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Abstract

Objective: Previous studies have investigated how tDCS over the primary motor cortex modulates excitability in the
intrinsic hand muscles. Here, we tested if tDCS changes corticomotor excitability and/or cortical inhibition when measured
in the extensor carpi radialis (ECR) and if these aftereffects can be successfully assessed during controlled muscle
contraction.

Methods: We implemented a double blind cross-over design in which participants (n = 16) completed two sessions where
the aftereffects of 20 min of 1 mA (0.04 mA/cm2) anodal vs sham tDCS were tested in a resting muscle, and two more
sessions where the aftereffects of anodal vs sham tDCS were tested in an active muscle.

Results: Anodal tDCS increased corticomotor excitability in ECR when aftereffects were measured with a low-level
controlled muscle contraction. Furthermore, anodal tDCS decreased short interval intracortical inhibition but only when
measured at rest and after non-responders (n = 2) were removed. We found no changes in the cortical silent period.

Conclusion: These findings suggest that targeting more proximal muscles in the upper limb with anodal tDCS is achievable
and corticomotor excitability can be assessed in the presence of a low-level controlled contraction of the target muscle.
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Introduction

Transcranial direct current stimulation (tDCS) is the noninva-

sive application of a weak electrical current to brain tissue. The

aftereffects of tDCS can last in the order of minutes to hours,

depending on the length and intensity of stimulation [1].

Considerable effort has been directed towards highlighting the

positive effect of tDCS on behavior, with studies demonstrating

improved motor learning in healthy controls [2–5] and enhanced

neurorehabilitation outcomes in patients recovering from stroke

[6–8].

Although the underlying physiological mechanisms through

which tDCS exerts its effect are not yet fully understood, its

application to primary motor cortex appears to alter the

polarization of resting membrane potentials, reflected by measur-

able short term changes in corticomotor excitability[9,10]. It has

been postulated that the long-term effects of tDCS on motor

behaviour might occur through the modulation of synaptic

plasticity in the motor cortex [5]. Evidence suggests that these

long-term effects are dependent on the modulation of NMDA

receptor-dependent long-term potentiation and GABAergic inhi-

bition [10–13].

The application of anodal tDCS to the primary motor cortex

significantly increases corticomotor excitability and decreases

intracortical inhibition in both healthy [1,9,11,14–19] and patient

populations [6,7,20]. These findings in particular suggest that

tDCS might prove useful as a post stroke rehabilitation tool. Most

existing research has focused on examining how tDCS modulates

corticomotor excitability and intracortical inhibition in the hand

area of primary motor cortex [11,15,21]. However, the restoration

of wrist function and wrist extension in particular, is equally

critical during stroke rehabilitation [22]. A second consideration

regarding how well previous work generalizes to clinical settings is

highlighted when considering how tDCS aftereffects are typically

measured. Single pulse transcranial magnetic stimulation (TMS) is

used to induce motor evoked potentials (MEPs) before and after

stimulation in order to assess corticomotor excitability [1,9], and a

short-interval paired pulse TMS protocol is used to measure

intracortical inhibition [6,11,15,20,23], with both measurements

often performed with the target muscle in a resting state

[1,9,11,14,15,18,21,24]. However, in moderately to severely

impaired stroke patients, TMS induced MEPs are often absent

in the paretic limb when muscles are relaxed making it difficult to
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asses tDCS aftereffects in this patient group [25]. Here we tested

the influence of 20 min anodal tDCS (1 mA) over the primary

motor cortex on the corticomotor excitability of the wrist extensor

muscle in healthy adults. TDCS aftereffects were tested either at

rest or while subjects maintained a low level isometric wrist

extension. Based on previous work that mainly demonstrated

tDCS effects in finger muscles [6–8] we hypothesize that anodal

tDCS applied to the primary motor cortex induces measurable

aftereffects in the corticomotor excitability of wrist extensor

muscles, and that these aftereffects are also present when

measured during light contraction of the target muscle.

Methods

1. Ethics statement
All experimental procedures were approved by the local Ethics

Committee for Biomedical Research at the KU Leuven (ethics

approval numer: S52763) and conformed to the Declaration of

Helsinki (1964).

2. Participants
Sixteen healthy male adults (mean age and standard deviation:

21.561.31 yr, range: 20–24 yr) participated in the experiment

after providing written informed consent. All participants were

right-handed [26] (mean Laterality index and standard deviation

80627%, range: 20–100%). None of the participants reported

contraindications to TMS or tDCS, and all were free of

medication, had no history of neurological or psychiatric disease

and were naı̈ve to the purpose of the experiment. We did not

include females because our protocol involved repeated measure-

ments that were separated by at least a week, which might be

influenced by the hormonal cycle [27].

3. Study design
We implemented a double blind cross-over design, where each

participant completed 4 separate test sessions: 2 active sessions,

which probed the effect of anodal versus sham tDCS on

corticomotor excitability and intracortical inhibition during a

controlled muscle contraction, and 2 resting sessions which probed

the effect of anodal versus sham tDCS on corticomotor excitability

and intracortical inhibition during rest. The order of motor state

(active and rest) and stimulation type (anodal and sham) were

counterbalanced across participants. There was at least 48 hrs

between anodal and sham sessions and 1 week between

consecutive anodal sessions (Fig. 1A). In each test session,

participants followed the same procedure: 1) TMS preparation,

2) pre TMS measurement (PRE-TMS), 3) anodal/sham tDCS

stimulation and 4) post TMS measurement (POST-TMS, Fig. 1B).

Please note that tDCS was always applied while the subject was at

rest, while the assessment of tDCS aftereffect was either performed

in the relaxed or the pre-contracted state.

3.1 General setup. Participants were comfortably seated

with their right forearm abducted and fixed to a custom made

device that only allowed movement about the wrist joint. Wrist

extension force was measured by a force sensor (Load cell model

1042, TEDEA Huntleigh, USA). Visual feedback of wrist

extension force amplitude was provided during the active sessions.

MEPs were recorded from the right ECR with surface electro-

myography (EMG; Mespec 8000, Mega Electronic, UK). Two

disposable Ag-AgCl surface electrodes (Blue Sensor P-00-S, Ambu,

Denmark) were placed in a belly-tendon montage on the right

ECR, with the reference electrode placed on the lateral

epicondyle. In the first session of each condition (i.e. active versus

rest), the EMG electrodes positions were marked with a semi

permanent marker to ensure identical positioning of EMG

electrodes across the anodal and sham sessions. EMG data were

sampled at 5000 Hz (CED Power 1401, Cambridge Electronic

Design, UK), amplified, band pass filtered (5–1000 Hz), and

stored on a PC for off-line analysis.

In the active sessions, each subject’s isometric wrist extension

maximal voluntary contraction (MVC) was recorded at the

beginning of the session. MVC was taken as the highest value of

three maximal isometric contractions.

3.2 TMS preparation. TMS was performed with a figure-of-

eight coil (loop diameter 70 mm) connected to two Magstim Bi-

Stim2 stimulators (Magstim, UK). The coil was positioned over the

hotspot of ECR (i.e. the location with the largest and most

consistent MEPs) with the optimal orientation (i.e. the coil was

positioned over the left hemisphere, tangentially to the scalp with

the handle pointing backward and laterally at 45u away from the

mid-sagittal line) for evoking a descending volley in the cortico-

spinal tract. The same coil orientation was used for all subjects. In

the first session of each condition (i.e. active versus rest), the

hotspot was determined and marked with a semi permanent

marker. In the following sessions, we confirmed that the previously

defined hotspot was the point where the largest and most

consistent MEPs were evoked prior to the main measurements.

Accordingly, the hotspot location was highly consistent across

sessions. The average location in each session with respect to the

lateral and anterior distance from the vertex was rest-anodal

5.260.1 cm, 0.560.2 cm; rest-sham: 5.260.1 cm, 0.560.2 cm;

active-anodal: 5.36 0.2 cm, 0.360.2 cm; active-sham: 5.26

0.2 cm, 0.66 0.2 cm.

Rest motor threshold (RMT), defined as the lowest stimulus

intensity eliciting MEPs .50mV in at least five out of 10

consecutive trials, was determined to the nearest 1% of maximum

stimulator output. Active motor threshold (AMT) was determined

as the lowest stimulus intensity eliciting MEPs .200 mV in at least

five out of 10 consecutive trials while participants contracted their

wrist extensor with an isometric force of 10% MVC (i.e. MEP size

had to exceed the background EMG and was usually followed by a

silent period).

TMS stimulation intensities were determined in a similar

manner to that previously described by Byblow et al [28]. In brief,

an input-output curve (IO-curve) was measured prior to the main

experiment in each test session. In the resting sessions, the IO-

curve was determined using stimulation intensities ranging from

90%–190% of RMT in steps of 20%. Five MEPs were collected

per intensity (30 in total) in a randomized order with an inter-trial

interval varying randomly between 7 to 9 s. The total procedure

lasted approximately 4 min. In the active sessions, the IO-curve

was measured at intensities ranging from 90%–210% of AMT in

steps of 20%. Five MEPs were collected per intensity (35 in total)

in a randomized order and with an inter-trial interval between 7

and 9 s (corresponding to approximately 5 min in total). Based on

the IO-curve, the suprathreshold test stimulus (TS) intensity was

set to evoke MEPs with an amplitude corresponding to 50% of

maximum.

Short interval intracortical inhibition (SICI) was measured using

paired pulse TMS such that the TS was preceded by a

subthreshold conditioning stimulus (CS) with the interstimulus

interval (ISI) being set to 3 ms [11,15,16,23]. MEP amplitude is

diminished when the TS is preceded by the CS (CS+TS)

indicating the influence of inhibitory circuits. However, it has

been shown that this MEP reduction depends on the CS intensity

and that inhibitory activity can be estimated more reliably when

several CS intensities are used, i.e. a SICI curve is measured

[29,30]. Here, three CS intensities were used: For each subject a

Anodal tDCS Modulates Corticomotor Excitability of Forearm Muscles

PLOS ONE | www.plosone.org 2 July 2014 | Volume 9 | Issue 7 | e101496



CS intensity of 80% of motor threshold (MT; i.e. 80% AMT for

active condition, 80% RMT for resting condition) was used as a

starting reference. We then determined the stimulator output (to

the nearest 1%) that maximally reduced the MEP amplitude

(CSmax). In addition to CSmax, the SICI curve consisted of

measurements at CSmax610% of MSO (CSmax-10%, CSmax+10%).

3.3 Pre- and post- TMS measurement. Identical TMS

measurements were executed prior to and immediately after the

tDCS intervention: Three blocks of 10 unconditioned pulses (TS

only, single pulse) and 20 conditioned pulses (SICI, paired pulse)

were delivered. The order of CS intensity was varied randomly

between blocks. Breaks of 2 min were included after each block.

In the resting sessions participants were asked to relax their

forearm and hand muscles, which were closely monitored via

background EMG (bgEMG). In the active sessions participants

contracted their wrist extensors for 3 s at 10% of MVC during

each TMS measurement, with TMS given 2.5 s after each

contraction (Fig. 2). Production of the required extension force was

monitored by the experimenter. During all TMS measurements,

the experimenters were blinded as to whether subjects received

anodal or sham tDCS. In each session one experimenter was

responsible for holding the TMS coil and communicating with the

subject, one was responsible for controlling the data collection

computer, and another observed. Programming of the tDCS

stimulator for a given participant was performed by the

experimenter who was not directly involved in testing that

participant (the observer).

3.4 tDCS intervention. TDCS stimulation (HDCstim-DC

stimulator, Newronika, Italy) was delivered at 1 mA via two

electrodes with a 5 cm65 cm surface area resulting in a current

density of 0.04 mA/cm2. The center of the anodal electrode was

placed over the hotspot of the left ECR region of primary motor

cortex (identified by TMS), while the reference electrode was fixed

to the contralateral supraorbital ridge [9]. Electrodes were covered

with conductive gel and then placed in saline soaked sponges. Pilot

work indicated that this procedure was optimal for ensuring that

low impedance between the electrodes and the scalp was

maintained over the course of the experiment. In the anodal

session, the current ramped up over 10 s and was maintained at

1 mA for 20 min. In the sham session, the current ramped up over

10 s and was maintained at 1 mA for 12 s, and then quickly faded.

Participants were not able to distinguish between anodal and sham

stimulation using this procedure.

At the end of each session, participants filled in a questionnaire

to determine the level of physical activity before the test, the

number of sleep hours and sleep quality during the previous night,

and a discomfort score for the tDCS stimulation.

4. Data analyses
For all TMS measurements, MEP size was determined by peak-

to-peak amplitude. MEPs were considered outliers and excluded

from the analysis if they were greater than Q3+1.56 (Q3-Q1) or

less than Q1-1.56 (Q3-Q1), where Q1 and Q3 are equal to the

first and third quartiles, respectively. Single pulse MEPs were

pooled separately for PRE-TMS and POST-TMS (30 MEPs for

PRE-TMS and 30 MEPs for POST-TMS). BgEMG was

quantified by the root mean square error of the EMG signal in

an interval between 10 and 110 ms before TMS stimulation. For

each participant, the mean and standard deviation (SD) of the

bgEMG score was calculated separately for each session. In the

resting sessions, trials with a bgEMG score greater than the mean

+ 2.5 SDs were removed from the analysis. In the active sessions,

trials with a bgEMG score greater than the mean + 2.5 SDs and/

or smaller than the mean 22.5 SDs were removed from the

analysis. According to these criteria 9563% of the trials were

included in the analysis. All statistics were calculated with

Statistica 11 (StatSoft, USA). The level of significance was set to

a= 0.05.
4.1 Corticomotor excitability. Changes in corticomotor

excitability resulting from the tDCS intervention were quantified

Figure 1. Study protocol. A: Each participant was tested in 4 separate sessions: 2 active sessions (anodal and sham) and 2 resting sessions (anodal
and sham). There was at least 1 week break between 2 consecutive anodal sessions and 48 hrs break between other sessions. The order of testing
was counterbalanced. B: Test session procedure. An IO-curve was measured to determine the test stimulation (TS) intensity defined as 50% of the
maximum MEP amplitude. Pre and post TMS measurement consisted of 3 blocks of 30 TMS pulses. Each block consisted of 10 single pulse (measuring
corticomotor excitability) and 20 double pulse (measuring SICI) TMS measurements. Anodal/sham tDCS was applied for 20 min over the left primary
motor cortex with 1 mA intensity.
doi:10.1371/journal.pone.0101496.g001
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by calculating the average PRE-TMS and POST-TMS MEP

sizes, and then calculating the POST-TMS/PRE-TMS MEP

ratio, such that values greater than 1 indicate an increase in

corticomotor excitability and values less than1 indicate a decrease.

This allowed us to directly compare the effect of anodal tDCS

between the active and resting sessions with a repeated measures

analysis of variance (rm-ANOVA) including within subject factors

MOTOR STATE (active, resting) and STIMULATION (anodal,

sham). We also estimated the variability of the MEPs by

determining the coefficient of variation (CV), which was analyzed

with the same rm-ANOVA model.

4.2 Short interval intracortical inhibition. Paired pulse

TMS induced reductions in TS MEP amplitudes reflecting SICI,

which were expressed as a percentage of the unconditioned MEP

amplitude (values closer to 100% represent weaker intracortical

inhibition). Sixty double pulse MEPs were collected separately for

PRE-TMS and POST-TMS (20 double pulse MEPs for each CS

intensity in PRE-/POST- TMS). SICI data were analyzed with an

rm-ANOVA model including within subject factors MOTOR

STATE (active, resting), STIMULATION (anodal, sham), TIME

(pre, post) and CS intensity (CSmax-10%, CSmax, CSmax+10%).

However, since we expected a significant overall reduction in

strength of SICI in the active state when compared to rest [31], we

also calculated two separate rm-ANOVA models for each motor

state with the factors STIMULATION, TIME and CS intensity.

4.3 Background EMG. BgEMG scores were averaged

separately for PRE-TMS and POST-TMS measurements and

analyzed with a rm-ANOVA including within subject factors

MOTOR STATE (active, resting), STIMULATION (anodal,

sham) and TIME (pre, post).

4.4 Cortical silent period and wrist extension force. In

the active sessions, cortical silent period (cSP) and wrist extension

force data were also analyzed following previously established

procedures [32–34]. The cSP onset was defined as the time point

when the TMS induced changes in EMG returned to baseline.

The cSP offset was defined as the time point when voluntary EMG

activity recovered and reached the same level as prestimulus

bgEMG (referred to as the target range). The prestimulus bgEMG

was collected between 5 and 105 ms before TMS stimulation. The

target range of the bgEMG was determined as the mean 6 the

root mean square error of the prestimulus bgEMG. The cSP data

and wrist extension force were averaged for PRE-TMS and

POST-TMS measurements and analyzed with a rm-ANOVA

including within subject factors STIMULATION (anodal, sham)

and TIME (pre, post).

Results

All participants completed all sessions of the study and none

reported any adverse reaction to tDCS or TMS. There were no

significant differences between stimulation intensities between

anodal and sham test sessions in either active or resting motor

states (Table 1).

1. Corticomotor excitability
PRE-TMS represents a measure of baseline corticomotor

excitability in each test session. The baseline MEP amplitudes

for the active motor sessions were 2.11 mV60.21 (mean 6 SEM)

and 2.42 mV60.30 for anodal and sham respectively (paired t-

test, anodal versus sham t (15) = 21.67, p = 0.11). In the resting

motor sessions, the baseline MEP amplitudes were 1.03 mV60.15

and 0.97 mV60.09 for anodal and sham respectively (paired t-

test, anodal versus sham t (15) = 0.58, p = 0.57).

In both anodal tDCS sessions, we observed increased MEP

amplitudes following stimulation (relative to baseline) when

compared to sham tDCS sessions (Fig. 3A). In the active anodal

session, MEP amplitude increased 2566% following tDCS

application, which was significantly higher than in the sham

session where a decrease of 664% was observed (paired t-test,

anodal versus sham t (15) = 4.47, p,0.001). There was also a

significant increase from POST-TMS to PRE-TMS observed only

in the active anodal session (paired t-test, PRE-TMS versus POST-

TMS t (15) = 23.74, p = 0.002). In the resting anodal session, we

also observed an increase in MEP amplitude of 1268% following

tDCS application, but this effect did not reach significance when

compared to the sham session where an increase of 265% was

observed (paired t-test, anodal versus sham t (15) = 1.08, p = 0.30).

Furthermore, MEP variability (CV) was significantly reduced in

the active sessions (0.3060.02) compared to the resting sessions

(0.4960.01) (paired t-test, active versus resting t (15) = 26.179, p,

Figure 2. Testing setup. In the active sessions (left), subjects contracted their right ECR at 10% of maximum voluntary contraction during TMS
measurement. In the resting sessions (right) subjects were passively resting their right arm on the table. Exemplary EMG activity is shown in the upper
panels.
doi:10.1371/journal.pone.0101496.g002
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0.001) but was not significantly modulated by tDCS (F (1, 15) = 0.80,

p = 0.39).

Across participants, the increase in cortciomotor excitability

induced by tDCS was significantly correlated between the active

and resting anodal session (r2 = 0.3065, p = 0.026), while no such

relationship was observed for the sham sessions (r2 = 0.0004,

p = 0.945) (Fig. 3B). It is also clear from Figure 3 that there is

considerable individual variation in the response to anodal tDCS,

with two participants exhibiting no or the opposite response

expected based on previous literature (non-responders) in either

the resting or active sessions (left and below the dotted lines).

2. Intracortical inhibition (SICI)
There was no significant difference between baseline intracor-

tical inhibition in the anodal and sham sessions in either motor

state (active motor state: anodal 6767% vs sham 6864%, paired

t-test, anodal versus sham t (15) = 20.12, p = 0.90; resting motor

state: anodal 5164% vs sham 5365%, paired t-test, anodal versus

sham t (15) = 20.69, p = 0.50).

Table 1. Stimulation intensities relative to the maximum stimulator output (MSO) and motor threshold (MT).

CSmax intensity (% MSO) TS intensity (% MSO) CSmax intensity (% MT) TS intensity (% MT)

Rest-anodal 32.0061.25 50.6362.21 85.5962.02 135.0162.82

Rest-sham 32.5061.14 51.6862.03 86.1761.76 136.5462.02

Active-anodal 33.0061.05 48.8861.88 88.9961.51 131.4362.35

Active-sham 32.8161.11 49.1961.99 88.5161.97 132.3863.02

Values are means 6 SEM.
doi:10.1371/journal.pone.0101496.t001

Figure 3. Corticomotor excitability results. A: MEP amplitude increased following the application of anodal tDCS in both active and resting
motor states when compared to sham. The increase was only significant (p,0.001) in the active session. B: The MEP amplitude increase observed in
the active and resting anodal sessions was significantly correlated (p = 0.026). This was not the case for the sham sessions. Data points to the left of
and below the dotted lines (i.e. MEP ratio ,1) indicate participants who did not increase excitability in either of the anodal sessions. Error bars
represent mean 6 SEM. *** p ,0.001
doi:10.1371/journal.pone.0101496.g003
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In Figure 4A it can be observed that there was a reliable

difference in the magnitude of SICI between motor states (paired t-

test, active versus resting t (15) = 3.40; p = 0.004), due to a reduction

in intracortical inhibition in the active motor state. No other main

effects or interactions were significant (F#2.32, p$0.12). SICI did

not significantly change from baseline following either anodal (F (1,

15) = 0.31, p = 0.58) or sham (F(1, 15) = 0.04, p = 0.85) stimulation in

the active motor state.

Next we focused on the effects of SICI in the resting state only,

which were examined with a separate rm- ANOVA. Only in the

anodal session was there a tendency for SICI to be lower at POST-

TMS compared to PRE-TMS (PRE-TMS 5164%; POST-TMS

5765%). However, the rm-ANOVA revealed only a trend

Figure 4. Intracortical inhibition (SICI) results. A: There was a significant decrease in SICI in the active motor state compared to the resting
motor state (p = 0.004). There was a trend towards a reduction in SICI following anodal tDCS when non-responders were included in the analysis
(p = 0.11). B: Mean SICI data and SICI curve from the resting sessions are shown when the 2 non-responders were removed from the analysis. The left
panel shows the significant interaction between the anodal and sham sessions (p = 0.04). Post-hoc test revealed that SICI was significantly reduced in
the anodal session (p = 0.027), but not the sham session (p = 0.478). The right panel shows the full SICI curves. C: Mean SICI data and SICI curve from
the active sessions are shown when the 2 non-responders were removed from the analysis. There were no significant changes in either mean SICI
data or SICI curve. Error bars represent mean 6 SEM. * p,0.05; ** p ,0.01.
doi:10.1371/journal.pone.0101496.g004
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towards a TIME 6 STIMULATION interaction (F(1, 15) = 2.85,

p = 0.11; Fig. 4A right panel), while no other main effects or

interactions approached significance (F#1.8, p$0.20). In an

exploratory analysis performed for hypothesis generating purposes

we excluded two participants that did not exhibit any response to

anodal tDCS (see Fig. 3B, two data points separated by dashed

lines). Note that this procedure uses a rather conservative criterion,

i.e. the absence of any indication that tDCS increased cortico-

motor excitability. After excluding two non-responders a signifi-

cant TIME 6 STIMULATION interaction (F(1, 15) = 5.18,

p = 0.04; Fig 4B left panel) was revealed suggesting that anodal

tDCS reduced SICI (mean reduction of 8%63% SEM) in those

participants that exhibited an increase in corticomotor excitability

in response to the stimulation (PRE-TMS 5065%; POST-TMS

5865%). Post hoc tests (Fisher’s LSD) indicated a significant

reduction in SICI at POST-TMS compared to PRE-TMS in the

anodal session (p = 0.027; Fig. 4B left panel). There was no

significant difference between different CS intensities (Fig. 4B right

panel). Similar effects were not observed in the active session,

neither with the full sample (Fig. 4A left panel) nor when the two

non-responders were removed (Fig. 4C).

3. Background EMG
There was a significant difference in the bgEMG score between

active and resting motor states (paired t-test, t (15) = 8.94; p,0.001),

however, no significant effects were observed for the factors

STIMULATION and TIME (Table 2). This indicates that muscle

activity was at a comparable level between conditions, a

particularly important consideration for the active motor state in

order to ensure that corticomotor excitability and SICI were

measured under comparable conditions.

4. Cortical silent period and wrist extension force
Table 3 summarizes cSP and wrist extension force data in the

active sessions. The cSP was not significantly altered by tDCS

(anodal vs sham session: F(1, 15) = 0.169, p = 0.687), nor did it differ

between PRE- and POST-TMS measurements (anodal session: F(1,

15) = 0.03, p = 0.87; sham session: F(1, 15) = 0.23, p = 0.64). Statistical

tests confirmed that there were also no differences in wrist extension

force between anodal and sham tDCS sessions (F (1, 15) = 1.392,

p = 0.256) or between PRE- and POST-TMS measurements

(anodal session: F (1, 15) = 0.093, p = 0.765; sham session:

F(1, 15) = 0.454, p = 0.511).

5. Questionnaire
The number of hours sleep in the night prior to testing was not

significantly different across sessions (F(3, 45) = 0.265, p = 0.850;

table 4). The discomfort score did not differ reliably between

anodal and sham sessions (F(1, 15) = 2.54; p = 0.13; table 4),

suggesting that participants did not perceive the difference

between stimulation conditions.

Discussion

It is well established that anodal tDCS applied to the hand area

of primary motor cortex can significantly increase corticomotor

excitability when measured at rest [1,9,11,14,15,18,21,24]. Here

we extend on previous work by demonstrating that similar anodal

tDCS aftereffects are present when targeting a more proximal

upper limb muscle (ECR) during an active motor state. In general

this result is consistent with the relatively few previous studies that

have measured the aftereffects of anodal tDCS on corticomotor

excitability in an active target muscle. Hendy and Kidgell [16]

recently reported increased corticomotor excitability in pre-

contracted ECR following three weeks of strength training

combined with 2 mA anodal tDCS. Jeffery et al [35] observed

increased corticomotor excitability in pre-contracted muscles of

the lower leg following 10 min of 2 mA anodal tDCS.

In the present study we only observed a trend towards increased

corticomotor excitability in the resting motor state following

anodal tDCS, which was not significant when compared to sham.

Our results are consistent with Uy and Ridding [24] who tested

the aftereffects of anodal tDCS in the first dorsal interosseous,

abductor digiti minimi and flexor carpi ulnaris in healthy adults.

They observed a significant difference in response to anodal tDCS

in the first dorsal interosseous, but not in the forearm muscle (i.e.

flexor carpi ulnaris). Another study applying 1 mA cathodal tDCS

to the infraspinatus region in the left primary motor cortex showed

that cathodal tDCS decreased corticomotor excitability of distal

hand muscles but not the proximal shoulder muscles [36]. This is

in line with a previous study that applied theta burst stimulation to

different regions of the motor cortex and found that the results

obtained from the biceps muscle are highly variable compared to

the same stimulation applied to a hand muscle (FDI). The authors

pointed out that the magnitude and reliability of theta burst

stimulation depends on which cortical region is targeted [37].

Together, previous work raises the possibility that the cortico-

motor excitability of more proximal muscles might be less sensitive

to modulation through brain stimulation, possibly because intrinsic

hand muscles have larger representations in human primary motor

cortex[38,39] and are controlled more selectively than forearm

muscles [40]. Moreover, our data indicate that much depends on

how the aftereffects of tDCS are assessed. One aspect of general

consideration when using TMS is that evoking MEPs while the

subject is at rest provides good control of muscular activity but

poor control about the psychophysiological state of the subject. It

has been shown previously that MEP amplitudes are influenced by

arousal, visual attention[41], sleepiness [42], vegetative state [43]

and seemingly irrelevant visual background information [44].

Even though we tried to control these aspects during each session

in addition to including a sham condition in the design, TMS

measurements at rest might still be subject to greater noise due to

non-specific effects. This would lead to reduced sensitivity with

small modulations of corticomotor excitability failing to reach

significance. This argument is supported by two of our findings:

First, it is worth noting that we observed a significant difference in

Table 2. Background EMG (mV).

Rest-Anodal Rest-Sham Active-Anodal Active-Sham

PRE-TMS 0.001760.0007 0.002060.0009 0.068760.0334 0.070260.0304

POST-TMS 0.001860.0009 0.001960.0010 0.067360.0308 0.070960.0328

Values are means 6 SEM.
doi:10.1371/journal.pone.0101496.t002
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MEP size variability between the active and resting motor states,

with the CV being significantly lower in the active motor state.

Therefore it is also possible that in our data higher variability in

corticomotor excitability measurements at rest prevented statistical

significance being reached. Second, we also observed that the

change in corticomotor excitability in active and resting anodal

tDCS sessions was positively correlated. That is, interindividual

differences in the response to tDCS were largely maintained across

assessments in the active and the resting motor state.

Of interest is the fact that not all participants responded to

anodal tDCS. We tested 16 participants and the corticomotor

excitability of 2 (12.5%) did not respond to stimulation in either

anodal session. These participants did not differ from the rest of

the sample in terms of baseline measurements, such as sleep hours,

physical activity prior to the testing sessions and self reported

tDCS discomfort scores. This observation is in line with previous

reports of inter-individual variability in response to anodal tDCS:

Nitsche and Paulus [1] tested 12 participants and the increase in

corticomotor excitability ranged from 0 to approximately 200%,

with an average increase of about 50%. Another study which

quantified the effects of anodal tDCS with recruitment curves

reported that slopes increased for 4 out of 5 participants [6]. When

cortical current flow was modeled using the same tDCS

parameters as in our study, differences were found between

participants [45]. These studies (and ours) used 1 mA current

applied to the primary motor cortex, which might not be sufficient

to consistently induce sufficient current flow in the brain,

particularly when there are substantial variations in anatomy

between participants [45,46]. This suggests that future studies

should consider the use of subject specific intensities in order to

induce more robust effects [45]. It is also possible that a substantial

proportion of the population does not respond to tDCS. Our

finding identifying 12.5% non-responders is in line with two recent

studies showing that there is considerable inter-individual

variability in response to tDCS. Wiethoff et al [47] reported that

approximately 25% of participants did not show an increase in

corticomotor excitability following the application of 10 min of

2 mA anodal tDCS [47] and Lopez-Alonso et al [48] found that

about 50% of participants showed no increase in corticomotor

excitability after the application of 13 min of 1 mA anodal tDCS

[48]. Our criteria for determining non-responders is similar to the

above studies but slightly more conservative, namely we only

classified participants as non-responders if they demonstrated no

increase in both the resting and active anodal sessions. Together,

recent studies suggest that a substantial proportion of the

population does not respond to anodal tDCS with an increase in

corticomotor excitability. Depending on the criteria and which

stimulation/test protocol is applied, the proportion of non-

responders appears to vary between 12.5 and 55%.

We observed an approximate 15% decrease in SICI in the

active motor state compared to the resting motor state. This was

expected based on previous work showing that the strength of

intracortical inhibition is reduced when measured with a voluntary

tonic contraction of the target muscle [31,49]. Anodal tDCS did

not lead to any changes in SICI when tested during the active

motor state, most likely due to the large reduction in inhibition

that might have masked more subtle modulations of SICI caused

by tDCS. SICI was decreased following anodal tDCS when tested

in the resting motor state, but this decrease did not differ

significantly from the sham condition, unless the two participants

that did not respond to anodal tDCS in any of the two sessions

were excluded from the analysis. We did not match MEP size

evoked by the TS across PRE and POST sessions. TS amplitude

influences the level of SICI [50,51] and some studies have

demonstrated that matching TS is important for accurately

measuring changes in SICI post-intervention [52]. However,

other experiments have indicated a lesser effect of matching TS

amplitude [53,54]. Moreover, we observed a trend towards

reduced SICI only when tested in a resting motor state, i.e. when

TS MEP amplitude changed only to an insignificant extent from

PRE to POST. Previous studies measuring the influence of tDCS

on SICI in hand muscles have revealed divergent results: Nitsche

et al [11] found a significant decrease in intracortical inhibition

following 13 min of 1 mA anodal tDCS. Another study applied

20 min of 2mA anodal tDCS to the ECR region in the primary

motor cortex and showed a significant decrease in SICI when

participants contracted their muscle with 20% and 50% of MVC,

but no decrease during a lighter muscle contraction (5% MVC)

[16]. Hummel et al [6] reported reduced intracortical inhibition

after applying 20 min of 1 mA anodal tDCS to chronic stroke

Table 3. Cortical silent period and wrist extension force.

cPS (ms) Max Force (N) Force during TMS (N)

ANODAL PRE-TMS 5565 207.16613.65 1861

POST-TMS 5566 1861

SHAM PRE-TMS 5365 202.24612.07 1761

POST-TMS 5466 1761

Values are means 6 SEM.
doi:10.1371/journal.pone.0101496.t003

Table 4. tDCS discomfort score and sleeping hours.

Rest-Anodal Rest-Sham Active-Anodal Active-Sham

tDCS discomfort (0-10) 1.5360.25 1.1660.25 1.5960.26 1.4460.25

Sleeping hours (hrs) 7.4460.36 7.7560.37 7.4260.34 7.4160.46

Values are means 6 SEM.
doi:10.1371/journal.pone.0101496.t004
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patients. Conversely, Batsikadze et al [15] recently observed no

change in SICI following 20 min of 2 mA anodal tDCS. Notably,

previous comparisons of SICI between upper limb muscles found

that the amount of inhibition in proximal muscles to be

significantly less than that observed in the intrinsic hand muscles

[55,56]. Furthermore, when SICI is measured at rest it is known to

suffer from substantial inter-individual variability. In an attempt to

account for this we measured SICI intensity curves, which are

thought to provide a better indication of intracortical inhibition

compared to a single measurement. We observed a decrease of

about 8% in SICI, which is in line with previous studies that have

reported SICI decreases of between 7,15% [9,11,16] following

anodal tDCS. When considered in combination with previous

work, our findings suggest that tDCS has a less robust influence on

SICI in comparison to corticomotor excitability, even when SICI

curves are measured. This might result from larger inter-individual

variability, lower responsiveness of ECR to the SICI protocol and/

or methodological details that might have influenced SICI results.

More specifically, most studies cited above as well as ours used an

interstimulus interval (ISI) of 3ms between the CS and TS.

However, this ISI might have been suboptimal because there is a

risk that SICI measurements were confounded by short interval

cortical facilitation [57]. Future studies should use a shorter ISI

and larger cohorts to determine whether anodal tDCS affects SICI

to a relevant extent and which proportion of the population

responds to tDCS with changes in SICI.

There was no significant difference in cSP between anodal and

sham sessions. SICI and cSP are both measures of intracortical

inhibition and are thought to represent inhibitory processes

mediated by different (but not mutually exclusive) pathways. SICI

measures activation of the intracortical inhibitory pathways that

reduce the excitability of corticospinal neurons within primary

motor cortex [23,50,58], mainly depends on GABAA receptors

[23] and seems to be responsive to anodal tDCS[5]. By contrast,

cSP mainly depends on GABAB receptors [59] and does not seem

to be modulated by anodal tDCS [15,16,60], a finding that is

consistent with our results.

Finally, we note that there are some limitations to our study.

First, we did not measure IO-curves to estimate the aftereffect of

anodal tDCS and we did not test long-term aftereffects (.10min).

However, since subjects had to produce a controlled force we

decided to keep the protocol per session short to prevent muscular

and mental fatigue. Second, only one forearm muscle was tested in

this study, thus we could not directly compare the response of

proximal versus distal muscles. Finally, our results concerning the

influence of tDCS on SICI are unconvincing because we observed

only a small effect when SICI was measured in the resting ECR,

which is at odds with the tDCS induced increase of corticomotor

excitability that was only measured when the muscle is activated.

Future experiments investigating the influence of tDCS on SICI

might benefit from a modified experimental protocol using a

shorter ISI of 2 ms for the paired-pulse measurements and

matching the MEP amplitude evoked by the TS across PRE and

POST measurements.

Here we aimed to show the feasibility of measuring changes in

corticomotor excitability and intracortical inhibition in the

forearm area of primary motor cortex. While most previous tDCS

studies targeted the intrinsic hand muscles, we investigated a

proximal upper limb muscle (ECR) in order to optimize clinical

relevance. We found that anodal tDCS applied to the primary

motor cortex at rest induced similar aftereffects in ECR as those

previously reported for the intrinsic hand muscles, however, only

when aftereffects were measured while subjects performed a

controlled muscle activation. This confirms that targeting more

proximal muscles of the upper limb with tDCS is achievable.

Furthermore, we demonstrated that the effects of anodal tDCS on

corticomotor excitability can be appropriately assessed during a

low-level controlled contraction of the target muscle. This

outcome is positive for future studies in clinical populations such

as stroke survivors, where TMS induced MEPs are mostly absent

during rest.
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