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ABSTRACT

BACKGROUND
We aimed to develop and externally validate a novel machine learning model that can
classify CT image findings as positive or negative for SARS-CoV-2 reverse transcription
polymerase chain reaction (RT-PCR).
METHODS
We used 2,928 images from a wide variety of case-control type data sources for the develop‐
ment and internal validation of the machine learning model. A total of 633 COVID-19 cases
and 2,295 non-COVID-19 cases were included in the study. We randomly divided cases into
training and tuning sets at a ratio of 8:2. For external validation, we used 893 images from
740 consecutive patients at 11 acute care hospitals suspected of having COVID-19 at the
time of diagnosis. The dataset included 343 COVID-19 patients. The reference standard was
RT-PCR.
RESULTS
In external validation, the sensitivity and specificity of the model were 0.869 and 0.432, at
the low-level cutoff, 0.724 and 0.721, at the high-level cutoff. Area under the receiver operat‐
ing characteristic was 0.76.
CONCLUSIONS
Our machine learning model exhibited a high sensitivity in external validation datasets and
may assist physicians to rule out COVID-19 diagnosis in a timely manner at emergency
departments. Further studies are warranted to improve model specificity.

KEY WORDS 
COVID-19, Diagnosis, Computer-Assisted, Tomography, X-Ray Computed, Deep Learning,
COVID-19 Nucleic Acid Testing
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INTRODUCTION

oronavirus disease 2019 (COVID-19) is caused
by severe acute respiratory syndrome coronavi‐
rus 2 (SARS-CoV-2) and has become a global

pandemic. The disease is typically confirmed by reverse-
transcription polymerase chain reaction (RT-PCR) test‐
ing; however, reports have suggested that the sensitivity
of RT-PCR might be insufficient for early detection, and
false-negative results can occur [1]. In addition, RT-PCR
has a long turnaround time in facilities that require speci‐
men transport [2]. To overcome these shortcomings,
computed tomography (CT) has attracted attention as a
complementary diagnostic method to RT-PCR.

Machine learning models can assist physicians in per‐
forming a rapid diagnosis during a pandemic, especially
if the reviewer is not a senior radiologist [3]. Numerous
studies over the past 2 years have focused on building
machine learning models that detect COVID-19 based
on CT images [4–8]. However, the actual usability of
almost all presented methods in clinical practice is
limited by methodological flaws or underlying biases [9].
One major pitfall is that machine learning can easily
overfit the given datasets. For instance, when a model is
trained with a single site or a few datasets, the datasets
are more easily classified based on differences in imaging
protocols rather than disease findings, resulting in very
low classification accuracy for other datasets. This prob‐
lem is known to occur even for large datasets [10].
Hence, it is necessary to employ a wide variety of datasets
to develop and conduct external validation that uses data
separate to that used during development in order to
ensure proper evaluation of machine learning models
[11].

In this study, we aimed to develop a novel machine
learning model that can classify COVID-19 CT image
findings and to externally validate the model using con‐
secutive real-world data with rigorous methodology.

METHODS

We present the following article in accordance with the
TRIPOD reporting checklist [11]. The study process is
illustrated in Fig. 1. The Institutional Review Board
of Osaka University Hospital (20511) and Kanagawa
Cardiovascular and Respiratory Center (KCRC-20-0005)
approved the development process protocol, and the
need for written informed consent was waived. The
Institutional Review Board of Hyogo Prefectural
Amagasaki General Medical Center approved the exter‐

C
nal validation process, and the requirement for written
informed consent was waived (2-96).

DEVELOPMENT
Development dataset
We curated 2,928 non-contrast-enhanced three-
dimensional (3D) volumetric CT images from two medi‐
cal centers and four publicly available datasets. We used
COVID-19-positive images that were confirmed as posi‐
tive by RT-PCR examination within 1 week of the imag‐
ing day. A total of 633 COVID-19 (positive) images
from 576 patients were acquired from three facilities:
Kanagawa Cardiovascular and Respiratory Center,
Medical Imaging Databank of the Valencia Region
(BIMCV) [12] public dataset, and CT images in
COVID-19 [13] of the Cancer Imaging Archive (TCIA)
[14] public dataset. In total, 2,295 non-COVID-19 (nega‐
tive) images from 2,294 patients were obtained from the
Osaka University Hospital, the National Lung Screening
Trial (NLST) [15] public dataset, and Thoracic Volume
and Pleural Effusion Segmentations in Diseased Lungs
for Benchmarking Chest CT Processing Pipelines
(PleThora) [16, 17] of the TCIA public dataset.

These datasets were randomly divided at a ratio of 8:2
into a multiple-site training dataset and tuning dataset
that were used for training and selecting the best model,
respectively. The details of the datasets, number of CT
images, patient information, and imaging protocol of
each dataset are presented in Tables S1 and S2.
Deep learning model
We developed a 3D deep neural network model employ‐
ing a U-net-like structure [18] to classify image findings
as COVID-19 or non-COVID-19 (Fig. S1). The details
are described in the supplement.
Internal validation
In order to clarify the importance of developing models
using a variety of datasets, we evaluated the performance
of two different models that were trained with single- or
multiple-site datasets. The single-site model used only the
Osaka University Hospital dataset for COVID-19-
negative cases, while the multiple-site model used all
datasets for training. Both models used the same datasets
for COVID-19-positive cases. The performance was eval‐
uated by the receiver operating characteristic (ROC) and
specificity using the best model that outputs the highest
area under the curve (AUC) value in the tuning dataset.

EXTERNAL VALIDATION PART A
We conducted external validation to evaluate the model’s
predictive performance in independent participant data
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that were not used for developing the model [11]. In
addition to the training datasets described in Tables S1
and S2, 150 CT images of patients with interstitial lung
disease (ILD) acquired at Kanagawa Cardiovascular and
Respiratory Center were used for the evaluation. These
images were acquired before the pandemic and were thus
considered COVID-19-negative. The breakdown of the
image diagnosis was 50% for UIP, 30% for NSIP, and OP
patterns. Receiver operating characteristic (ROC) curve,
area under the curve (AUC), and specificity with a sensi‐
tivity of over 90% were used to assess model perform‐
ance.

EXTERNAL VALIDATION PART B
We used the collected datasets to validate another
COVID-19 diagnostic system (23,24). The external
validation cohort consisted of 11 Japanese tertiary care
facilities that played key roles in the treatment of
COVID-19 cases in each area. We included patients who
underwent both RT-PCR and chest CT for the diagnosis
of COVID-19. Participants were selected on the basis
that the physicians ordered both RT-PCR examinations
and chest CT when the patients were suspected of having
COVID-19 or were a close contact of COVID-19 patients.
We included patients who underwent consecutive

Fig. 1 The whole study process

Abbreviations: NLST, National Lung Screening Trial; PleThora, Thoracic Volume and Pleural Effusion Segmentations in Diseased Lungs for Bench‐
marking Chest CT Processing Pipelines; BIMCV, Medical Imaging Databank of the Valencia Region; TCIA, Cancer Imaging Archive; ILD, intersti‐
tial lung disease

CT CLASSIFICATION SYSTEM FOR COVID-19

113



sampling methods between January 1, 2020 and May 30,
2020. RT-PCR results were extracted from the patients’
medical records at each facility. Patients were excluded if
the time interval between chest CT and the first RT-PCR
assay was longer than 7 days. We conducted source docu‐
ment verification (SDV) on all patients at three of the 11
hospitals. SDV is a verification of the conformity of the
data presented in case report forms with source data [21].
Image analysis
Image analysis was performed using the aforementioned
model that was trained with multiple-site datasets. The
deep learning model was equipped with two cutoff
values: the lower value was used to classify images into
low or high (middle and high) confidence levels of
COVID-19 image findings (referred to as low-level cutoff
value), whereas the higher value was used to classify
images into lower (low and middle) or high confidence
levels (referred to as high-level cutoff value). The two
values were determined as follows. First, an expert radiol‐
ogist read each tuning dataset image and assigned the
RSNA expert consensus statement, which categorizes
images into four grades (1, typical; 2, indeterminate;
3, atypical; and 4, negative for pneumonia) following
the criteria of CT findings (25). Next, we calculated a
threshold value at which the deep learning model cor‐
rectly classified grade 1 images with a sensitivity >90%;
this was set as the high-level cutoff value. The low-level
cutoff value corresponded to the threshold at which
grade 1, 2, and 3 image sets were classified with a sensi‐
tivity >90%. In this step, we did not use the reference
standard information.
Reference standard
RT-PCR tests were used as the main reference standard.
For patients with a suspected COVID-19 infection, the
diagnosis was made using RT-PCR to detect COVID-19
nucleic acid in sputum, throat swabs, and saliva samples.
If more than one test was performed for a single episode,
the patient was considered to have COVID-19 if any of
the tests were positive. In this step, we did not use any
other information.

Statistical analysis
ROC curves were plotted. AUC, sensitivity, and specific‐
ity were calculated, and a complete case analysis was con‐
ducted. We performed the main analysis by employing
the thinnest slice for each analyzable case. We performed
separate subgroup analyses for slices ≥5 mm and slices
<5 mm, as well as for participants who underwent SDV.
We performed a sensitivity analysis that considered the
initial RT-PCR findings as the reference standard to eval‐
uate the influence of the initial viral load. Statistical anal‐
yses were conducted using R statistical software, version
4.1.0 (R Foundation for Statistical Computing).

RESULTS

INTERNAL VALIDATION
Fig. S2 and Table 1 present the classification perform‐
ance of the two models trained with single- or multiple-
site datasets in the tuning dataset. The multiple-site
model exhibited high classification accuracy (ROC-AUC:
0.978) and high specificity for each dataset. In contrast,
the performance of the single-site model was compara‐
tively lower in the tuning dataset (ROC-AUC: 0.962). In
particular, the specificities of the NLST and PleThora
datasets were low. As each dataset included the same dis‐
ease categories, we conjecture that the difference in per‐
formance was predominantly due to differences in imag‐
ing protocols. In this regard, most of the manufacturers
of Osaka University Hospital were TOSHIBA. The aver‐
age radiation dosages were lower in NLST and PleThora
than in Osaka University Hospital (Tables S1 and S2),
which resulted in differential appearance of CT images,
as illustrated in Fig. S3.

EXTERNAL VALIDATION PART A
We then evaluated how often the multiple-site model
generated false positives for ILD images that were all
COVID-19-negative. We calculated specificities for each
ILD type by counting the number of images classified as
COVID-19-positive when the sensitivity for COVID-19

Table 1 Summary of the results of deep learning models for tuning datasets

ROC-AUC Sensitivity
Specificity

Osaka University Hospital NLST PleThora

Multiple 0.978 0.906 0.944 0.931 0.986

Single 0.962 0.906 0.979 0.483 0.784

Abbreviations: ROC-AUC, Receiver Operating Characteristic – Area Under the Curve; NLST, National Lung Screening Trial; PleThora,
Thoracic Volume and Pleural Effusion Segmentations in Diseased Lungs for Benchmarking Chest CT Processing Pipelines
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CT images of the model was 0.906 (Table 2). Specificities
for ILDs were high, with the exception of OP.

EXTERNAL VALIDATION PART B
Study population characteristics
The patient flow diagram is presented in Fig. S4. A total
of 893 images from 740 patients were included in the
study. Table 3 presents the characteristics of the study
population. In total, 343 patients were confirmed to have
COVID-19 using RT-PCR. We were unable to obtain a
diagnostic probability for 20 patients (comprising 21

images) due to abnormalities such as missing slices (n =
12, 50%), lack of DICOM tag information required for
analysis (n = 5, 21%), and the inability to extract lung
fields due to technical problems (n = 4, 17%).
Model performance
Multiple-site model performance for external validation
datasets tested in 720 patients is presented in Table 4 and
Fig. 2. The sensitivity analysis is presented in Table S5
and Fig. S5.

Table 2 Classification results of the multiple-site model for interstitial lung disease images

Type of interstitial lung disease of processed CT image

UIP NSIP OP

Classified as COVID 1 9 18

Classified as non-COVID 69 41 12

Specificity 0.986 0.820 0.400

Abbreviations: UIP, usual interstitial pneumonia; NSIP, nonspecific interstitial pneumonia; OP, organizing pneumonia

Table 3 Patient characteristics for external validation in consecutive sampling dataset

Characteristic RT-PCR positive, n = 343 RT-PCR negative, n = 377 Excluded, n = 20

Gender

 Female 135 (39%) 157 (42%) 8 (40%)

 Male 208 (61%) 220 (58%) 12 (60%)

Age (years) 56 (44, 70) 68 (45, 79) 53 (45, 68)

Symptom 205 (60%) 194 (51%) 9 (45%)

Oxygen supplementation 86 (25%) 119 (32%) 7 (35%)

Positive with high-level cutoff 247 106

Positive with low-level cutoff 298 215

1n (%); median (interquartile range)
Abbreviations: RT-PCR, reverse transcription polymerase chain reaction.

Table 4 Model performance for external validation datasets

Overall (n = 720)
 

≤5 mm (n = 524)
 

>5 mm (n = 343)
 

SDV (n = 217)

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

High-level cutoff 0.723 0.721  0.700 0.737  0.721 0.751  0.737 0.718

Low-level cutoff 0.869 0.432  0.876 0.423  0.883 0.487  0.877 0.379

Abbreviations: SDV, source data verification
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DISCUSSION

In this study, we developed a novel machine learning
model that was able to classify COVID-19 CT image
findings. The internal validation revealed the superiority
of the model trained using multiple datasets compared to
that trained using a limited dataset. The model exhibited
high specificity in the two patterns of interstitial pneu‐
monia CT images, with the exception of OP. External
validation revealed high sensitivity and moderate AUC.
Collectively, these findings highlight the potential of this
machine learning model to improve diagnostic speed for
COVID-19. The AUC of the external validation dataset
was lower than the AUC of the tuning dataset. We con‐
sider the reason is the difference of patient background
between the cohorts. Since, most images of the external
validation showed moderate to severe pneumonia, the

difficulty of classification was very high.
Several studies using deep learning approaches to

diagnose COVID-19 have been performed. Zhao et al.
[4] reported sensitivity and specificity of approximately
90%, but they used two-gate datasets that would have
resulted in overestimation [11]. Li et al. [6] achieved a
sensitivity of 90%. However, they used randomly split
internal validation, which would also have led to overes‐
timation [11]. Silva et al. [5] and Wang et al. [7] conduc‐
ted external validation, and their model achieved a sensi‐
tivity of <80%. Nevertheless, they only adopted a two-
gate dataset for external validation. In this study, we
conducted external validation of another deep learning
model using the same dataset. The model achieved a sen‐
sitivity similar to that of our model [19]. In sum, a sensi‐
tivity of 90% may be the limit for CT diagnosis of
COVID-19 to ensure specificity.

Fig. 2 Receiver operating characteristic curves for external validation datasets

Abbreviations: SDV, source data verification
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The high sensitivity of our model may be useful to rule
out COVID-19 in a rapid and timely manner. Although
antigen tests and RT-PCR tests are widely employed, our
model can further reduce the probability of COVID-19
diagnosis, which is difficult to rule out based on a single
test. In Japan, the lack of beds for patients with
COVID-19 has led to a collapse of the healthcare system
[23]. In this regard, our model may assist in the appropri‐
ate allocation of medical resources. Nevertheless, our
model requires a certain radiation dosage when obtain‐
ing CT images to ensure good performance. In the inter‐
nal validation, single-site model performance was poorer
for the US open data (NLST and PleThora) than for
Japanese university hospitals (Osaka University Hospital).
In contrast, in the external validation study, the datasets
from acute care hospitals in Japan exhibited a constant
performance regardless of slice thickness. These findings
support the applicability of our model to CT imaging
with an appropriate radiation dose.

Our model could be applicable to patients with respi‐
ratory failure who are indicated for CT imaging at the
emergency department. Due to the low prevalence and
potential harm, chest imaging is not indicated as a
screening test for COVID-19 in asymptomatic patients or
in patients with mild respiratory symptoms [24]. On the
contrary, in patients suspected with pneumonia visiting
the emergency department, CT imaging would assist
clinical management [25, 26]. In the “With-COVID-19
Era”, the differentiation of COVID-19 pneumonia is
essential among patients with infiltration shadow [27].
However, our external validation used an early 2020
dataset. Further studies accounting for the impact of vac‐
cination and/or SARS-CoV-2 variants are required. In
addition, our model is developed to classify CT images at
the onset of disease and is not intended to be used in
sequelae clinics to classify other ILDs.

Our study has several limitations. First, the low specif‐
icity of our model warrants improvements. In treatment
strategies for COVID-19, rapid diagnosis is critical to
prevent progression to severe illness [28, 29]. However,
the sensitivity of CT remains low, even if COVID-19 is
diagnosed by professional radiologists [30]. Several
reports have indicated that supplementing CT findings
with clinical information improves model accuracy [31,
32]. Further studies incorporating clinical information
such as history and laboratory data are warranted to
improve the specificity of our model. Second, while UIP
and NSIP were classified as non-COVID-19 with high
specificity, the performance for OP was very low. Bilateral
multifocal consolidation accompanied by GGO is the

main characteristic feature of cryptogenic OP, but such
radiologic findings are also observed in late-phase com‐
plications of COVID-19 [33]. As such, it is difficult to
distinguish OP from COVID-19 solely based on CT
imaging findings. This is consistent with the comparison
of chest CT findings for COVID-19 and OP by radiolog‐
ists [34].

CONCLUSIONS

In conclusion, we have developed a CT-based machine
learning model that is highly sensitive for diagnosing
COVID-19. This diagnostic system may assist physicians
to rule out COVID-19 in a timely manner at emergency
departments. Further studies are warranted to improve
the specificity of our model incorporating updated data‐
sets. Another direction is the use of clinical information.
Developing a multi-modality machine learning model
would improve specificity.
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