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Associations between genetic 
variants in mRNA splicing-related 
genes and risk of lung cancer: a 
pathway-based analysis from 
published GWASs
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Kouros Owzar1,4, Younghun Han5, Li Su6,7, Yongyue Wei6,7, Rayjean J. Hung8, 
Yonathan Brhane8, John McLaughlin9, Paul Brennan10, Heike Bickeböller11, 
Albert Rosenberger11, Richard S. Houlston12, Neil Caporaso13, Maria Teresa Landi13, 
Joachim Heinrich14, Angela Risch15, Xifeng Wu16, Yuanqing Ye16, David C. Christiani6,7, 
Christopher I. Amos5 & Qingyi Wei1,3

mRNA splicing is an important mechanism to regulate mRNA expression. Abnormal regulation of this 
process may lead to lung cancer. Here, we investigated the associations of 11,966 single-nucleotide 
polymorphisms (SNPs) in 206 mRNA splicing-related genes with lung cancer risk by using the summary 
data from six published genome-wide association studies (GWASs) of Transdisciplinary Research in Cancer 
of the Lung (TRICL) (12,160 cases and 16,838 controls) and another two lung cancer GWASs of Harvard 
University (984 cases and 970 controls) and deCODE (1,319 cases and 26,380 controls). We found that a 
total of 12 significant SNPs with false discovery rate (FDR) ≤0.05 were mapped to one novel gene PRPF6 
and two previously reported genes (DHX16 and LSM2) that were also confirmed in this study. The six 
novel SNPs in PRPF6 were in high linkage disequilibrium and associated with PRPF6 mRNA expression in 
lymphoblastoid cells from 373 Europeans in the 1000 Genomes Project. Taken together, our studies shed 
new light on the role of mRNA splicing genes in the development of lung cancer.

Lung cancer is a major challenge to human health and caused by multiple environment and genetic factors1. 
Smoking, radon gas, asbestos and air pollution have been established as the environment risk factors2, and genetic 
factors have also been clearly illustrated in familial3 and segregation studies4. Single nucleotide polymorphisms 
(SNPs) are the most common genetic variants in the human genome and have been shown to be associated with 
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risk of human diseases, including cancers5. With a large sample size of study subjects, multiple-stage replication 
and high-throughput chips, genome-wide association studies (GWASs) have been shown to be a robust way of 
detecting genetic variants involved in susceptibility to cancer. To date, GWASs in different ethnic groups have suc-
cessfully identified 30 loci in 12 chromosomal regions (3q28, 5p15.33, 6p21.1, 6p21.33, 6q22.1, 7p15.3, 10q25.2, 
13q12.12,13q13.1, 15q25.1, 17q24.2, 22q12.2) that confer susceptibility to lung cancer6–17, among which, loci at 
5p15.33, 6p21.33 and 15q25.1 were found to be risk factors for lung cancer in European descents.

Despite the great success achieved by GWASs, the identified SNPs by GWASs still only explain a small fraction 
of heritability of lung cancer, a phenomenon called “missing heritability”18. Therefore, many complementary 
approaches have been developed to improve the study power of GWASs. For example, one of such approaches 
is the pathway-based association analysis through additional imputation to increase the number of SNPs to be 
analyzed, which could detect the risk-associated genes with multiple, independent and small effect sizes. This 
approach could alleviate issues due to insufficient chip coverage of earlier GWASs, reduce the multiple-testing 
burden of GWAS, achieve consistent results across studies and provide understanding of genetic findings with 
some functional relevance19–22.

Among the biological candidate pathways for lung carcinogenesis, mRNA splicing, a modification of the 
pre-mRNA transcript in which introns are removed and exons are joined, is of significant importance23. In most 
of the circumstances, this pathway functions normally for the human genome to generate proteomic diversity 
sufficient for various biological processes. However, cancer cells may take advantage of this mechanism to pro-
duce aberrant proteins with added, deleted, or altered functional domains that contribute to carcinogenesis 
including lung cancer24. Recent studies had shown that somatic mutations and germline variants of some mRNA 
splicing-related genes were associated with development of lung cancer. For instance, Shen et al. found several 
SNPs in mRNA splicing associated genes (SRSF7, PTBP2 and HNRNPQ) were associated with lung cancer risk 
in a Chinese population25. To date, however, only a limited number of candidate genes and SNPs in the pathway 
have ever been studied and reported. In the present study, we systematically selected 206 mRNA splicing-related 
genes and comprehensively investigated associations between 11,966 genetic variants of these genes and lung 
cancer risk using eight published lung-cancer GWAS datasets from the Transdisciplinary Research in Cancer of 
the Lung (TRICL) Consortium.

Results
Overall associations between SNPs in mRNA splicing-related genes and lung cancer risk in the 
TRICL Consortium. Overall, 11,966 SNPs in 206 mRNA splicing-related genes in six GWAS datasets were 
selected from the TRICL Consortium (an imputated dataset that included 5,472,374 common SNPs), and their 
associations with lung cancer risk are shown in the Manhattan plot (Fig. 1). The sample size for each study had 
been listed in Table 1. After FDR correction (PFDR corrected ≤  0.05), the 12 SNPs in three genes remained statistically 
significant (Fig. 1). The most significant SNP for each gene was: rs75100087 in PRPF6 (P =  6.83E-06); rs115420460 
in DHX16 (P =  3.93E-09) and rs114312980 in LSM2 (P =  2.19E-07). Their basic information and associations 
with lung cancer risk are listed in Table 2. SNPs in DHX16 (rs115420460) and LSM2 (rs114312980, rs115489726, 
rs115801685, rs114637560, rs115834633) were excluded from further analysis due to their locations within the 
previously identified lung cancer susceptible region Chr6p21.33 and in high LD with previously reported lung 
cancer GWAS SNPs. Specifically, as shown in Supplement Figure 2, rs115420460 in DHX16 was in high LD 

Figure 1. Association results of 11,966 SNPs in 206 mRNA splicing-related genes and lung cancer risk in 
the TRICL Consortium. SNPs are plotted on the X-axis according to their positions on each chromosome. The 
association P values with lung cancer risk are shown on the Y-axis (as − log10 P values). The 12 SNPs from three 
genes (DHX16, LSM2 and PRPF6) were identified after the FDR correction.
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(r2 >  0.6) with the previously reported lung cancer GWAS SNP rs43247989. Similarly, Supplement Figure 3 shows 
that all of the five SNPs in LSM2 were in high LD (r2 >  0.8) with SNP rs3117582 that was identified from a the 
previously published lung cancer GWAS14. Therefore, we focused on the remaining six newly identified SNPs in 
PRPF6 (Table 2) for further analysis. Regional plot and recombination rates of PRPF6 (rs8126213 ±  500 kb) in the 
TRICL consortium are presented in Fig. 2.

LD analysis and SNP function annotation. The diagram of six PRPF6 SNPs and their LD plot are 
shown in Supplement Figure 4b and 4c, respectively. High LD was observed between each pair of the six SNPs 
(r2 >  0.80), indicating that any of these six SNPs can be a good tag for others. Next, we exploited dbSNP func-
tion annotation (http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?showRare= on&chooseRs= all&go= 
Go&locusId= 24148) and another two online SNP function prediction tools: SNPfunc (http://snpinfo.niehs.
nih.gov/snpinfo/snpfunc.htm) and regulomeDB (http://regulomedb.org/index) to assess their functionality 
(Supplementary Table 2).

Expression quantitative Trait loci (eQTL) analysis. Expression quantitative trait loci (eQTL) analysis, 
which directly investigates the correlations between genetic variants and gene expression, has been gradually 
proved as an effect method to characterize the function of SNPs. In the present study, the eQTL analysis was 
performed by using the data available from lymphoblastoid cell lines derived from 373 individuals of European 
descendent (http://www.1000genomes.org/). Finally, all of these six SNPs in PRPF6 were found to be significantly 

Study Controls

Lung cancer patients

All AD10 SQ11

 ICR1 5200 1952 465 611

 MDACC2 1134 1150 619 306

 IARC3 3791 2533 517 911

 NCI4 5736 5713 1841 1447

 Toronto5 499 331 90 50

 GLC6 478 481 186 97

TRICL7 16838 12160 3718 3422

 Harvard8 970 984 597 216

 deCODE9 26380 1319 547 259

All combined 44188 14463 4862 3897

Table 1.  Characteristic information of the study populations. 1ICR: the Institute of Cancer Research 
Genome-wide Association Study, UK; 2MDACC: the MD Anderson Cancer Center Genome-wide Association 
Study, US; 3IARC: the International Agency for Research on Cancer Genome-wide Association Study, France; 
4NCI: the National Cancer Institute Genome-wide Association Study, US; 5Toronto: the Lunenfeld-Tanenbaum 
Research Institute Genome-wide Association Study, Toronto, Canada; 6GLC: German Lung Cancer Study, 
Germany; 7TRICL: GWASs datasets combined by six GWASs of ICR, MDACC, IARC, NCI, Toronto and 
GLC; 8Harvard: Harvard Lung Cancer Study, US; 9deCODE: Icelandic Lung Cancer Study, Iceland; 10AD: 
adenocarcinoma; 11SQ: squamous cell carcinoma.

ID SNP Chr: Position2 GENE Allele3 EAF4 Q5 I2 5 Effects6 OR (95% CI)7 P7 FDR8

1 rs115420460 6: 30618906 DHX16 A/G 0.11 0.67 0.00 + + + + + + 1.18 (1.12–1.25) 3.93E-09 < 0.0001

2 rs114312980 6: 31768799 LSM2 A/C 0.11 0.23 26.77 + + + + + + 1.20 (1.12–1.29) 2.19E-07 0.0007

3 rs115489726 6: 31766660 LSM2 C/T 0.11 0.24 25.69 + + + + + + 1.20 (1.12–1.29) 2.54E-07 0.0007

4 rs115801685 6: 31772093 LSM2 C/A 0.11 0.23 27.36 + + + + + + 1.20 (1.12–1.29) 2.61E-07 0.0007

5 rs114637560 6: 31765864 LSM2 T/A 0.15 0.27 22.42 + − + + + + 1.14 (1.07–1.21) 3.04E-07 0.0007

6 rs115834633 6: 31765984 LSM2 G/A 0.11 0.20 30.79 + + + + + + 1.20 (1.12–1.30) 5.75E-07 0.0011

7 rs116165844 20: 62610556 PRPF6 G/T 0.13 0.89 0.00 − − − − − − 0.89 (0.85–0.94) 1.62E-05 0.0197

8 rs8126213 20: 62611478 PRPF6 G/A 0.13 0.89 0.00 − − − − − − 0.89 (0.85–0.94) 1.64E-05 0.0197

9 rs147176547 20: 62613001 PRPF6 C/G 0.14 0.98 0.00 − − − − − − 0.90 (0.85–0.94) 1.65E-05 0.0197

10 rs112219537 20: 62620029 PRPF6 G/A 0.13 0.96 0.00 − − − − − − 0.90 (0.85–0.94) 2.37E-05 0.0237

11 rs113450630 20: 62623703 PRPF6 C/T 0.14 0.98 0.00 − − − − − − 0.90 (0.85–0.94) 1.93E-05 0.021

12 rs75100087 20: 62636139 PRPF6 C/T 0.14 0.97 0.00 − − − − − − 0.89 (0.85–0.94) 6.83E-06 0.0117

Table 2.  mRNA splicing-related genes SNPs and lung cancer risk in the TRICL1 Consortium with FDR 
corrected P ≤ 0.05. 1TRICL: GWASs datasets combined by six GWASs of ICR, MDACC, IARC, NCI, Toronto and 
GLC. 2Based on NCBI build 37 of the human genome. 3Reference allele/effect allele. 4EAF, effect allele frequency. 
5Fixed-effects models were used when no heterogeneity was found between studies (Q >  0.10 and I2 <  25.0); 
otherwise, random-effects models were used. 6+  means positive association, and −  means negative association. 
7Meta-analysis of additive results from six lung cancer GWASs. 8FDR, false discovery rate.

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?showRare=on&chooseRs=all&go=Go&locusId=24148
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?showRare=on&chooseRs=all&go=Go&locusId=24148
http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm
http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm
http://regulomedb.org/index
http://www.1000genomes.org/
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associated with expression levels of PRPF6 in both additive and dominant models (Supplementary Figure 5 
and Supplementary Table 2). We also queried the GTEx database (http://www.gtexportal.org/) and found that 
SNP rs8126213 was significantly correlated with mRNA expression levels of PRPF6 in normal lung tissues 
(P =  1.50 ×  10−5), which was consistent with the results in the lymphoblastoid cell lines. Similar results were 
found for other five SNPs (Supplementary Figure 6).

Replication of PRPF6 SNP (rs8126213) in another two lung-cancer GWASs. We then selected 
one of these six PRPF6 SNPs (rs8126213) and investigated its association with lung cancer risk in two addi-
tional lung-cancer GWASs of Caucasian origin, Harvard Lung Cancer Study (984 cases and 970 controls) and 
Icelandic Lung Cancer Study (deCODE from the ILCCO) (1,319 cases and 26,380 controls). However, no sig-
nificant association was observed in these two studies (P =  0.801 and 0.850, respectively), which may potentially 
result from a relatively limited sample size of the cases, although their effects were in the same direction as in the 
TRICL‐ILCCO studies, and the overall effect among all these eight GWASs remained significant (OR =  0.91, 
95% CI =  0.87–0.95, P =  6.36E-05 in an additive genetic model) (Table 3). Similar effects were also observed 
on adenocarcinoma (OR =  0.91, 95% CI =  0.87–0.95, P =  0.002) and squamous cell carcinoma (OR =  0.90, 95% 
CI =  0.83–0.97, P =  0.005) in the subgroup analysis.

Discussion
mRNA splicing is an important biological mechanism to regulate mRNA expression. Somatic mutations and 
germline variants of the mRNA splicing-related genes have been found to be associated with various kinds of can-
cers. For example, SF3B1, U2AF1 and SRSF2 mutations were observed in myeloid and lymphoid lineage tumors26.  
SF3B1 mutations were commonly found in uveal melanomas27. Mutations affecting spliceosome genes that 
resulted in defective splicing were attributed to leukemia28. For lung cancer, it had been reported that U2AF1 
mutation was found in 3% of lung adenocarcinoma cases29. However, few studies reported a role of genetic var-
iants in the etiology of cancer. For example, only one recent study found that genetic variants in three mRNA 
splicing-associated genes might modify individual susceptibility to lung cancer in a Chinese population25.

In the present study, we systematically evaluated the associations between 11,966 genetic variants in 206 
mRNA splicing-related genes and lung cancer risk using the data from eight published GWAS datasets. To the 
best of our knowledge, this is the first and largest study focusing on exploring associations between SNPs from 
mRNA splicing-related genes and risk of lung cancer. Overall, our study identified six SNPs within mRNA 
splicing-related gene PRPF6 that might play an important role in the development of lung cancer. Furthermore, 
all of these six SNPs were found to be associated with PRPF6 mRNA expression in both lymphoblastoid cell lines 
and normal lung tissues of European descendent. Therefore, we proposed that these six SNPs were associated with 
abnormal expression of PRPF6 and thus modified individual’s susceptibility to lung cancer. However, two major 
issues of the present study should be addressed. Firstly, the associations of these six SNPs with risk of lung cancer 
were observed in the six TRICL GWASs but not in Harvard and deCODE GWASs, probably due to a relatively 
limited sample size of the cases in the replication. Further replication studies are warranted to confirm our results. 
Secondly, the lung cancer-associated mRNA splicing-related genes identified in the previous Chinese study25 were 

Figure 2. Regional plots and recombination rates of PRPF6 (rs8126213 ± 500 kb) in the TRICL 
Consortium. PRPF6 rs8126213 was shown in purple and the linkage disequilibrium (LD) values (r2) with the 
other SNPs are indicated by the heat scale. Other five PRPF6 SNPs are shown in red color, which meant that they 
were in high LD with rs8126213 (r2 >  0.8).

http://www.gtexportal.org/
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not replicated in our study, which could be attributed to different genetic background or different environmental 
exposures as well as other unknown contributing factors between two populations.

PRPF6 is located on chromosome 20q13.33 and is an essential member of the small nuclear ribonucleic pro-
teins (snRNPs), playing an important role in mRNA splicing. For instance, a missense mutation in PRPF6 impairs 
mRNA splicing and contributes to Autosomal-Dominant Retinitis Pigmentosa30. Its role in the development of 
cancer had also been reported in previous studies. For example, it was over-expressed in lung adenocarcinomas 
according to The Cancer Genome Atlas (TCGA) projects31. In addition, PRPF6 was over-expressed in colon can-
cer32 to drive cancer proliferation by preferential splicing of genes associated with growth regulation33. Abnormal 
expression of PRPF6 alters the constitutive and alternative splicing of a discrete number of genes, including an 
oncogenic isoform of the ZAK kinase33 that activates several cancer (including lung cancer)-related signaling 
pathways, such as those of NF-kB, Wnt/b catenin, AP1, ERK and JNK34,35. It should be mentioned that the pro-
tective alleles of these six SNPs were associated with both a decreased lung cancer risk and a decreased mRNA 
expression of PRPF6, which is consistent with the previous findings of overexpression of the gene in colon and 
lung cancers. Therefore, based on all these, we hypothesized of abnormal expression of PRPF6 might contribute 
to development of lung cancer in the following way: the risk allele of PRPF6 was associated with elevated PRPF6 
mRNA expression, then the oncogenic isoforms, such as the ZAK kinase, were generated as a result of abnormal 
splicing and activation in normal lung tissues, which finally resulted in lung carcinogenesis.

In summary, the present large-scale meta-analysis of eight published lung-cancer GWASs consisting of 14,463 
lung cancer cases and 44,188 controls revealed a novel lung cancer susceptibility locus in the mRNA splicing-related 
gene PRPF6 and provided some new insight into genetic architecture and carcinogenic mechanisms of lung cancer. 
Further validation and functional evaluation of this genetic variant are warranted to verify our findings.

Materials and Methods
Study populations. In the present study, we used the data from eight lung-cancer GWASs with a total 
of 14,463 lung cancer cases and 44,188 health controls. As shown in Table 1, the analysis included six GWAS 
datasets from the TRICL consortium (12,160 lung cancer cases and 16,838 controls of European ancestry) and 
another two datasets of lung cancer GWASs: the Caucasian origin-Harvard Lung Cancer Study (984 cases and 
970 controls) and the Icelandic Lung Cancer Study (deCODE from the ILCCO) (1,319 cases and 26,380 con-
trols). As described previously16, the TRICL six lung-cancer GWASs include the MD Anderson Cancer Center 
(MDACC) GWAS, the Institute of Cancer Research (ICR) GWAS, the National Cancer Institute (NCI) GWAS, 
the International Agency for Research on Cancer (IARC) GWAS, Lunenfeld-Tanenbaum Research Institute study 
(Toronto) GWAS and the German Lung Cancer Study (GLC) GWAS.

All of the subjects included in the analysis had provided a written informed consent. All methods were per-
formed in accordance with the relevant guidelines and regulations, and all original studies were approved by the 
institutional review board from each of the participating institutions.

GWAS genotyping, imputation and quality controls. GWASs included in the current study were 
performed by the following platforms: Illumina HumanHap 317, 317 +  240 S, 370 Duo, 550, 610 or 1 M arrays. 
Genotype imputation was conducted based on linkage disequilibrium (LD) information from the 1000 Genomes 
Project (phase I integrated release 3, March 2012) by IMPUTE2, MaCH or minimac software16. Imputed SNPs 
with information score < 0.40 by IMPUTE2 or r2 <  0.30 by MaCH were excluded from further analysis. In 

Study population

Sample size Overall (N = 14463) AD (N = 4862) SQ (N = 3897)

Cases Controls OR (95% CI)* P* OR (95% CI)* P* OR (95% CI)* P*

 TRICL 12160 16838 0.89 (0.85–0.94) 1.65E-05 0.88 (0.81–0.95) 9.0E-04 0.88 (0.82–0.96) 2.20E-03

 ICR 1952 5200 0.94 (0.85–1.05) 0.303 0.94 (0.77–1.15) 0.572 0.92 (0.77–1.20) 0.374

 MDACC 1150 1134 0.87 (0.73–1.04) 0.120 0.87 (0.71–1.07) 0.199 0.84 (0.64–1.11) 0.219

 IARC 2533 3791 0.91 (0.81–1.01) 0.075 0.93 (0.76–1.13) 0.456 0.91 (0.78–1.06) 0.238

 NCI 5713 5736 0.87 (0.81–0.95) 8.36E-04 0.86 (0.77–0.97) 0.012 0.85 (0.75–0.96) 7.92E-03

 Toronto 331 499 0.86 (0.62–1.20) 0.379 0.77 (0.47–1.27) 0.314 0.97 (0.51–1.83) 0.923

GLC 481 478 0.83 (0.63–1.10) 0.195 0.67 (0.45–0.98) 0.041 1.01 (0.64–1.58) 0.979

Harvard and deCODE 2303 27350 0.98 (0.89–1.09) 0.772 0.97 (0.84–1.12) 0.683 1.02 (0.82–1.26) 0.875

 Harvard 984 970 0.97 (0.79–1.20) 0.801 0.94 (0.74–1.18) 0.576 0.97 (0.68–1.40) 0.886

 deCODE 1319 26380 0.99 (0.87–1.12) 0.850 0.99 (0.82–1.20) 0.940 1.04 (0.80–1.37) 0.761

 All combined 14463 44188 0.91 (0.87–0.95) 6.36E-05 0.91 (0.87–0.95) 1.70E-03 0.90 (0.83–0.97) 4.80E-03

Table 3.  Summary association results of PRPF6 rs8126213 (G > A) in all of the eight lung cancer GWASs. 
Abbreviations: TRICL: GWASs datasets combined by six GWASs of ICR, MDACC, IARC, NCI, Toronto and 
GLC; ICR: the Institute of Cancer Research Genome-wide Association Study, UK; MDACC: the MD Anderson 
Cancer Center Genome-wide Association Study, US; IARC: the International Agency for Research on Cancer 
Genome-wide Association Study, France; NCI: the National Cancer Institute Genome-wide Association Study, 
US; Toronto: the Lunenfeld-Tanenbaum Research Institute Genome-wide Association Study, Toronto, Canada; 
GLC: German Lung Cancer Study, Germany; Harvard: Harvard Lung Cancer Study, US; deCODE: Icelandic 
Lung Cancer Study, Iceland; AD: adenocarcinoma; SQ: squamous cell carcinoma; *Meta-analysis of results from 
additive model.
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addition, standard quality control on samples by excluding individuals with low call rate (< 90%) and extremely 
high or low heterozygosity (P <  1.0 ×  10−4), as well as those estimated to be of non-European ancestry (using the 
HapMap phase II CEU, JPT/CHB and YRI populations as reference) were conducted among all of the studies.

Genes and SNPs selection. The mRNA splicing-related genes were selected with the combination of 
two online databases commonly exploited in the gene-set enrichment analysis: Molecular Signatures Database 
(http://www.broadinstitute.org/gsea/index.jsp) and Genecards (http://www.genecards.org/). Overall, 206 mRNA 
splicing-related genes were selected (Supplementary Table 1), which included a total of 11,966 genotyped or 
imputed common SNPs extracted from these genes (include 2-kb upstream and downstream of genes) among 
the TRICL Consortium with the following inclusion criteria: 1) Genotyping call rate ≥  90%; 2) Minor allele fre-
quency (MAF) ≥  5% among Europeans; and 3) Hardy Weinberg Equilibrium exact P value ≥  10−5. The detailed 
work-flow can be found in Supplementary Figure 1.

Statistical analysis. The associations between SNPs and lung cancer risk were evaluated using an additive 
genetic model by R (v2.6), Stata (v10, State College, Texas, US) and PLINK (v1.06) software36. For the stud-
ies of ICR, MDACC, IARC, Toronto, NCI and Harvard, top significant principle components were included 
in the analysis to control for population stratification that might cause inflation of test statistics, while for the 
deCODE study, genomic control method was used to adjusted for population stratification. No population struc-
ture was found in the German Lung Cancer Study (GLC). With the application of the inverse variance method, a 
meta-analysis under the fixed and random-effects models was performed on the results of a log-additive model 
for 11,966 SNPs. In order to assess the heterogeneity among studies, the Cochran’s Q statistic to test for hetero-
geneity and the I2 statistic to quantify the proportion of the total variation due to the heterogeneity were calcu-
lated31. A fixed-effects model was applied, if no heterogeneity existed among studies (PQ-test >  0.10 and I2 <  25%); 
otherwise, a random-effects model was chosen. The Benjamini–Hochberg false discovery rate (FDR) procedure 
was employed for the correction of multiple testing with a cutoff value ≤  0.05.

Regional association plots were generated with LocusZoom on the basis of 1000 Genomes European (EUR) 
reference data (phase I integrated release 3, March 2012)37. Haploview v4.2 was employed to construct the 
Manhattan and LD plot. All analyses were conducted with SAS (version 9.1.3; SAS Institute, Cary, NC, USA) 
unless specified otherwise.

In silico SNP function annotation. To prioritize functional SNPs, three in silico tools: dbSNP func anno-
tation (http://www.ncbi.nlm.nih.gov/projects/SNP/), SNPinfo (http://snpinfo.niehs.nih.gov/), and RegulomeDB 
(http://regulomedb.org/) were employed. Furthermore, the associations between SNPs and PRPF6 mRNA expres-
sion were performed using lymphoblastoid cell expression data from 1000 Genomes Project European popula-
tions (EUR, 373 individuals) (phase I integrated release 3, March 2012)38 by linear regression model.
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