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Abstract: Heavy metal contaminants have serious consequences for the environment and human
health. Consequently, effective methods for detecting their presence, particularly in water and food,
are urgently required. Accordingly, the present study proposes a sensor capable of detecting mercury
Hg(II) and lead Pb(II) ions simultaneously, using graphene oxide (GO) as a quenching agent and
an aptamer solution as a reagent. In the proposed device, the aptamer sequences are labeled by
FAM and HEX fluorescent dyes, respectively, and are mixed well with 500 ppm GO solution before
injection into one inlet of the microchannel, and the heavy metal sample solution is injected into
another inlet. The presence of Hg(II) and Pb(II) ions is then detected by measuring the change in the
fluorescence intensity of the GO/aptamer suspension as the aptamer molecules undergo fluorescence
resonance energy transfer (FRET). The selectivity of these two ions is also shown to be clear among
other mixed heavy metal ions. The experimental results show that the aptamer sensors have a linear
range of 10~250 nM (i.e., 2.0~50 ppb) for Hg(II) ions and 10~100 nM (i.e., 2.1~20.7 ppb) for Pb(II)
ions. Furthermore, the limit of detection is around 0.70 ppb and 0.53 ppb for Hg(II) and Pb(II),
respectively, which is lower than the maximum limits of 6 ppb and 10 ppb prescribed by the World
Health Organization (WHO) for Hg(II) and Pb(II) in drinking water, respectively.

Keywords: aptamer; fluorescence resonance energy transfer; heavy metal ions; graphene oxide;
microfluidic device; sensor

1. Introduction

Pollution caused by human activity is a serious worldwide problem nowadays, with
massive environmental, financial and health ramifications. Among the many different
types of contaminants found in water, land and the air, heavy metal ions pose a particu-
larly significant risk to both the environment and human health. Consequently, effective
methods for detecting trace amounts of heavy metal ions with high sensitivity and good
selectivity are urgently required [1]. Mercury (Hg) is one of the most toxic heavy metals
in common use and can cause a wide variety of unpleasant and dangerous disorders, in-
cluding lung damage, diarrhea, nausea and permanent organ damage [2]. Lead (Pb) is also
an extremely common heavy metal and is used extensively throughout the construction,
water, electrical and battery industries. However, the presence of lead in water is harmful
to human health even at low exposure levels and can result in delays in physical and
mental development, together with serious attention and learning deficits [3,4].

During the past few years, many methods using different instruments have been
reported for mercury and lead ion detection, including inductively coupled plasma mass
spectrometry (ICP-MS) [5,6], cold-vapor atomic fluorescence spectroscopy (CV-AFS) [7],
high-performance liquid chromatography (HPLC) [8], colorimetric sensors [9], magnetic
beads [10], nanopore sensors [11,12], surface-enhanced Raman scattering (SERS) [13],
electrochemical sensors [14,15] and aptasensors [16,17]. Although these methods pro-
vide reliable detection for mercury and lead ions, the mentioned methods suffer from
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some limitations. ICP-MS, CV-AFS and HPLC are costly and very time-consuming in
pre-treatment [18,19]. Colorimetric sensors are relatively slow and have limited sensitiv-
ity [20]. Electrochemical sensors require modified electrodes, resulting in a complicated
and time-consuming pre-treatment process [21,22]. Nanopore sensors can be fabricated by
many different techniques. Therefore, the characteristic of the sensors depends on ionic
conductance, the pore radius and surface charge effects, which may yield different detec-
tion results [23,24]. Among the various techniques that have been proposed, aptasensors
are particularly attractive due to their high affinity, high specificity and wide versatility
as a biological receptor for many different binding targets [25,26]. Furthermore, aptamers
can be easily mass-produced, purified and tailored to the capture of particular targets
through the design of specific sequences [26]. For example, aptamers with a thymine
(T)-rich sequence can be used to form a mismatched complex (T-Hg2+-T) with Hg2+ ions
by changing the configuration to a hairpin shape [27]. Similarly, aptamers with a guanine
(G)-rich sequence can be made to readily bond with Pb2+ ions to form a G-quadruplex struc-
ture [28]. Aptasensors are compatible with many standard detection methods, including
colorimetric, fluorescent and electrochemical signals.

Recent studies in aptamer sensors have focused increasingly on the use of attenuated
total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) as an
alternative sensing technique [29]. Fluorescent sensors have many practical advantages as
a sensing tool, including ease of operation, high sensitivity and easily detectable signals.
Most fluorescent sensors are based on the fluorescence resonance energy transfer (FRET)
effect [30], in which energy transfer occurs between an excited donor fluorophore and an
acceptor via a non-radiative mechanism without the absorption or emission of photons [31].
Graphene and graphene oxide (GO) have attracted growing interest in the sensing field in
recent years, since aromatic ring structures based on graphene and GO surfaces readily
adsorb and combine with many biological molecules (including aptamers) through a π-π
stacking mechanism and electron transfer. The resulting aromatic ring structures thus
provide an outstanding platform for fluorescence-based sensing [32–35]. Notably, graphene
and its derivatives are beneficial not only in preventing the aptamers from changing
their configuration before binding to the target, but also serve as excellent quenchers
with minimal background interference. Thus, GO/aptamer sensors have unparalleled
advantages for FRET-based sensing in many clinical, environmental and food testing
applications nowadays [36,37]. For example, Zhao et al. reported a limit of detection (LOD)
for Pb2+ detection of 300 pM using a GO/aptamer sensor [38]. Shi et al. showed a highly
sensitive Pb2+ sensor with an LOD of 0.1 nM based on fluorescence quenching between GO
and gold nanoparticles [39]. Lu et al. developed GO/aptamer sensors for detecting Hg2+,
Pb2+ and Ag+ simultaneously; the LODs for Hg2+, Pb2+ and Ag+ were 0.2, 0.5 and 2 nM,
respectively [40]. GO/aptamer sensors still pose challenges, such as (1) the small scale
of the target causes huge steric hindrance in combining with the aptamer [41] and (2) a
non-uniform GO material (size or shape) may limit their application [42]. The above results
were collected either by expensive instruments or required a long time period. Therefore,
we propose to design a device that possesses many of the advantages of microfluidics,
namely a simple fabrication process, high throughput, ease of operation, low cost, good
selectivity and low required volumes of sample and reagents. The details of the device will
be given later.

In this study, we employ micro-machining technology (a type of computer numerical
control (CNC) machining process) due to its low cost and the ability to manufacture
complex molding structures [43]. The fabricated device has the form of a T-type micro-
mixer incorporating a tortuous flow channel to reduce the distance between the inlet
and the outlet and enhance the mixing efficiency. Furthermore, the mixer is fabricated
by pouring and curing PDMS on a master mold to avoid the presence of residues after
cleaning and to improve the repeatability of the experimental results accordingly. In the
sensing process, a mixed GO/fluorescent-labeled aptamer solution is injected into the
lower inlet (inlet 2) of the device, while a solution containing Hg2+ or Pb2+ ions is injected
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into the upper inlet (inlet 1) (see Figure 1). During the subsequent mixing process, the
aptamers bond with the Hg2+ or Pb2+ ions to form thymine (T) or guanine (G) complexes,
respectively, and the concentration of the ions is detected by observing the corresponding
FRET-induced change in the fluorescence intensity [27,28,44]. Finally, the detection results
are compared with those obtained from a commercial instrument—inductively coupled
plasma mass spectrometry (ICP-MS).
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Figure 1. (a) Schematic illustration showing microfluidic device design and (b) photograph of actual microfluidic device.

2. Materials and Methods
2.1. Materials and Instruments

Graphene oxide (GO) dispersion was purchased from Graphenea Inc. (San Sebastián,
Spain); the radial size of the GO sheet was below 10 µm. Nitric acid (HNO3), mercury(II)
nitrate (Hg(NO3)2) and lead(II) nitrate (Pb(NO3)2) were purchased from Nihon Shiyaku
Industries Ltd. (Taipei, Taiwan). The other chemicals used in the study—MgCl2, Na2HPO4,
KH2PO4, HCl, NaOH—were obtained from Sigma-Aldrich Co (St. Louis, MO, USA); NaCl,
KCl and CuSO4 were obtained from J.T. Baker Chemical Co (Radnor, PA, USA); CaCl2 and
CoCl2 were obtained from Panreac (Barcelona, Spain). Poly-dimethylsiloxane (PDMS) was
purchased from Sil-More Industrial Ltd. (Taipei, Taiwan). The solvents were prepared
using ultrapure water (18.2 MΩ). All of the chemicals were of analytical grade and were
used as received, without further purification. Two DNA probes modified with FAM and
HEX fluorescent dye at the 3’ end, respectively, were purchased from Protech Technology
Enterprise Co., Ltd. (Taipei, Taiwan). Aptamer solutions were prepared by dissolving the
DNA probes in 100 mM of PBS (pH 7.4). The sequences of the two aptamer probes were
as follows:

Probe for Hg2+: 5′-TTCTTTCTTCGCGTTGTTTGTT-FAM-3′

Probe for Pb2+: 5′-GGAAGGTGTGGAAGG-HEX-3′

The microfluidic device was fabricated using an EGX-400 Professional Rotary Engraver
(Roland, Shizuoka, Japan) and a PDMS replication process. The mixing efficiency was
evaluated using an ECLIPSE Ti Inverted research microscope (Nikon, Tokyo, Japan). In
addition, the fluorescence measurements were obtained using a LSM780 scanning laser
confocal microscope (Zeiss, Jena, Germany). The excitation wavelength of FAM and
HEX fluorescent dye was 495 nm and 535 nm, respectively. The corresponding emission
wavelength of the fluorescence intensity was measured at 520 nm and 556 nm, respectively.
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2.2. Evaluation of Mixing Efficiency

Mixing between two fluids is an essential step in microfluidic devices for enhancing
different species mixed and their subsequent reaction. There are many techniques available
to achieve such purposes proposed in the literature [45–48]. We designed a simple passive
mixer with a cured flow path in this study. Figure 1a illustrates the geometry of the
microfluidic channel in the proposed sensing device. A mold was first fabricated in PMMA
using the EGX-400 engraver and a replication process was then performed to transfer the
microchannel to a PDMS substrate. Finally, the substrate was bonded to a glass slide using
oxygen plasma treatment to form the final microfluidic assembly (see Figure 1b). The
microchannel had two inlets, each one had a 10 mm length, and the distance of the tortuous
microchannel from location #1 to the outlet was 87 mm. The channel width and height
were 0.6 mm and 0.15 mm, respectively.

The mixing performance of the device was illustrated by injecting blue ink and
DI water into the upper and lower inlets, respectively, and then calculating the mixing
efficiency at each of the seven locations marked in Figure 1b in accordance with

Mixing Index (MI) = 1−

√
1
N ∑N

i=1

(
Ii − Imean

Imean

)2
, (1)

where Ii is the intensity value of pixel i, Imean is the mean intensity of the initial images
prior to mixing and N is the total number of pixels within the captured image [45,49,50].
The value of Ii was analyzed by ImageJ software [51].

The flow field and the associated concentration of the two fluids in the 3D microchan-
nel were also simulated by solving the Navier–Stokes equations coupled with the Nernst–
Planck equations using commercial software, COMSOL Multiphysics (version 5.4, COM-
SOL Inc., Burlington, MA, USA). The mixing index (MI) was calculated numerically by the
following integration:

MI = 1−

∫
A
|C− Ci|dA∫

A
|C0 − Ci|dA

, (2)

where C is the concentration at a point on a cross-section plane A, Ci is the concentration
under the completed mixing state (i.e., Ci = (1 + 0)/2 = 0.5, value 1 and 0 is the concentration
at upper and lower inlet, respectively), and C0 is the concentration at the inlet (we choose
C0 = 1 in the calculation).

2.3. Evaluation of Quenching Efficiency

The fluorescence quenching efficiency of the GO/aptamer solutions is strongly de-
pendent on the relative concentration of GO. Thus, a series of experiments was performed
to measure the fluorescence intensity change in the fluorescent-labeled aptamer solutions
(100 nM) with different concentrations of GO in a glass-bottom dish. For each sample,
the quenching efficiency was computed as (f0 − f)/f0, where f0 is the original aptamer
fluorescence intensity and f is the measured fluorescence intensity in the presence of both
aptamer and GO.

2.4. Experimental Setup

Figure 2 shows the schematic of the experimental settings. The metal ion solutions
and GO/aptamer suspensions were injected into the upper and lower inlet channels of
the microfluidic device, respectively. The resulting change in the fluorescence intensity
of the GO/aptamer suspension was observed at Point #7 in the microfluidic channel
(see Figure 1b) and the quenching effect was then evaluated by image analysis software
installed on an interfaced PC in accordance with (F − F0)/F, where F is the measured
fluorescence intensities at the observed point [44]. F0 is the fluorescence intensity when
fully quenched by GO and its ideal value is 0.
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Figure 2. (a) Experimental setup used for Hg2+ and Pb2+ ion detection. (b) Schematic integration of the measurement system.

3. Results
3.1. Mixing Performance of Microfluidic Device and Quenching Efficiency of
GO/Aptamer Suspensions

Figure 3a shows a top view of the simulated concentration contour along the mi-
crochannel. Figure 3b shows the mixing index (MI) at different locations of the microchan-
nel as a function of the flow rate (Q: µL/min). Each experimental datum was repeatedly
measured three times (N = 3). The numerical results were shown to be consistent with
the experimental results. The results show that the lower flow rates (i.e., below 5 µL/min)
had better mixing indices at location #7, where the MI was over 95%. The reason is that
the fluid requires more time to travel through the microchannel for a lower flow rate and
the contact/diffusion time between the two fluids increases. Therefore, all subsequent
experiments conducted in this study adopted the flow rate of 5 µL/min to ensure that the
two fluids were well mixed.
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The quenching efficiency of the GO/aptamer suspensions was evaluated for vari-
ous GO concentrations. The results presented in Figure 4a show that for both aptamer
probes (i.e., FAM(Hg2+)- and HEX(Pb2+)-labeled probes), the quenching efficiency remains
approximately constant as the GO concentration is increased beyond 100 ppm. Thus, to
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ensure the complete suppression of the GO concentration effect, an excess concentration of
500 ppm GO was used in all of the remaining experiments, unless stated otherwise [52].
The long-term quenching effect of the GO/aptamer suspensions was observed in glass-
bottom dishes over a period of 400 s. As shown in Figure 4b, the fluorescence intensity
of both probes gradually reduced over time as a result of the FRET GO quenching effect.
From inspection, the quenching efficiencies of the FAM(Hg2+)- and HEX(Pb2+)-labeled
probes stabilized at approximately 0.98 and 0.94 around 100 s, respectively.
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3.2. Sensitivity of Hg2+ and Pb2+ Detection

FAM(Hg2+)- and HEX(Pb2+)-labeled aptamers with a concentration of 100 nM were
mixed with 500 ppm GO solution and incubated for 10 min to ensure the complete quench-
ing of the aptamers. It should be noted that the quenching efficiencies for FAM(Hg2+-
/HEX(Pb2+)-labeled probe can reach over 90% around 40 s/80 s, respectively. The suspen-
sions were then injected into the lower inlet of the microfluidic device. Meanwhile, Hg2+

samples with concentrations of 10, 25, 50, 100, 250, 500, 1000 and 2000 nM (approximately
2.0, 5.0, 10.0, 20.1, 50.2, 100.3, 200.6 and 401.2 ppb) and Pb2+ samples with concentrations
of 10, 25, 50, 100, 250, 500, 1000 and 2000 nM (approximately 2.1, 5.2, 10.4, 20.7, 51.8, 103.6,
207.2 and 414.4 ppb) were injected into the upper inlet of the device. The travelling time
for both fluids from the inlets to the outlet was around 90 s at 5 µL/min. For each injected
sample, the resulting change (i.e., increase) in the fluorescence intensity was recorded at
location #7 in the microfluidic channel after 180 s to ensure that the flow field was stabi-
lized. Figure 5a,b show the fluorescence images of the FRET process for the FAM(Hg2+)-
and HEX(Pb2+)-labeled probes within the microchannel at location #7, respectively. As
the sample solution flowed along the tortuous microchannel, Hg2+ or Pb2+ ions mixed
with the quenched solution; then, the FRET effect restored the fluorescence intensity at
location #7. The corresponding results are presented in Figure 5c,d for the FAM(Hg2+)-
and HEX(Pb2+)-labeled probes, respectively. For both probes, the fluorescence intensity
remained approximately constant as the metal ion content increased beyond 500 nM. How-
ever, the fluorescence intensity increased linearly with the Hg2+ concentration from 10 to
250 nM (R2 = 0.95845) and with the Pb2+ concentration from 10 to 100 nM (R2 = 0.95923).
The corresponding correlation relationships have the form of Y = 0.00092X + 0.51459 and
Y = 0.00208X + 0.57557, respectively.
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Figure 5. (a) Fluorescence images of FAM(Hg2+)-labeled probes and (b) fluorescence images of HEX(Pb2+)-labeled probes.
The left, center and right images are the origin probes, quenched probes and probes restored by the target ion, respectively.
The images were captured by a scanning laser confocal microscope using 20× magnification. (c) Fluorescence intensity
recovery following mixing with Hg2+ solutions with concentrations ranging from 10 to 2000 nM (500 ppm GO). Insert:
calibration curve for Hg2+ solutions with concentrations ranging from 10 to 250 nM, and (d) fluorescence intensity recovery
following mixing with Pb2+ solutions with concentrations ranging from 10 to 2000 nM (500 ppm GO). Insert: calibration
curve for Pb2+ solutions with concentrations ranging from 10 to 100 nM.

The results show that the fluorescence intensity increases linearly with an increasing
Hg2+ and Pb2+ concentration over the ranges of 10~250 nM (i.e., 2.0~50 ppb) and 10~100 nM
(i.e., 2.1~20.7 ppb), respectively. Moreover, the 3.3σ/slope was used to determine the limits
of detection (LoD), where σ is the standard deviation of the response [53,54]. The LoD
of Hg2+ and Pb2+ is equal to 0.70 ppb and 0.53 ppb, respectively. The results show that
the sensing platform provides a feasible solution for enforcing the WHO recommendation
of no more than 6 ppb Hg2+ and 10 ppb Pb2+ in drinking water. Finally, to verify the
detected results obtained by our measurements, the results acquired by the Uni-President
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Enterprises Corporation at Food Safety Laboratory (ISO/EIC 17025, No. 1021152009
issued by the FDA, Tainan, Taiwan) using ICP-MS were compared. Figure 6 is a standard
comparison of the detected mean value between two independent laboratories. It shows
excellent agreement between the two results.
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3.3. Selectivity of Hg2+ and Pb2+ Detection

To verify the selectivity of the proposed aptamer detecting the Hg2+ and Pb2+ ions
simultaneously, the GO/aptamer (GO + FAM(Hg2+) + HEX(Pb2+)) solutions were injected
into the lower inlet of the microfluidic device, while a mixture of the Hg2+ and Pb2+ samples
with concentrations of 10, 100 and 1000 nM, respectively, was injected into the upper inlet.
Figure 7a,b show the detected fluorescence images for Hg2+ and Pb2+ samples of 10 nM
and 100 nM, respectively. The fluorescence images reveal that the proposed aptamer is
able to detect both ions simultaneously, and the fluorescence intensity is proportional to
the concentration. The corresponding fluorescence intensity measurements are shown in
Figure 7c. For both probes, the fluorescence intensity shows good recovery performance
for all values of the concentration (i.e., low, medium and high). In other words, even
though the fluorescence recovery reduces as the concentration of the competing metal ions
increases, the device still retains the ability to discriminate the target ions. In addition,
control experiments were performed using several other bivalent metal ions, namely Co2+,
Ca2+, Mg2+ and Cu2+ ions. Figure 7d shows the detection results obtained for a mixture
of the Hg2+ + Pb2+ ions containing an additional 10 µM of Co2+, Ca2+, Mg2+ and Cu2+

ions, respectively. It can be seen that the competing ions have only a minor effect on the
measured fluorescence change despite their relatively high concentration. Notice that
our concentration of Hg2+ and Pb2+ is 10 nM, which is much more diluted than those of
other metal solutions (10 µM), i.e., a 1000-times difference in concentration. Therefore,
the intensity of Hg2+ and Pb2+ is not significantly different from other solutions. In other
words, the selectivity of the proposed sensor for Hg2+ and Pb2+ ion detection is further
confirmed.
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Figure 7. Fluorescence image of detecting Hg2+ and Pb2+ ions simultaneously for the sample Hg2+ and Pb2+ under (a) 10 nM
and (b) 100 nM, respectively. Fluorescence intensity recovery for competitive assays involving: (c) different concentrations
of Hg2+ and Pb2+, and (d) 10 µM Co2+, Ca2+, Mg2+ and Cu2+, respectively (500 ppm GO).

4. Conclusions

This study proposes two FRET-based GO/aptamer sensors for the detection of Hg2+

and Pb2+ ions, respectively, in a PDMS microfluidic device. In the proposed approach, two
specifically chosen aptamer sequences are labeled with FAM and HEX fluorescent dye for
visualization purposes and are then quenched by GO. Following interaction between the
labeled aptamers and the Hg2+ and Pb2+ ions, respectively, a discernable restoration of the
fluorescent intensity occurs as a result of the FRET effect. The change in the fluorescent
intensity is then used to inversely derive the corresponding Hg2+ and Pb2+ concentration.
Sensing experiments were performed using Hg2+ and Pb2+ solutions with concentrations of
10, 25, 50, 100, 250, 500, 1000 and 2000 nM (i.e., 2~400 ppb), respectively. The results show
that the fluorescence intensity increases linearly with an increasing Hg2+ and Pb2+ concen-
tration over the ranges of 10~250 nM (i.e., 2.0~50 ppb) and 10~100 nM (i.e., 2.1~20.7 ppb),
respectively. Moreover, the limits of detection (LoDs) for Hg2+ and Pb2+ are equal to
0.70 ppb and 0.53 ppb, respectively. Finally, the experimental results obtained for com-
petitive assays involving Hg2+ and Pb2+ ions and other metal ions (Co2+, Ca2+, Mg2+ and
Cu2+) show that the proposed device has good selectivity. Overall, the results show that
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the proposed sensing device and platform provide a feasible solution for enforcing the
WHO recommendation of no more than 6 ppb Hg2+ and 10 ppb Pb2+ in drinking water.
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