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Abstract

Recent advances in mathematical modeling and inference methodologies have enabled
development of systems capable of forecasting seasonal influenza epidemics in temperate
regions in real-time. However, in subtropical and tropical regions, influenza epidemics can
occur throughout the year, making routine forecast of influenza more challenging. Here we
develop and report forecast systems that are able to predict irregular non-seasonal influ-
enza epidemics, using either the ensemble adjustment Kalman filter or a modified particle
filter in conjunction with a susceptible-infected-recovered (SIR) model. We applied these
model-filter systems to retrospectively forecast influenza epidemics in Hong Kong from Jan-
uary 1998 to December 2013, including the 2009 pandemic. The forecast systems were
able to forecast both the peak timing and peak magnitude for 44 epidemics in 16 years
caused by individual influenza strains (i.e., seasonal influenza A(H1N1), pandemic A
(H1N1), A(H3N2), and B), as well as 19 aggregate epidemics caused by one or more of
these influenza strains. Average forecast accuracies were 37% (for both peak timing and
magnitude) at 1-3 week leads, and 51% (peak timing) and 50% (peak magnitude) at 0 lead.
Forecast accuracy increased as the spread of a given forecast ensemble decreased; the
forecast accuracy for peak timing (peak magnitude) increased up to 43% (45%) for H1N1,
93% (89%) for H3N2, and 53% (68%) for influenza B at 1-3 week leads. These findings sug-
gest that accurate forecasts can be made at least 3 weeks in advance for subtropical and
tropical regions.

Author Summary

Influenza causes high levels of morbidity, mortality, and economic burden. Accurate fore-
casts of epidemic timing and magnitude would provide public health sectors valuable
advance information in support of the planning and deployment of intervention measures.
Such forecast systems have been developed for temperate regions with seasonal winter epi-
demics (e.g., U.S. cities). In subtropical and tropical regions, however, influenza epidemics
can occur throughout the year with varying epidemic intensity; this irregularity makes the
generation of accurate forecasts more challenging. For this study we develop alternative
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forecast systems that are more adept at handling erratic non-seasonal epidemics, using
state-of-the-art Bayesian inference methods in conjunction with an epidemiological
model. Here we present these forecast systems and apply them to Hong Kong. During
1998-2013, Hong Kong saw 44 influenza epidemics caused by either the A(HIN1), A
(H3N2), or B strain, and 19 aggregate epidemics caused by one or more of these influenza
strains. The forecast systems are able to forecast both the peak timing and peak magnitude
of these epidemics, including the 2009 pandemic. The results suggest that routine forecast
of influenza epidemics in other subtropical and tropical regions is possible, as well as fore-
cast of other infectious diseases sharing similar irregular transmission dynamics.

Introduction

Influenza causes a significant public health burden worldwide. Recent studies have shown that
reliable forecasts of influenza epidemics can be generated in real time [1-3]. Particularly, oper-
ational forecasts of influenza epidemics have been developed for temperate regions such as the
continental U.S. [4,5] These efforts could be valuable in aiding planning and deployment of
intervention measures (e.g., health promotion activities and the distribution of vaccines and
antivirals). However, before operational forecasts can be routinely generated and expanded to
other regions of the globe, these forecast systems need to be tested and optimized against epi-
demics observed in a variety of locales with diverse transmission dynamics.

In temperate regions, influenza transmits primarily during winter. This regularity allows the
forecast systems to be initiated and optimized prior to the influenza season. For instance, our
real-time forecast system for U.S. cities [1,4] is initialized at Week 40 each year, the first week
that the U.S. Centers for Disease Control and Prevention (CDC) begin influenza activity sur-
veillance. The forecast system is then continuously “trained” throughout the following weeks
and months as additional observations are received and assimilated to inform the influenza
transmission dynamics in that season. Model state variables, e.g., number of susceptible people
and number of infected people, can be inferred through this recursive training process. These
model state variables and parameters form the initial conditions of a forecast, which are critical
for generating an accurate prediction.

In subtropical and tropical regions, however, the seasonal characteristics of influenza are
more diverse. Hong Kong is one such area that experiences highly irregular influenza epidem-
ics from year to year [6-8]. Hong Kong is located on the south coast of China, with a humid
subtropical climate. It is one of the most densely populated cities, with a population of over
seven million people and a population density of 6544 per km? [9] (cp. 33.7 per km? in the U.S.
[10]). In addition, Hong Kong is highly connected with mainland China and other regions
around the world, attracting over 50 million visitors per year [11]. This large influx of visitors
may increase the importation of influenza cases and further facilitate local transmission. Due
to these unique climatic and socioeconomic features, influenza epidemics in Hong Kong can
persist year-round in one year, whereas one or more distinct epidemics can occur in another
year (Fig 1). In addition, outbreak intensity, duration, and time from onset to the peak is more
variable in Hong Kong than in temperate regions (S1 Fig). This irregularity poses challenges
for operational influenza prediction. For instance, initialization of the system at the beginning
of the season, as done for temperate regions, would not be possible. As such, it is not clear
whether the same forecast system, proven to be valuable for temperate regions with regular epi-
demics, could be applied to generate forecasts in real time for subtropical and tropical regions.
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Fig 1. Time series of ILI+ for each strain: (A) seasonal A(H1N1), (B) pandemic A(H1N1), (C) A(H3N2), (D) Influenza B, and (E) all strains. Black lines
are ILI+ observations; red horizontal lines are baselines; blue vertical lines are the identified onsets; cyan vertical lines are identified endings; grey vertical

2012 2013

Indeed, our initial attempt to forecast the Hong Kong influenza epidemics using the same
system for U.S. cities proved unfruitful (S2 Fig). To overcome these challenges, we developed

alternate forecast systems that are more adept at handling the seasonally erratic influenza

transmission dynamics of the subtropics and tropics. Here we present these forecast systems

and apply them to Hong Kong. The results are promising for forecasting influenza outbreaks
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in other subtropical and tropical regions, as well as other infectious diseases sharing similar
irregular transmission dynamics.

Materials and Methods
Data

Weekly records of rates of influenza like illness (ILI) consultations in the community from the
week ending 04 January 1998 to the week ending 15 December 2013, were reported by a senti-
nel surveillance network of approximately 50 outpatient clinics [7,8,12]. The Public Health
Laboratory Services Branch in the Centre for Health Protection conducts laboratory testing of
specimens provided by the ILI network and local hospitals for surveillance and diagnostic pur-
poses. We obtained data on the weekly number of influenza-positive specimens by type and
subtype, and the weekly number of specimens tested [7,8,12]. From these data streams we cal-
culated the weekly ILI+ rate, a metric more precisely representing influenza infections [1,13-
15]; specifically, ILI+ was calculated as the ILI rate multiplied by the viral detection rate for
each strain individually or all strains combined (S1 Dataset). Forecasts were done separately
for these 4 ILI+ time series, i.e., HIN1 (combining seasonal and pandemic HIN1), H3N2,
influenza B, and the time series combining all influenza strains.

Model-filter forecast systems

(1) Epidemic model. Unlike temperate regions where influenza epidemics recur regularly
each winter, Hong Kong experiences epidemics throughout the year. The intrinsic factors con-
tributing to this year-round transmission pattern, e.g., different transmission routes or cross-
immunity between different A subtypes and/or Type B, as well as the extrinsic effects of humid-
ity and other environmental conditions on influenza transmission in this subtropical region,
are not well understood [16-18]. Consequently, for the modeling pursued here, we chose a
simple susceptible-infected-recovered (SIR) model without humidity forcing rather than the
humidity-forced SIRS model used in previous studies [1,13,19,20].

The SIR model simulates the numbers of susceptible and infected persons using the follow-
ing equations:

S S 0, (1)

e A 2
dt D N D @)
where S is the number of susceptible persons, ¢ is time in days, N is the population size, I is the
number of infectious people, ¢ is the rate of travel-related influenza case import into the model
domain, D is the mean infectious period, and Ry is the basic reproductive number. The term

R,
D
variables (i.e., S and I) and model parameters (i.e., Ry and D) are estimated by the filters as
described below.
(2) Mapping the SIR model to observations. Model simulations of infected persons and
influenza incidence are discordant with the observations, ILI+. That is, the model represents

influenza incidence on a per capita basis, or incidence rate, and includes asymptomatic and

on the right hand side of Eqs 1 and 2 represents the influenza transmission rate. All model

mildly symptomatic infections; ILI+ is an estimate of the number of symptomatic influenza
infections per 100,000 patient visits. To address this discordance, we use a scaling factor, v, to
map the SIR model-simulated incidence rate to the ILI+ observation [1,21]. Briefly, the ILI+
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observation estimates the probability that a person seeking medical attention, m, has influenza,
i.e., p(i|lm). By Bayes’ rule, the probability of a person contracting influenza during a given
week, p(i) is

N pm) o pm)

The weekly incidence rate, &, estimated using the SIR model, is also an estimate of the proba-
bility of a person contracting influenza, p(i). Therefore, we can convert the model-simulated

incidence rate to model-simulated ILI+, ILI +» per Eq 3 as follows:

=3 & p(i)
ILI ="~ o (4)

— plm)

where y ol

is the scaling factor. This scaling factor [1,21] is estimated by the filter in this

study.

(3) Filters. Using the SIR model, we built two forecast systems to predict the Hong Kong
ILI+ time series. The first system used the ensemble adjustment Kalman filter (EAKF) [22] for
optimization; the second system used a particle filter with resampling and regularization (PF)
[23]. Both filters adopt an ensemble approach. That is, an ensemble of model replicas (termed
ensemble members for the EAKF or particles for the PF) is generated at initialization, and
recursively updated at each prediction-update, i.e. filtering, cycle. The prediction step propa-
gates the system forward to the next time step (e.g., from the current week to the next) generat-
ing a prediction using the SIR model; when a new observation arrives, the system (including all
model variables and parameters) is updated per the filter algorithm (for more details see
[1,13,19]). This updated ensemble provides a probability distribution for each model variable
or parameter. The mean variable/parameter estimate can be computed based on the ensemble;
the EAKF computes the mean as a weighted average between the prediction and the observa-
tion, while the PF computes the mean using the updated particle weights, which are derived
from a likelihood function.

Both model-filter forecast methods include a ‘training’ process and a forecast step. The
‘training’ process comprises iterative prediction-update cycles as described above; it allows the
filter to assimilate all observations up to the week of forecast and recursively optimize the
model to obtain more authentic initial conditions prior to the forecast. The forecast step inte-
grates the SIR model forward tens of weeks using the variables and parameters estimated from
the training process.

Due to the irregular timing of influenza epidemics in Hong Kong, both forecast systems
were run continuously from the first record (i.e., Week 1 of 1998) to the last record (i.e., Week
50 of 2013). (Previously, for seasonal influenza in temperate regions, we have reinitialized
model training at the beginning of each season, e.g., Week 40 of the year in the U.S.). This long
Hong Kong time series created challenges for both filters used here; during the later half of the
time series, the PF suffered from particle impoverishment while the EAKF suffered from filter
divergence [24]. To rejuvenate the SIR-PF system, we applied space re-probing (SR), a tech-
nique developed to prevent particle impoverishment during the filtering process [20]. Basically,
the SR method randomly replaces the model variables/parameters (in this study, S, Ry, D, and
) within a small fraction of trajectories, i.e. particles, at each filtering cycle; in so doing, it
expands the state space covered by the filter through the introduction of outlying trajectories.
To prevent the EAKF from filter divergence, we reinitialized the SIR-EAKF system once filter
divergence was detected (i.e., when the posterior diverged from an observation by over 20%);
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in addition, we applied adaptive covariance inflation to the EAKF [25,26]. Using these tech-
niques, the PF was run with 3,000 particles and the EAKF was run with 500 ensemble mem-
bers. Each week, following assimilation of the latest observation, a forecast was generated for
the following 40 weeks (i.e., weekly 40-week forecasts). The first forecast was made after assimi-
lating records from the first 3 weeks (i.e., Weeks 1-3 of 1998).

The priors for the state variables and parameters in the model-filter frameworks were
drawn from uniform distributions: S~U[20%N, 80%N], for the initial population susceptibility
with N = 1x10° as the population size in the SIR model (note that N is scalable to the actual
population size of interest), R,~U[0.6, 2.2], for the basic reproductive number, and D~U[0.5,
7] days, for the infectious period. The systems were seeded with 0-50 infected persons (i.e., I).
In our past studies [1,13], the scaling factor y was fixed based on trials from a range of values
and values ranging from 2 to 15 had good predictive ability [1]. In this study, we included the
scaling factor as a parameter of the forecast system and allowed it to be inferred by the filter;
we used a broad prior distribution of y for both forecast systems, i.e., y~U [1, 10]. This choice
of prior distribution reflects a priori belief that the probability a person seeks medical attention
when infected with influenza (including asymptomatic and mild, symptomatic infections) is
generally lower than that of a person seeking medical attention for any reason (e.g., cardiovas-
cular diseases), which is consistent with previous studies suggesting low consultation rates for
influenza [21,27]. Note, the model simulated states and parameters are free to go outside the
prior range should the filters, particularly the EAKF, migrate to an expanded state space
through filtering of the observations.

Testing and evaluation of the two forecast systems

Each forecast system setting was used to simulate and forecast the HIN1, H3N2, B, or all
strains combined ILI+ time series; each start-to-end forecast run was repeated 100 times to
account for random effects from system initialization. The forecast systems using the two filters
were then evaluated based on (1) accuracy predicting the phase or gross activity (i.e., epidemic
or dormant period) and (2) accuracy predicting specific metrics, namely the onset, peak timing,
peak magnitude, and duration of individual epidemic.

We defined the onset as the first of three consecutive weeks with ILI+ records exceeding a
prescribed baseline. The ILI+ baselines were chosen as the 40% quantile of the non-zero ILI+
records for each influenza strain, or the first quartile of the non-zero ILI+ records for all influ-
enza strains combined. Inclusion of only non-zero ILI+ records in this calculation focuses the
definition of onset on periods when a strain is circulating; the 40% quantile or 25% quantile of
the remaining non-zero records define epidemic periods. Results using alternate baselines, e.g.
the 33% quantile, produced similar results; however, some epidemics were not well delineated
using this lower threshold (e.g., two adjacent epidemics could be classified as one epidemic).
We defined the ending of an epidemic as the first of two consecutive weeks with ILI+ below the
baseline following an onset. The period between an onset and its respective ending was defined
as an epidemic; however, only those events with an ILI+ record three times or more above
baseline were considered, i.e. intermittent small spikes were excluded. Time periods other than
epidemics were defined as dormant periods.

The first aforementioned evaluation (i.e. predicting the gross phase) was intended to test
whether the forecast system can accurately predict upcoming epidemic events while not pre-
dicting spurious epidemics during a dormant phase. The forecast was assessed against the
entire duration of an event (i.e., a dormant period or epidemic period as defined above). A
phase prediction was deemed accurate if the predicted epidemic trajectory included an epi-
demic during the predicted period; similarly, it was deemed accurate if there was no predicted
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epidemic during a dormant period. For example, for a forecast made at Week 10, within a dor-
mant period lasting from Week 5 to Week 30, a phase prediction is deemed accurate if the fore-
cast time series over Weeks 5-30 does not include two consecutive weeks exceeding the
baseline, but inaccurate if otherwise.

The second evaluation was used to assess whether a forecast system can accurately predict
the timing of onset, the peak timing (i.e., the week with the maximum ILI+), the peak magni-
tude (i.e., the maximum ILI+), and the epidemic duration. All these specific metrics are of
potential interest to public health officials for planning influenza-related intervention mea-
sures. The accuracy of these metric forecasts was evaluated by comparing the target and the
predicted metric. If the week of forecast initiation was within a dormant period and an epi-
demic was predicted during the following 40 weeks, the predicted epidemic would be evaluated
against the metrics of the next observed epidemic (i.e., timing of onset, peak, ending, and peak
magnitude); if the week of forecast initiation was within an epidemic period, and a second epi-
demic was predicted during the 40-week forecast, the predicted epidemic would be evaluated
against the current epidemic episode.

Two evaluation standards were adopted. For the stricter standard, predictions of the week
of onset, peak timing, or duration were deemed accurate if they exactly matched observations,
and predicted peak magnitude was deemed accurate if it fell within +20% of the observed ILI+
value. For the looser standard, predictions of epidemic onset or peak within +1 week of obser-
vation, duration within +2 weeks of observation, and peak magnitude within +50% of the
observation were deemed accurate.

Simple analog forecast

To test whether the filter methods outperform a naive method, we also performed a simple
analog forecast predicting the peak timing for the four ILI+ time series. The times from the
onset to the peak for each epidemic over the entire study period were compiled from each time
series; these historical records formed a database of time-to-peak for each strain or all strains
combined (S1 Fig). For each time series, a weekly forecast was generated when ILI+ of the week
exceeded the baseline (same as defined above), by randomly drawing a time-to-peak record
from the corresponding database. A prediction was deemed accurate if the predicted peak was
within +1 week of observation. One hundred random forecasts were sampled for each week of
each time series. Forecast accuracy was tallied over all samples and compared to the filter
methods.

Results
Identifying epidemic episodes for each strain

With the prescribed baselines and definitions of onset and ending, we identified 14 epidemics
of HINI (including 10 epidemics of seasonal HIN1 during 1998-2009 and 4 epidemics of the
pandemic HINT since 2009), 16 epidemics of H3N2 and 14 epidemics of influenza B during
1998-2013. For the combined strain time series, for which multiple concurrent epidemics of
co-circulating strains could overlap and be counted as one single epidemic, there were 19 influ-
enza epidemics during 1998-2013. Fig 1 shows these time series along with the onset and end-
ing of each epidemic.

Modeling of the ILI+ time series

The combined system of the SIR model and either of the two filter methods comprises a state-
space, or hidden Markov, model that allows estimation of unobserved, or latent, state variables
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Fig 2. Accuracy predicting gross epidemic activity. Four measures, sensitivity (i.e., true positive rate, TPR), specificity (i.e., true negative rate, SPC),
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Results are tallied over forecast of HIN1 (orange), H3N2 (red), Type B (green), all strains combined time series (blue), and all forecasts (white).

doi:10.1371/journal.pcbi.1004383.9002

(e.g., population susceptibility S) [28]. Both filters adjust the SIR model variables (e.g., numbers
of susceptible and infected people) and parameters (e.g., the basic reproductive number R, and
infectious period D) using observations through a recursive filtering process. For instance, at
the beginning of an epidemic, a filter may adjust the susceptibility upwards in light of an
increase in incidence. By doing so, it is able to accommodate the dynamics of the system, e.g.,
increased population susceptibility when a new strain begins to circulate, despite the fact that
the SIR model does not include susceptible replenishment. In effect, the filters partially com-
pensate for model misspecification.

Both model-filter methods were able to faithfully recreate each of the ILI+ time series (S3
Fig). In addition, estimates of the model variables and parameters (54, S5 and S6 Figs), as recur-
sively updated at each filtering cycle over the course of a simulation, were used to initiate the
weekly forecasts of future influenza incidence.

Forecast accuracy for gross epidemic activity

The forecast system predictions of gross activity were first evaluated for sensitivity and specific-
ity. This assessment tests whether a particular forecast system could accurately predict upcom-
ing epidemics in time while not predicting spurious epidemics during a dormant phase.

Fig 2 shows the sensitivity (i.e., true positive rate), specificity (i.e., true negativity rate), preci-
sion (i.e., positive predictive value), and negative predictive value for the two forecast systems.
Both forecast systems can accurately detect/predict an ongoing epidemic (sensitivity>~80%)
and do not falsely predict epidemics during dormant periods (specificity >~90%). Tallied over
all weekly forecasts, the PF had slightly higher sensitivity (90% vs. 88%) and specificity (95%
vs. 94%) than the EAKF. For both filters, the sensitivity and specificity vary by strain; forecasts
for HIN1 and Type B in general had lower sensitivity and specificity (e.g., for the EAKF, sensi-
tivity of 83% for HIN1 and 81% for influenza B vs. 93% for H3N2). Supplemental S1-S4 Mov-
ies present the forecasts for each of the three strains and all strains combined epidemics at each
week.

Forecast accuracy for epidemic onset, peak timing, peak magnitude,
and duration

Fig 3 presents prediction accuracy for epidemic onset, duration, peak timing, and peak ILI+
magnitude for both forecast systems. These are tallied for all forecasts—individual strain and
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Fig 3. Accuracy predicting outbreak peak timing (A), peak magnitude (B), onset (C), and duration (D). Accuracy was calculated over all forecasts
(332,400 for each setting of the forecast system). This analysis includes the forecasts for seasonal HIN1, the 2009 pandemic H1N1, H3N2, B and all strains
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that a peak is forecast as the same week of forecast. Leads are relative to the predicted peak for forecasts of the peak timing, peak magnitude, and duration,
and relative to the predicted onset for forecasts of onset timing.

doi:10.1371/journal.pcbi.1004383.9003

all strains—a total of 332,400 weekly forecasts (i.e., 831 weekly forecasts for each strain x 4
strains x 100 runs). Here we focus our analysis on predicted lead weeks ranging from -10 to 10
weeks; a positive lead (e.g. 2 wk) indicates the event (e.g., the epidemic peak or onset) is pre-
dicted to occur 2 weeks in the future from the time of forecast initiation; a 0 wk lead indicates
the event is predicted to occur at the time of forecast initiation; and a negative lead, say -3 wk,
indicates the event is predicted to have occurred 3 weeks prior to the forecast initiation. Fore-
casts with negative lead times may appear counterintuitive; however, accurate prediction that
an event has passed is an important capability of a forecast system. In regions experiencing
year-round influenza transmission, such as Hong Kong, multimodal epidemics, i.e. epidemics
with multiple crests, are common (Fig 1). A forecast initiated after a smaller crest but preceding
the overall peak may mistakenly identify that smaller crest as the peak and predict that the
peak has passed, i.e. an inaccurate forecast with negative lead. Conversely, an accurate forecast
with negative lead indicates that no spurious future increase in incidence is predicted. There-
fore, forecast accuracy at negative leads also represents the ability of the forecast system to pre-
dict future epidemic trajectories.

Forecast accuracy differs by filter, timing of forecast initiation, and the metric as well as the
time series being forecast. Tallied over all forecasts, the PF in general produces more accurate
predictions of peak timing (within +1 wk of observation), peak magnitude (within +20% of
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Fig 4. Performance of the SIR-EAKF (A and B) and the SIR-PF (C and D) for individual strains predictions of peak timing (A and C) and magnitude

(B and D).
doi:10.1371/journal.pcbi.1004383.9004

observation), and epidemic duration (within +2 wk of observation), while the EAKF is more
accurate predicting onset timing (within +1 wk of observation, Fig 3). However, neither filter
was able to predict outbreak onset or duration in advance of these events. Given the great irreg-
ularity in epidemic timing in Hong Kong, this outcome is not surprising. Some epidemics last
for over a year in Hong Kong (Fig 1 and S1 Fig); in such instances, even 10 weeks after the out-
break peak, the conclusion of the epidemic remains difficult to predict accurately. Both filters
were able to more accurately predict peak timing and peak magnitude by individual strain than
for the aggregate time series combining all circulating strains (Fig 4). This finding suggests that
strain specific observations may provide cleaner signals that enable more accurate forecast
using the single strain SIR model.

Opverall, the SIR-PF predictions of peak timing and peak magnitude outperformed those of
the SIR-EAKEF forecast system (Fig 3). The performance of the SIR-PF forecast system is prom-
ising. Summarized over all weekly forecasts: (1) for the peak timing predictions (within +1 wk
of observation), accuracy was 37% for peaks 1-3 wk in the future, 51% for a current peak (0 wk
lead), and increased to 73% for peaks 1-2 wk in the past (1-2 wk lag); (2) for the peak magni-
tude predictions (within +20% of the observed peak ILI+), accuracy was 37% for peaks 1-3 wk
in the future, 50% for a current peak, and increased to 78% for peaks 1-2 wk in the past (1-2
wk lag).

We also compared with the ILI+ forecasts generated for New York City, a temperate city
with population size and density comparable to Hong Kong (8.4 million vs 7.2 million; 10,725
people/km? vs 6,544 people/km?), to those of Hong Kong. Over the 2003-2013 period and

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004383 July 30, 2015
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indicate that a peak is forecast in the past; a 0 week lead indicates that a peak is forecast for the week of forecast initiation.

doi:10.1371/journal.pcbi.1004383.g005

using epidemic curves aggregated for all circulating strains [20], peak prediction accuracy for
Hong Kong is lower (Fig 5A). This is likely due to the more complex influenza transmission
dynamics in Hong Kong, e.g., longer outbreak duration and multiple peaks in a year (S1 Fig).
Indeed, this gap disappeared when forecast accuracy was evaluated by timing relative to the
observed peak, as opposed to the predicted lead week (Fig 5B). For those forecasts initiated 3
weeks prior to the observed local peak or thereafter, accuracies for Hong Kong were compara-
ble to or higher than those for New York City (Fig 5B). Moreover, when compared with a sim-
ple analog method, both filter methods clearly were more accurate (Fig 5).

Forecast certainty

Both filters used here adopt an ensemble approach (see Materials and Methods). The ensemble,
i.e., the collection of model replicas, provides an estimated distribution for each model variable
and parameter, as well as forecast epidemic trajectories. Previous forecast studies for the U.S.
indicate that forecast accuracy increases when the variation within the forecast ensemble
decreases [1,13,19]. This relationship can be used to calibrate forecast certainty and thus segre-
gate more and less accurate forecasts in real time. That is, an expected accuracy for a real-time
forecast, similar to the chance of precipitation in a weather forecast, can be derived based on
this relationship. In real-time operation, the accuracy of a forecast cannot be verified until the
epidemic has concluded; therefore, the expected accuracy, if reliable, provides forecast users,
such as public health officials, much richer information.

Here we determined whether such a relationship holds for the Hong Kong forecasts. As in
our previous study [13], we found that the ensemble spread can be represented by the percent-
age of ensemble members predicting the mode (PEMPM). As defined previously [13], PEMPM
is the percentage of the most frequently predicted outcome (i.e. the mode) among all predicted
outcomes. The PEMPM increases when the agreement among ensemble members increases; it
thus provides a measure of the variation within a forecast ensemble. Fig 6 shows this
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relationship for forecasts of peak timing using the SIR-EAKF and SIR-PF. Forecast accuracy
does tend to increase as the PEMPM increases (i.e., the ensemble members are more in agree-
ment), particularly for forecasts with a predicted peak 1-3 weeks in the future (i.e., 1-3 wk
lead) at the forecast initialization or in the past (i.e., 0-2 wk lag, 3-5 wk lag, or 6-9 wk lag).
This relationship is more robust for H3N2, HIN1, or all strains combined than for influenza B
for forecasts with positive leads (Fig 6A, 6B and 6D vs. 6C, 1° and 2™ rows, solid lines). For
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the more virulent and dominant H3N2 strain, the forecast accuracy for peak timing at 1-3 wk
lead increased steadily up to 93% as the PEMPM increased to 80-90% (Fig 6B, 1> row).

In addition, a similar relationship appears between the accuracy of the predicted peak mag-
nitude and the PEMPM of predicted peak timing (Fig 6, dashed lines). Further, this relationship
for peak magnitude forecast accuracy was also clear for influenza B (Fig 6C, dashed lines). For
H3N2, the forecast accuracy for peak magnitude at 1-3 wk lead increased up to 89% as the
PEMPM increased to 80-90% (Fig 6B, 1** row). These relationships indicate that the forecast
systems are able to accurately predict both peak timing and peak magnitude at least 3 weeks in
advance.

Discussion

In previous work, we developed forecast systems for influenza, which have demonstrated pre-
dictive skill when applied to U.S. cities [1,13,19]. These studies suggest operational forecasts
can be achieved and have motivated the generation of real-time influenza forecasts [4]. How-
ever, unlike the regular seasonal epidemics in temperate regions such as the U.S., epidemics in
subtropical and tropical regions are highly irregular [29-32]. The Hong Kong influenza inci-
dence time series, for instance, create challenges not seen in seasonal epidemics. Previous stud-
ies have developed systems capable of detecting aberrations of flu activity, e.g., the onset of flu
season, in subtropical cities including Hong Kong and Shenzhen [8,12,32]. Forecasts of other
milestones of influenza epidemics (e.g., peak timing) or intensity, however, have not been per-
formed in subtropical and tropical regions, except for the 2009 pandemic [33]. Here we built
and tested forecast systems designed to handle the irregular influenza epidemics of the subtrop-
ics and tropics. We applied these systems to forecast influenza epidemics in Hong Kong from
January 1998 through December 2013, including the 2009 pandemic.

Our findings suggest that to forecast such complex epidemics, the system needs to be sensi-
tive all year round (Fig 1E, multiple epidemics within a year due to different circulating strains/
subtypes) yet not generate false alarms for individual strains that are not circulating during
some years (e.g., Fig 1A, HIN1 during 2002-2004). Although both the EAKF and PF have
proven capable of forecasting influenza epidemics in U.S. cities, additional methods are needed
to generate the forecasts for Hong Kong. Specifically, the space reprobing (SR) technique [20]
is critical for the SIR-PF system, while adaptive covariance inflation [25,26] and re-initializa-
tion are critical for the SIR-EAKF system. Using these new algorithms, we are able to forecast
non-seasonal epidemics with accuracy near that of U.S. forecasts, despite the more varied epi-
demic dynamics of Hong Kong.

In addition to forecast of aggregate incidence time series for all circulating strains, we have
also generated forecasts for individual strains, i.e., HIN1 (including both seasonal HIN1 and
the 2009 pandemic HIN1), H3N2, and Type B. Forecasts for the individual strains were in gen-
eral more accurate than those generated for the aggregate epidemics (Fig 4). This finding sug-
gests that strain specific surveillance data indeed provide cleaner signals that enable more
accurate forecast. Strain-specific operational real-time forecasts are currently being generated
for the U.S. [4].

In our previous work, we focused on forecasting peak timing, i.e., the week with maximum
influenza incidence [1,13,19,20]. Here we have expanded the forecast effort to include peak
magnitude, onset, and duration. Neither forecast system was able to predict the onset or dura-
tion well in advance; however, accuracy predicting outbreak peak magnitude was comparable
to that for peak timing. For instance, the SIR-PF system was able to forecast the peak magni-
tude within 20% of observation with an average accuracy of 37% at 1-3 wk lead and 50% at 0
lead. Further, forecast accuracy increased steadily as ensemble spread decreased: up to 45% for
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HINT1, 89% for H3N2, and 68% for Type B at 1-3 wk leads (Fig 6, 1* row). This finding sug-
gests that the forecasts provide lead times adequate for the planning of intervention measures.
In addition, the forecasts of peak magnitude can be used to inform the scale of response. For
instance, the amounts of antivirals and vaccines needed could be assessed based on the pre-
dicted peak magnitude.

For this study we opted to use a simple SIR model. This model is a gross simplification of
actual transmission dynamics in a population. When used in conjunction with the filter, how-
ever, the filtering process, through recursive optimization, partially compensates for model
misspecification. As our understanding of influenza transmission dynamics in subtropical and
tropical regions improves in the future, more mechanistic and detailed models could be used in
conjunction with the filters. For instance, epidemic models that account for the cross-immu-
nity due to prior infections from related strains, age-structured models that account for varying
transmission dynamics among age groups, or network models that account for spatial connec-
tivity among sub-regions, could be applied. These more complicated model-filter systems
could further improve the forecast performance. Future study will also investigate methods to
improve forecast accuracy for onset timing and epidemic duration, both of which are impor-
tant for public health planning.

In conclusion, we have developed the first prediction systems able to forecast the course of
both inter-pandemic and pandemic influenza epidemics in a subtropical locale. These systems
can be applied to currently circulating influenza A subtypes and influenza B, as well as aggre-
gate epidemics due to any combination of these influenza strains. The forecast systems are able
to predict the peak timing and peak magnitude at least 3 weeks before the predicted peak, with
increased accuracy as the ensemble spread decreases.

Supporting Information

S1 Dataset. ILI+ time series for individual strains and combining all influenza strains used
in this study.
(CSV)

S1 Fig. Characteristics of the Hong Kong (HK) influenza epidemics. Each column shows the
distributions of peak magnitude (1% row), epidemic duration (2" row), and time from the
onset to the peak (3" row) for each strain/subtype or all strains combined. The last column
also shows the corresponding epidemic characteristic observed in New York City (NYC) for
comparison.

(TIF)

S2 Fig. Simulation of the Hong Kong ILI+ time series using the SIR-PF without space
reprobing. Simulations were performed for (A) HIN1, including seasonal and pandemic
HINI1, (B) H3N2, (C) influenza B, and (D) all strains. Weekly ILI+ observations are shown as
‘x’; the SIR-PF simulated ILI+ are shown by the blue lines.

(TTF)

S3 Fig. Simulation of the Hong Kong ILI+ time series using the SIR-PF with space reprob-
ing. Simulations were performed for (A) HIN1, including seasonal and pandemic HIN1, (B)
H3N2, (C) influenza B, and (D) all strains. Weekly ILI+ observations are shown as ‘x’. One
hundred simulations were run for each time series; mean ILI+ estimates are shown by the blue
lines; 95% confidence intervals (Cls) are shown by the grey dashed lines. Note that the 95% Cls
are very close to the mean trajectories and are barely visible.

(TTF)
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S4 Fig. Estimates of population susceptibility using the SIR-PF with space reprobing. Simu-
lations were performed for (A) HIN1, including seasonal and pandemic HIN1, (B) H3N2, (C)
influenza B, and (D) all strains. One hundred simulations were run for each time series; mean
estimates are shown by the blue lines; 95% confidence intervals are shown by the grey dashed
lines.

(TIF)

S5 Fig. Estimates of the basic reproductive number using the SIR-PF with space reprobing.
Simulations were performed for (A) HINT1, including seasonal and pandemic HIN1, (B)
H3N2, (C) influenza B, and (D) all strains. One hundred simulations were run for each time
series; mean estimates are shown by the blue lines; 95% confidence intervals are shown by the
grey dashed lines.

(TTF)

S6 Fig. Estimates of the infectious period using the SIR-PF with space reprobing. Simula-
tions were performed for (A) HIN1, including seasonal and pandemic HIN1, (B) H3N2, (C)
influenza B, and (D) all strains. One hundred simulations were run for each time series; mean
estimates are shown by the blue lines; 95% confidence intervals are shown by the grey dashed
lines.

(TIF)

S1 Movie. Weekly 40-week forecasts for HIN1, generated using the SIR-PF forecast system.
Each frame shows a two-year time window (month and year shown on the x-axis); ILI+ obser-
vations are shown by the X’; the grey vertical line indicates the time of forecast initiation (speci-
fied by the week ending shown at the top left corner); fitted ILI+ prior to the forecast are
shown by the solid blue line; predicted ILI+ for the following 40 weeks are shown by the dashed
blue line.

(MP4)

S2 Movie. Same as S1 Movie, but for H3N2.
(MP4)

S3 Movie. Same as S1 Movie, but for influenza B.
(MP4)

S$4 Movie. Same as S1 Movie, but for aggregate ILI+ epidemic curve caused by one or more
of the three influenza strains.
(MP4)
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