells in S1P1(S5A) EAE mice

Brain and spinal cord from S1P1(S5A) and WT C57BL/6J EAE mice (n = 3–5) were 

harvested on days 8, 13 and 16. Immune cells were isolated from CNS tissue according to 

methods outlined in Arac et al.48. Briefly, mice were perfused with 30 ml of cold saline after 

removal of the spleen. Brain and spinal cord were homogenized through a 70 μm filter, and 

treated with the liberase enzyme cocktail for 1 h at 37°C. Immune cells were harvested on a 

30% Percoll gradient by centrifugation, and residual red blood cells were lysed by hypotonic 
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solution. Cells were washed once in PBS and labeled with monoclonal antibodies against 

CD45, CD3, CD4, CD8b, and CD11b for flow cytometry48. Immune cells harvested from 

inflamed CNS tissue were also stimulated in vitro with 10 ng/ml phorbol 12-myristate, 13-

acetate (PMA) and 1 μg/ml ionomycin in the presence of Golgi-stop (BD Biosciences) for 4 

h. Cells were then labeled utilizing the BD Biosciences FoxP3 Staining Kit (BD 

Biosciences), anti-IL-17 and anti-IFN-γ (eBioscience). For flow cytometric analysis, 0.5–3 × 

106 cells were washed twice with PBS, and resuspended in staining buffer [containing 3% 

Fetal Bovine Serum (FBS) in PBS] and labeled with respective antibodies for 30 min on ice. 

Cells were then washed twice with staining buffer and analyzed by LSRII Flow Cytometer 

(BD) at the Stanford Shared Flow Facility. BD FACSDiva 6.0 software was utilized to 

acquire data and FlowJo 7.6.2 was utilized for data analysis.

Immunoblot analysis

For immunoblot analysis, splenocytes from pre-symptomatic (day 8 post-immunization) 

S1P1(S5A) or C57BL/6J mice were harvested and activated in vitro under different 

conditions at 37 °C for 30 min. Cells were then washed once with PBS and harvested in 

lysis buffer supplemented with protease inhibitors (Roche Applied Sciences). The protein 

homogenate was quantified by using BCA assay (Thermo Scientific). A total of 20 μg 

protein was loaded on a 12% Novex NuPAGE pre-cast Bis-Tris Gel (Life Technologies) and 

resolved at 84 volts for 1.5 h. The gel was transferred onto a PVDF membrane (Sigma-

Aldrich), blocked with 3% BSA in TBST at 25 °C for 1 h and probed with primary 

antibodies for p-STAT3, STAT3, p-p38, p38, IκBα (Cell Signaling), S1P1 (Abcam), and β-

actin (Sigma-Aldrich) at 4 °C overnight. The blot was then incubated with respective 

horseradish peroxidase linked secondary antibodies at 25 °C for 1 h and developed using 

ECL Chemiluminescence kit (GE Healthcare).

For quantification of protein expression, bands on the X-ray film corresponding to the 

respective proteins were scanned utilizing a HP laser scanner. Protein expression was 

normalized by dividing with the densitometric units corresponding to the protein of interest 

with that of β-actin from the same sample and plotted in a bar graph. The experiment was 

repeated at least three times for each analysis.

S1pr1 siRNA gene knockdown assay

For gene knockdown assays, S1pr1 siRNA was purchased from Dharmacon. CD3+ cells 

were enriched from naïve S1P1(S5A) or WT C57BL/6J splenocytes and electroporated using 

the Neon transfection system (Life Technologies) in the presence of S1pr1 siRNA (20 nM). 

Cells were activated with anti-CD3 plus anti-CD28 (0.5 μg/ml and 0.25 μg/ml, respectively) 

at 37 °C for 24 h. Down regulation of S1pr1 transcript abundance was verified by reverse 

transcriptase and polymerase chain reaction after normalization with actin transcripts. Cell 

supernatants from transfected cultures transfected were harvested and assayed for IL-17 

titers by ELISA at 96 h.

In vitro activation assay utilizing S1pr1−/− T cells for IL-17 expression

S1pr1f/f mice were crossed with Rosa26-CreERT2 mice to generate S1pr1f/f Rosa26-

CreERT2 mice44. S1pr1f/f ± Rosa26-CreERT2 mice were treated with 4 mg tamoxifen per 
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oral (p. o.) in 200 μl of 100% corn oil for two consecutive days. Eight to ten days after the 

second tamoxifen treatment, mice were sacrificed. The presence of Cre recombinase and 

deletion of the floxed S1pr1 gene were verified by polymerase chain reaction. 96-well plates 

were coated with 50 μl of 1 mg/ml anti-CD3 and 0.5 mg/ml anti-CD28. Control lanes were 

filled with 50 μl of PBS alone. Plates were kept at 4°C until use. Anti-CD3 and anti-CD28 

cocktail was removed and wells washed twice with 100 μl PBS, then blocked at 25 °C for 20 

min with complete medium: 100 μl 10% FBS in DMEM.

CD3+ T cells were isolated from splenocytes by negative selection utilizing the Stem Cell 

Technologies Easy Sep mouse T cell enrichment kit and plated at 1 × 106/ml in total volume 

of 200 μl complete medium/well in duplicate wells. Cells were harvested at 48, 72 and 96 h, 

in 0.5 ml tubes, spun at 800g for 5 min at 4°C. Supernatants were removed to new tubes and 

stored at −80°C until ready for analysis by ELISA.

Stattic, Jak inhibitor and W146 treatment

For in vitro inhibition assays, splenocytes from MOG-immunized, pre-symptomatic (day 8) 

S1P1(S5A) and WT EAE mice were activated with MOG35–55 (10 μg/ml) in the presence of 

Stattic (1–9 μM) or Jak inhibitor I (1–5 nM) for 24–96 h. For W146 antagonism, CD3+ cells 

from S1P1(S5A) and WT were activated with anti-CD3 and anti-CD28 (1 mg/ml and 0.5 

mg/ml respectively) in the presence of W146 (0–10nM) for 24–96 h. Culture supernatants 

were assayed for IL-17 concentrations by ELISA.

Mixed lymphocyte assay

For lymphocyte mixing experiments, CD3+ T lymphocytes from WT C57BL/6J or 

S1P1(S5A) mice immunized with CFA and MOG35–55 were harvested on day 8 post-

immunization following negative affinity selections by anti-CD3 affinity purification47. WT 

or S1P1(S5A) CD3+ cells were incubated in 96-well round-bottom plates (1 × 106 cells per 

well) with WT or S1P1(S5A) irradiated splenocytes (3,000 RADS, 5 × 106 cells per well) 

for 24–72 h and IL-17 expression in the culture supernatants was measured by ELISA.

Statistical Analysis

Data represent means +/− s.e.m. Mann-Whitney U-test for EAE and Student’s t-test were 

performed to detect between group-differences. A p value of <0.05 was rendered statistically 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. S1P1 phosphorylation in active MS brain lesions
a) A representative mass spectra of S1P1 342–352 peptide depicting mass/charge (m/z) of 

identified amino-terminal (b, red) and carboxyl-terminal (y, blue) fragmented ions. 

Phosphorylation of S351 was assigned by the presence or loss of phosphate group among 

identified ions. Four unique S1P1 342–352 peptides were identified from two independent 

mass spectrometric analyses. Immunohistochemistry of formalin-fixed, paraffin-embedded 

sections from a MS brain lesion labeled with antibodies against S1P1 (anti-S1P1)(b and d), 

CD3 (anti-CD3)(c) and glia fibrillary acidic protein (GFAP)(anti-GFAP) (e). Perivascular 
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immune cells (black arrow), endothelial cells (green triangle) and astrocytes (green 

arrowheads) expressed S1P1. Scale bar = 50 μm. Representative data from analysis of three 

MS brain samples.
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Figure 2. S1P1(S5A) mice developed severe EAE
(a) Mean clinical score (± S. E. M.) of MOG35–55–immunized S1P1(S5A)(mice carrying 

phosphorylation defective S1pr1 gene) and WT (C57BL/6J) EAE mice (females, 8–9 weeks 

old). Immune cell proliferation (measured by 3H[thymidine] incorporation) (b) and cytokine 

expression (measured by ELISA) (c) of ex vivo recall assay from MOG35–55-immunized 

S1P1(S5A)and WT EAE splenocytes (day 8 post-immunization). MOG; myelin 

oligodendrocyte glycoprotein, c.p.m.; counts per minute. (d) Photomicrograph (Luxol Fast 

Blue, Hematoxylin stain) and (e) quantification of CNS inflammation in WT (top) and S1P1 

(S5A) (bottom) EAE mice from (a). *p<0.05, **p<0.01, Mann-Whitney U-test (a) and 

Student’s t-test (b, c and e). n=9–10/arm (a) and 3–5/arm (b–e). These experiments were 

repeated 3 times.
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Figure 3. Enhanced STAT3-mediated Th17 polarization in S1P1(S5A) EAE mice
(a) Mean clinical scores ((±S. E. M.) of Rag1−/− adoptive transfer recipients of 

encephalitogenic cells from MOG35–55-immunized S1P1(S5A)and WT (C57BL/6J) EAE 

mice. Donors, n=10, females, 8–9 weeks old; recipients, n=5, females, 5–6 weeks old. (b) 

Quantification of total CNS infiltrating immune cells, (c) CD4+ and (d, e) CD4+IL-17+ cells 

from CNS of S1P1(S5A)and WT EAE mice (at peak disease, days 13–15). Immunoblot 

depicting p-STAT3 (f), p-p38, p38 and IκBα (h) expression in splenocytes of S1Ps1(S5A) 

and WT EAE mice (day8, post-immunization). (g) Quantification of relative p-STAT3 

expression [form (f)]. (b-g) n=3–5 mice/arm. *p<0.05, Mann-Whitney U-test (a) and 

Student’s t-test (b–d). These experiments were repeated twice (a) and at least 3 times (b–g).
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Figure 4. S1P–S1P1 signaling activates STAT3 phosphorylation
(a) Immunoblot depicting p-STAT3 expression in WT and S5A [S1P1(S5A)] EAE 

splenocytes (day 8 post-immunization) following in vitro activation with S1P (100nM) or 

W146 (S1P1 antagonist) (20nM). (b) Quantification of normalized p-STAT3 expression 

from (a). (c) Cytokine expression in splenocyte cultures of MOG35–55-immunized WT EAE 

mice treated in vivo with S1P lyase inhibitor, THI (6.25mg/kg, daily intraperitoneal 

injections). IL-17 expression in CD3+ cells (activated with anti-CD3/anti-CD28) from (d) 

S1P1(S5A) naive mice treated in vitro with W146 (0–10nM), (e) WT naïve mice, treated in 
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vitro with scrambled control (Ctrl) or S1pr1-specific (S1pr1) siRNA, or (h) naïve 

S1pr1+/+(WT) or S1pr1−/− (S1pr1f/fRosa26-CreERT2) mice. (f and g) Flow cytometric 

analysis of S1P1 expression following treatment with S1pr1 or Ctrl siRNA treatment. 

*p<0.05, **p<0.01, Student’s t-test. c–e and h; analyzed by ELISA. (a, b, d–g) were 

performed 3–5 times, (c and h) twice. These experiments were performed with n=3–5 mice/

arm. S1P; sphingosine-1-phosphate, W146; S1P1-specific antagonist, THI; 2-Acetyl-5-

tetrahydroxybutyl Imidazole.
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Figure 5. IL-6 is crucial for S1P1-mediated STAT3 activation
(a) IL-17 expression in culture supernatants of mixed lymphocyte cultures [CD3+ cells from 

MOG35–55-immunized S1P1(S5A) (S5A T) or C57BL/6J WT (WT T) EAE mice co-

cultured with naïve, irradiated antigen presenting cells (APCs)from S1P1(S5A) (S5A APC) 

or WT (WT APC) in the presence of MOG35–55 peptide] measured by ELISA. (b) IL-6 

expression in an ex vivo recall assay of splenocyte cultures from MOG35–55-imunized S5A 

[S1P1(S5A)]and WT EAE mice (day 8 post-immunization). (c) Immunoblot depicting p-

STAT3 expression in splenocytes from WT and S1P1(S5A) EAE mice (day 8 post-
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immunization) treated in vitro with recombinant IL-6 (IL-6) or anti-IL-6 (α-IL-6) (20ng/ml, 

respectively). (d) Quantification of normalized p-STAT3 expression from (c). IL-17 

expression in the culture supernatants of splenocyte cultures from MOG35–55-immunized 

S1P1(S5A) mice treated in vitro with Stattic (STAT3 inhibitor) (0–9 μM) (e) or Jak inhibitor 

(0–5nM)(f). **p<0.01, *p<0.05 by Students t-test. Experiments were performed 3–5 times 

with n=3–5 mice.
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