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The design of an inkjet drive 
waveform using machine learning
Seongju Kim1, Minsu Cho2* & Sungjune Jung1,3*

A drive waveform, which needs to be optimized with ink’s fluid properties, is critical to reliable inkjet 
printing. A generally adopted rule of thumb for its design is mostly dependent on time-consuming 
and repetitive manual manipulation of its parameters. This work presents a closed-loop machine 
learning approach to designing an optimal drive waveform for satellite-free inkjet printing at a target 
velocity. Each of the representative 11 model inks with different fluid properties was ink-jetted with 
1100 distinct waveform designs. The high-speed images of their jetting behaviors were acquired and 
the big datasets of the resulting drop formation and velocity were extracted from the jetting images. 
Five machine learning models were examined and compared to predict the characteristics of jetting 
behavior. Among a variety of machine learning models, Multi-layer Perceptron affords the highest 
prediction accuracy. A closed-loop prediction algorithm that determined the optimal set of waveform 
parameters for satellite-free drop formation at a target velocity and employed the most superior 
learning model was established. The proposed method was confirmed through the printing of an 
unknown model ink with a recommended waveform.

Drop-on-demand inkjet printing has been widely embraced as a versatile production technology for both small 
and large formats of graphical and text  printing1. As a maskless, non-contact patterning method, this additive 
manufacturing technology is increasingly being considered a crucial technology for new applications, such as 
next-generation sensors, circuits, displays, and biological  tissues2–6. Unlike other printing processes that pro-
duce printed patterns by the transfer of ink from pre-defined master  patterns7–9, inkjet printing builds up pat-
terns directly on a substrate by depositing tiny drops of functional inks that contain a wide range of functional 
components such as metal nanoparticles, conducting polymers, or biological materials. A digitally controlled 
nozzle produces a series of drops with a diameter of typically 10–100 μm. As the name implies, a piezoelectric 
inkjet printhead uses a piezoelectric actuator to convert applied electrical energy into mechanical deformation 
of an ink  chamber10. The displacement of the chamber wall controlled by a drive waveform produces the pres-
sure required for a drop to form and eject from the nozzle. Many of the inkjet printing applications necessitate a 
reliable jetting behavior of functional ink, which is mainly determined by the ink fluid characteristics and drive 
waveform  design11–14.

The ink-jetting process of fluids involves a variety of free surface deformation. Inertia, capillary force, and 
viscous dissipation are generally used to govern the generation of inkjet  drops15. These phenomena can be 
characterized by dimensionless parametric groups such as Reynolds number (Re), Weber number (We), and 
Bond number (Bo)
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where ρ is the fluid density, η represents the shear viscosity, γ is the surface tension, D is the drop diameter, and v 
denotes the drop velocity. The Re represents the balance between inertial force and viscous force, and the Weber 
number represents the ratio of inertial force to capillary force. The effect of gravity is characterized by the Bond 
number, which can be neglected in most cases for micron-sized drops. The ratio between Re and We1/2, the inverse 
of the Ohnesorge number, relates the viscous forces to surface tension forces. Often defined as the Z number, it 
is used to predict the jetting behavior of drops from Drop-on-Demand (DoD) printhead.

It is widely assumed that Z is required to be in the 1 < Z < 14 range for proper drop  formation16,17.
A drive waveform is a set of timed actuator wall movements that generate and propagate acoustic pressure 

waves within a channel. The drive waveform has a critical role in the operation of the printhead with the ink to 
be  jetted18. Whereas the morphology of a jetted drop is mostly determined by the fluid properties, the incor-
rect waveform can still lead to unsatisfactory jetting with undesirable satellite formation or even non-jetting. A 
trapezoidal single-pulse waveform, comprised of the pulse rise, hold, and fall phases, is commonly used to drive 
the piezoelectric transducer. A widely adopted rule of thumb to optimize a waveform is to scan a range of hold 
times of the trapezoidal waveform with the predetermined rise and fall times and monitor drop  formation19. 
The optimum is defined here as the highest drop velocity for a given voltage  amplitude20–22. New methods have 
recently been proposed to design customized waveforms for satellite-free jetting. Kwon described a waveform 
design approach based on monitoring the motion of ink’s meniscus at the  nozzle11. His algorithm determined 
the optimal dwell time by identifying the meniscus location using a charge-coupled device (CCD) camera and 
strobe LEDs. Xiao et al. designed a unipolar trapezoidal waveform through a combination of laser Doppler 
vibration testing and numerical  simulation23. They first determined rise and fall times by the step response time 
of the piezoelectric actuated vibration plate and then optimized a dwell time by simulating the velocity wave 
induced by a rising or falling voltage pulse. The design of a multipulse waveform has recently been presented 
as a means of reducing the length of ligament or satellite  drops24. Hur’s team utilized the lumped element 
model of a recirculating piezoelectric inkjet printhead to improve bipolar waveforms, demonstrating that a 
bipolar waveform with a second pulse voltage of 1/3 than that of the first could suppress residual vibrations 
within the printhead  channel25. Despite the development in waveform design methodologies, the knowledge 
of wave propagation and drop formation is limited, and waveform optimization still requires time-consuming 
and repetitive waveform parameter modifications, while monitoring obtained jetting images. In addition, the 
previous experimental studies on the design of an optimal waveform were conducted with one or more limited 
number of inks for a given  printhead26, but it is difficult to apply the proposed waveforms to other ink systems 
with diverse fluid characteristics.

Meanwhile, smart manufacturing technology has incorporated artificial intelligence (AI) into many differ-
ent areas of the production process, such as optimization, control, and  troubleshooting27–29. Machine learning 
methods are now being applied in the inkjet printing process. Wu and Xu utilized ensemble learning techniques 
to design data-driven models to predict drop velocity and  volume30. Ogunsany et al. presented a vision-based 
approach for in-situ monitoring of drop  formation31. They classified the state of the jetting behavior from ana-
lyzed captured image data using a back-propagation artificial neural network method. Huang and his colleagues 
proposed an unsupervised learning framework for video data of jetting process to better understand the drop flow 
pattern and its underlying  mechanism32. They demonstrated that a deep recurrent neural network could learn the 
drop motion at the nozzle and anticipate drop evolution behavior. However, no framework has been devised by 
any AI approach to recommend drive waveforms in high-quality inkjet printing of a wide range of printable inks.

This study proposes a closed-loop machine learning algorithm for designing an optimal drive waveform for 
reliable satellite-free inkjet printing. Representative 11 model inks whose Z numbers are between 1 and 50 were 
ink-jetted to collect the drop formation and velocity dataset. For each ink, 1100 distinct designs of waveforms 
were applied to a printhead, and its jetting images were obtained using a high-speed imaging technique. Five 
machine learning models were utilized to predict the characteristics of the jetting behavior, and their perfor-
mances were compared to determine the most suitable. Following the development of a predicted model, we 
established a closed-loop algorithm for recognizing the optimal set of waveform parameters for a satellite-free 
drop formation. Finally, our proposed method was validated by printing an unknown ink with a recommended 
waveform at a target velocity.

Materials and methods
Inkjet printing system and process. A home-built inkjet apparatus was employed for this experiment. 
The system comprised a piezoelectric inkjet nozzle with a diameter of 40 μm (MJ-ATP-01-040 DLC, MicroFab 
Technologies), a waveform driver (JetDrive, MicroFab Technologies), a nano-pulsed flashlight source (NP-1A, 
SUGA WAR A Laboratories Inc), a CCD camera (avA1000-100gm, Basler) with a high magnification zoom lens 
(Zoom 6000 Lens System, Navitar), and the 5 × objective lenses (Infinity Corrected Long Working Distance 
Objective, Mitutoyo). The inkjet nozzle belongs to a squeeze-mode design where a piezo transducer wrapped the 
outside of a glass capillary tube. The inkjet nozzle pushes out the liquid when receiving the trigger pulse at a jet-
ting frequency of 10 Hz. Based on single-flash high-speed imaging, all jetting images were obtained by the ultra-
short pulse flashlight and the CCD camera. The drop watcher system employs a stroboscopic principle to capture 
the jetting image. The strobe trigger delay time can be adjusted in 1 μs increments. The very short flashlight with 
a duration of 180 ns avoided significant motion blurring. These components were electrically synchronized and 
controlled by an embedded controller (cRIO-9035 and NI-9401, National Instruments).
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Model inks. Deionized water, ethylene glycol, glycerol, and their different mixtures were used as model inks. 
Information on the fluid properties of those inks is presented in Table 1. Their shear viscosities were measured 
using a cone-plate viscometer (DV2T, Brookfield) at shear rates of 100–1000  s−1. All inks were Newtonian fluids 
since the viscosity remained constant in the measured range. Equilibrium surface tension was evaluated with 
a bubble pressure tensiometer (Proline t15, SITA Lab Solution). Each ink sample was filtered with a 0.45 μm 
hydrophilic nylon membrane before jetting.

Jetting data collection. Each ink was printed with 1100 different shapes of drive waveforms whose param-
eters such as voltage, rise, dwell and fall time were randomly selected in the range in Table 2, and their jet forma-
tion data were produced. The waveform is a trapezoidal pulse comprising driving voltage as well as rise, dwell, 
and fall times. A LabVIEW™ program was written to repeat the waveform setting–jetting–imaging sequence 
with increasing flash delay times to capture a series of drop formation images automatically. The delay times were 
adjusted from 40 to 400 μs with a 5 μs interval. A total of 883,000 jetting images were acquired and stored for the 
application of the machine learning models. The NI Vision Development Module was used to improve image 
quality, identify jets and drops, and extract quantitative information, including the number of the produced 
drops and their velocities. The drops were obtained by counting the main and satellite drops during travelling. 
The positions of the main drop at different trigger times were recorded and used to calculate the drop velocity.

Machine learning models. Five machine learning algorithms, such as Support Vector Machine (SVM)33, 
k-Nearest Neighbor (kNN)34, Random Forests (RFs)35, Extreme Gradient Boosting (XGBoost)36, and Multi-
layer Perceptron (MLP)37, were implemented to predict drop velocity and formation in this work. All mod-
els were programmed using the python scikit-learn package with XGBoost library. We employed the receiver 
operating characteristic (ROC)  curve38 and precision-recall (PR)  curve39 to evaluate the predictive ability of the 
learning models. When evaluating the performance of a machine learning model, the ROC curve demonstrates 
diagnostic ability, and the PR curve  summarizes the trade-off between the true positive rate and the positive 
predictive value for the learning model from diverse probability thresholds for classification.

Results
Overall workflow of the machine learning. Figure 1 shows the machine learning process for the rec-
ommendation of a waveform for satellites-free jetting behavior. The process is comprised of collecting jetting 
images, building a predictive model, and finding an optimal waveform for reliable single drop jetting. Initially, we 
collected high-speed jetting images on various fluid properties of inks with different shapes of actuation wave-
forms, which were employed to extract jetting morphologies and velocity. We categorized jetting morphologies 
into three regimes of non-jetting (designated as class 0), satellite-free single drop formation (class 1), and multi-
ple drop formation (class 2). The drop formation of jetting behavior and velocity of jets under given conditions 

Table 1.  Summary of fluid properties for each ink, together with dimensionless number Z.

Ink No

Composition (volume fraction)

Density (kg  m−3)
Viscosity 
(mPa s)

Surface tension 
 (mNm−1) Z TrainingDeionized water Ethylene glycol Glycerol

1 100 0 0 998.4 1.000 71.6 53.6 Used

2 90 0 10 1037.0 1.613 69.3 33.2 Used

3 80 0 20 1066.5 1.843 68.4 29.3 Used

4 70 0 30 1093.2 2.773 67.3 19.5 Used

5 60 0 40 1126.3 4.140 66.5 13.2 Used

6 90 10 0 1036.7 1.223 67.0 43.1 Used

7 70 30 0 1043.3 1.990 61.3 25.4 Used

8 40 60 0 1046.7 4.520 52.3 10.5 Used

9 30 70 0 1094.4 5.940 50.1 7.88 Used

10 20 80 0 1106.8 8.883 49.3 5.26 Used

11 0 100 0 1113.5 16.38 45.3 2.74 Used

12 50 50 0 1071.1 3.450 56.4 14.3 Unused

Table 2.  Ranges of each parameter in waveform.

Parameters of waveform Low level High level

Voltage (V) 10 80

Rise time (μs) 2 40

Dwell time (μs) 2 60

Fall time (μs) 2 40
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were examined from the obtained high-speed images. We then employed five distinct machine learning models, 
such as Support Vector Machine (SVM), k-Nearest Neighbor (kNN), Random Forests (RFs), Multi-layer Per-
ceptron (MLP), and Extreme Gradient Boosting (XGBoost), and compared their performances to determine the 
outstanding model for this study. After constructing a predictive model, we established a closed-loop algorithm, 
which identifies an optimal waveform based on the predictive model. We confirmed that the recommendation 
stage successfully obtained the optimal waveform of an unknown ink by using the predictive model. Finally, we 
verified the model using an unknown ink.

Jetting data collection for various inks and waveforms. To collect jetting data and determine how 
modifying fluid properties of ink and a design of a drive waveform affected jetting behavior, we inkjet-printed 
11 different model inks with a different Z number ranging from 2 to 53 by blending deionized water, ethylene 
glycol, and glycerol. Each ink was ejected with our home-built inkjet system integrated with a high-speed imag-
ing apparatus considering rapid single-flash photography. The rise/fall, dwell time and peak drive voltage of the 
analog trapezoidal driving pulse were adjusted between 2 and 40 μs, 2 and 60 μs, and 10 and 80 V, respectively. 
Consequently, each ink was ejected with a total of 1100 distinctly designed jetting waveforms, and their jetting 
behaviors were recorded with 73 high-speed images for each waveform. The images were used to extract jetting 
regime and velocity for machine learning.

Images of jetting morphologies depending on Z numbers and waveform design are shown in Fig. 2. The 
increase in Z numbers resulted in various jetting morphologies. For example, Fig. 2a indicates that no drops 
were generated at a Z number of 2.7, and the single drop formation was achieved by increasing the Z number 
to 13.2. Further alteration in fluid properties for a higher Z number of 29.3 led to the formation of the main 
drop accompanied by an unwanted satellite. The waveform remained the same during the experiments. We then 
examined the influence of the waveform design on jetting behavior for a given ink with a Z value of 25.4. As seen 

Figure 1.  Schematic representation of the working flow for designing an optimized inkjet drive waveform using 
machine learning models.
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in Fig. 2b, 20 V amplitude of a trapezoidal waveform did not drive an ink drop out of the nozzle; however, an 
increase to 28 V with rise/fall and dwell times unchanged led to a desirable single main drop. However, satellites 
were formed for further increased drive voltage.

Predictive model by machine learning. After the collected vision data and their analyses were estab-
lished, we first identified a total of 5 inputs that influence drop formation and velocity. The drop formation was 
categorized into three classes based on the number of drops. Class “0” indicates no drop formation, class “1” 
single drop formation, and class “2” satellites formation. The inputs indicate the ink properties represented by 
the Z number and the waveform consisted of voltage amplitude, rise, dwell, and fall times. A set of five super-
vised learning models, including SVM, kNN, RFs, MLP, and XGBoost, were trained by the datasets. To validate 
the models and decrease the risk of overfitting, the dataset was divided into a training set (60%), a validation set 
(20%), and a test set (20%).

The hyper-parameters of the learning model are summarized in Table 3; the values are tunned based on the 
performance on the validation set. We evaluated their performance in terms of drop velocity and drop forma-
tion. The coefficient of determination  (R2) for regression models was examined to predict drop velocity. Fig. 3a 

Figure 2.  The influence of waveform design and ink property on drop formation and drop velocity. (a) Ink 
property changes with a waveform unchanged. (b) Amplitude of a waveform increased for a model ink. Scale 
bar: 100 μm.

Table 3.  Summary of important hyper-parameters of machine learning models.

Learning model

Hyper-parameters

Regression Classification

SVM C = 10, gamma = 0.3 C = 10, gamma = 0.5

kNN k = 10 k = 20

RFs Max_depth = 20 Max_depth = 20

MLP 1st layer size = 200
2nd layer size = 100

1st layer size = 100
2nd layer size = 100

XGBoost Max_depth = 5 Subsample = 0.7
Min_child_weight = 20
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illustrates that all of the five machine learning models can be predicted with a high  R2 of > 90%. The overall 
classification performances of SVM, kNN, RFs, MLP, and XGBoost were evaluated by the accuracy as displayed 
in Fig. 3b. The accuracy values were 0.92, 0.91, 0.86, 0.91, and 0.87 for MLP, SVM, kNN, XGBoost, and RFs, 
respectively. Among these models, the MLP, SVM, and XGBoost models outperform kNN and RFs, with high 
prediction accuracy and no significant overfitting in both outcomes.

Three preferable models, such as SVM, XGBoost, and the MLP were further compared in detail. During the 
classification challenge, we constructed receiver operating characteristic (ROC) curves to evaluate the predic-
tion performance of the models. The ROC curve displays the trade-off between the true positive rate and the 
false positive rate as shown in Fig. 4a. It took the uncertainty of each prediction into account. The deviation of 
the curve toward the upper left corner from the random guess baseline that is displayed to the green dash line in 
Fig. 4a indicated higher prediction accuracy. MLP demonstrates the highest deviated ROC curve compared with 
those of SVM and XGBoost of each class. MLP also reveals the highest value of the area under the ROC curve 
(AUC), which is equivalent to the probability that the classifier will rank as a randomly chosen positive instance 
higher than a randomly chosen negative instance in comparison with SVM and XGBoost. The AUC value of 
MLP was particularly significantly higher than other learning models in class “1.” The overall classification per-
formance of MLP, SVM, and XGBoost was evaluated through the precision-recall (PR) curves as an additional 
indicator. In contrast to the ROC curve, the more the deviation of a PR curve toward the top right corner from 
the randomly guessing baseline indicates that a machine learning model achieves higher prediction accuracy. 
MLP also delivered high predictive performance, as presented in Fig. 4b. MLP obtained a precision of 0.84 at 
the recall of 0.73 in class “1,” which is substantially higher than those of SVM and XGBoost. In the regression 
problem, most algorithms showed useful agreement between the observed and predicted velocities as shown 
in Fig. 4c. MLP also provided the highest  R2 of 0.9815 and the lowest root mean square error of 0.5174. We 
discovered a strong predictive model, which suggests that the MLP model would be most suitable for predicting 
drop velocities and drop formation.

A closed-loop AI algorithm for identifying the optimal waveform. Having evaluated the perfor-
mances of representative machine learning models, we chose the MLP model to build an optimization algorithm 
for identifying the optimal waveform. The MLP model deployed initially cannot provide any opportunity for 
improvement. Therefore, we have built a closed-loop AI algorithm, the waveform design generated by which 
can be continuously optimized as machine learning improves with data and experience. The algorithm cor-
responding to the closed-loop waveform optimization is outlined in Fig. 5. The algorithm is performed in two 
phases. In the first phase, the input layer of the MLP receives the input data for an ink property (Z number) and 
an initial drive waveform (voltage, rise/dwell/fall times) to be processed. The required task on the prediction of 
drop velocity (vp) and drop formation (yp) is performed by its output layer. A double hidden layer that is placed 
in between the input and output layer is the actual computational engine of the model. The second phase is used 
to actively update the MLP by taking feedback from the outputs.

To form a closed-loop for determining an optimal waveform, we define the jetting number (J) as follow:

where vp and vt are MLP-predicted and target drop velocity, respectively, and yp represents the class of drop 
formation predicted by MLP, and δ denotes a minimal value to avoid divergence. The jetting number consists of 
the sum of terms reducing the error of drop velocity and formation. The former term is the squared prediction 
error for target drop velocity, which encourages a predicted drop velocity to reach target velocity. The latter term 

(5)
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Figure 3.  Performance evaluation of 5 machine learning models in predicting drop velocity and drop 
formation. (a) coefficient of determination of predicting drop velocity (b) accuracy of predicting drop 
formation. SVM, Support Vector Machine; kNN, k-nearest neighbors; RFs, random forests; MLP, Multi-layer 
Perceptron; XGBoost, extreme gradient boosting.



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:4841  | https://doi.org/10.1038/s41598-022-08784-y

www.nature.com/scientificreports/

Figure 4.  (a) Receiver operating characteristic curve and (b) precision-recall curve of predicting drop 
formation applying the test set in SVM, XGBoost, and MLP models. (c) Comparison of observed and predicted 
drop velocity using XGBoost, SVM, and MLP in the test set. The green dash line indicates the randomly 
guessing baseline.

Figure 5.  Schematic diagram of a waveform recommendation process.
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aims to search for a class of single drop formation. The algorithm iterates until the calculated value of J is close 
to 1, recommending an optimal set of waveform parameters for satellite-free drop formation at a target velocity.

Verification. To verify the proposed method, we prepared an ink with Z = 14.25 that had not been used 
for training. The target velocity was set to 1.5  ms−1 to calculate the jetting number. In Fig. 6a, the double drops 
were ejected at the initial waveform (peak voltage = 70  V, rising time = 31  μs, dwell time = 26  μs and falling 
time = 11 μs). The velocity of the main drop was 2.54  ms−1. After using the proposed method, the waveform fac-
tors were adjusted for voltage, rise/dwell/fall times as 66 V, 29 μs, 24 μs, and 13 μs, respectively. In Fig. 6b, double 
drops were formed, yet the second drop merged with the main drop at 1.62  ms−1 after an elapsed time of 220 μs. 
The fall time was increased by 2 μs and the voltage, rise time, and dwell time were reduced by 4 V, 2 μs, and 2 μs, 
respectively. The parameters of the waveform change according to iteration as displayed in Fig. 7. The change of 
the waveform occurs, causing the drop velocity to decrease. These findings suggest that MLP recognizes the need 
to reduce voltage and pulse width to reduce drop velocity.

Conclusion
In this study, we introduced a closed-loop machine learning process to recommend the optimal design of a 
drive waveform for satellite-free inkjet printing. We created and collected the big datasets of drop formation and 
velocity with 11 representative inks with different fluid properties and 1100 distinct waveform designs. We con-
cluded that MLP achieved the best prediction of drop formation and drop velocity among the five representative 
machine learning models tested. We developed the closed-loop algorithm to recommend the optimal waveform 
with the Jetting number. The model was verified with an unknown ink for target drop velocity of 1.5  ms−1 and 
single drop formation. We anticipate that our approach can be applied to a wide range of Newtonian inks and 
industrial printheads. Future work will establish an advanced machine learning process with non-Newtonian 
inks and bipolar waveform designs.

Received: 6 January 2022; Accepted: 10 March 2022
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