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Charting differentially methylated regions in cancer
with Rocker-meth
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Differentially DNA methylated regions (DMRs) inform on the role of epigenetic changes in
cancer. We present Rocker-meth, a new computational method exploiting a heterogeneous
hidden Markov model to detect DMRs across multiple experimental platforms. Through an
extensive comparative study, we first demonstrate Rocker-meth excellent performance on
synthetic data. Its application to more than 6,000 methylation profiles across 14 tumor types
provides a comprehensive catalog of tumor type-specific and shared DMRs, and agnostically
identifies cancer-related partially methylated domains (PMD). In depth integrative analysis
including orthogonal omics shows the enhanced ability of Rocker-meth in recapitulating
known associations, further uncovering the pan-cancer relationship between DNA hyper-
methylation and transcription factor deregulation depending on the baseline chromatin state.
Finally, we demonstrate the utility of the catalog for the study of colorectal cancer single-cell
DNA-methylation data.
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and therefore one of the most studied epigenetic

mechanisms!=>. It is considered to be a surrogate of
chromatin accessibility and, especially when in the proximity of
regulatory regions, alterations of DNA methylation status may
correlate positively or negatively to the binding of key transcrip-
tion factors (TFs), resulting in altered transcriptional programs®-3,
Alterations of DNA methylation have been associated with a wide
range of diseases, including cancer. Landscape integrative studies
from The Cancer Genome Atlas (TCGA) consortium have high-
lighted marked associations between DNA methylation and other
genomic layers. For instance, the Prostate Adenocarcinoma
(PRAD) group of TCGA reported that unsupervised analysis of
DNA methylation levels naturally recapitulated the distinct
molecular subclasses of primary prostate cancer, originally defined
by the presence of mutually exclusive recurrent molecular altera-
tions including Single Nucleotide Variants (SNVs), Somatic Copy
Number Alterations (SCNAs), and gene fusions®. Similar results
have been observed for multiple tumor types!®-14. Furthermore,
DNA methylation has recently gained substantial attention in the
setting of liquid biopsy for early detection and for monitoring of
disease evolution!>-18, further eliciting the need for robust and
reliable biomarker detection approaches.

To date, the majority of studies on DNA methylation focused
on the characterization of single CpG sites, despite the recogni-
tion that concomitant changes spanning entire genomic regions,
referred to as Differentially Methylated Regions (DMRs), are
common in cancer tissues with respect to benign cells!®-21.
The hypo-methylation (compared to matched normal tissue)
of large contiguous stretches of repetitive DNA sequences is
considered to be a common hallmark of cancer initiation and
indicative of chromatin and genomic instability?223. Similarly,
tumor cells often exhibit hyper-methylation of promoter CpG
islands of tumor suppressor genes that may be associated to their
inactivation and consequent tumor cell proliferation?425,

Initial studies on the identification of DMRs used strategies
based on grouping of Differentially Methylated Sites (DMSs)
into a-priori defined regions, such as CpG islands, followed by
the application of a statistical test (i.e., a Fisher Exact Test) to
define statistically significant DMRs2-28. More recently, a series
of computational methods were specifically designed to identify
DNA regions showing differential methylation status between
two phenotypes (i.e., cancer versus adjacent tissue). These
include both methods originally developed for microarray data,
such as Bumphunter?? and DMRcate?0 and bisulfite sequencing
(BS) based methods, such as DSS3!, DMRseq?2, Metilene33, and
others34-36, While a multitude of array-based cancer DNA
methylation data, such as TCGA37-38, can serve as comparative
sets, the use of genome-wide and targeted sequencing-based
methylation studies is increasing, particularly in the context of
low signal to noise ratios as in the patients’ circulation. For these
reasons, computational tools amenable and benchmarked for
both platforms and able to detect DMRs without a-priori con-
straints neither on the magnitude of the differential signal nor
on the spanned genomic size are desirable to allow for the
establishment of harmonized catalogs for downstream biological
studies.

Here we report on a new computational method to identify
DMRs in both array and BS data. We show that our newly
developed approach, named Rocker-meth, allowed for the
unbiased detection of DMRs spanning a range of genomic sizes,
from hundreds of base pairs to Megabase-pair (Mbp). By a com-
prehensive synthetic study, we demonstrate its superiority com-
pared to state-of-the-art methods. The application of Rocker-meth
to whole-genome BS (WGBS) and HM450 array TCGA datasets
allowed us to compile an accurate catalog of DMRs, representing

D NA methylation is an essential player of gene regulation

the full characterization of differential methylation in 14 TCGA
datasets including about 6000 tumor samples. In addition, we
show the utility of our catalog in the analysis of single-cell DNA
methylation datasets. Rocker-meth recapitulates both well-known
and previously underappreciated associations between DNA-
methylation and genomic features, gene expression, and chroma-
tin states validating its accuracy and allowing us to refine the
functional and regulatory role of DNA methylation in human
cancers.

Results

Rocker-meth and its application to multiple synthetic and
cancer datasets. Rocker-meth (Receiver operating characteristic
curves analyzer of DNA methylation data, Fig. la) consists of
four main modules: (1) computation of Area Under the Curve
(AUC) values from Receiver operating characteristic (ROC)
Curve analysis of methylation levels (i.e., beta values) in tumor
versus normal samples; CpG sites with AUC value toward either 1
or 0 capture hyper-methylation and hypo-methylation events,
respectively; (2) segmentation of AUC values by a tailored
heterogeneous Hidden Markov Model (HMM)3?; (3) estimation
of intra-segment homogeneity by Wilcoxon-Mann-Whitney
(WMW) test on beta values of CpG sites in tumor versus normal
samples; (4) identification of sample specific DMRs by Z-score
statistics. Details are reported in Methods section. To showcase
Rocker-meth potential (Fig. 1b), we applied it to multiple inde-
pendent cancer datasets generated using a variety of assays,
including HM450 arrays from TCGA, WGBS*’, and single-cell
DNA-methylation*! and further evaluated its capability of cap-
turing biologically relevant features using orthogonal omics data,
such as multiple genomic features, matched gene expression data
from TCGA, and chromatin states®42,

We first carried out a comprehensive simulation study on
RRBS synthetic datasets (details in Supplementary Note 1) to
evaluate the performance of the segmentation algorithm of
Rocker-meth while varying the values of its parameters (details in
the Methods section). The results of this analysis are reported in
Supplementary Note 1, Supplementary Figs. 1 and 2. Next, to
assess its overall performance, we carried out an extensive
comparative study on multiple synthetic datasets emulating
increasing levels of signal-to-noise ratio (class 1-5) and different
platforms (ie., HM450, RRBS -parameters training, WGBS)
(details in Supplementary Data 1 and methods) against five state-
of-art-methods, including three sequencing-based tools,
Metilene33, DSS3! and DMRseq32, one array-based tool
Bumphunter??, and DMRcate3? that can be applied to both data
types. Supplementary Fig. 4 shows the distribution of the average
beta values of tumor versus normal samples for differentially
methylated sites in TCGA datasets, estimated as those sites with
AUC<0.2 (hypo-methylation) or AUC>0.8 (hyper-methyla-
tion). For illustration, overlaid bars referring to the range
(estimated by mean + standard deviation) of the beta difference
emulated by the different synthetic datasets are reported.
Importantly, class 4 and 5 can recapitulate about 34% and 21%
of all differential methylated events, respectively, corresponding
to a total of 41% (partial overlap between the two classes)
(Supplementary Fig. 4 and Supplementary Data 1). We used the
precision, recall, and F1 score statistics (i.e., the harmonic mean
of precision and recall statistics) to evaluate the performance of
the methods and, following the benchmark strategy described in
Jithling et al.33, we evaluated both site-wise and segment-wise
statistics. The dot chart reported in Fig. 1c (left) and data reported
in Supplementary Data 2 summarize the segment-wise statistical
measures of all methods in correctly identifying DMRs for the
different synthetic WGBS datasets. While in the high and middle
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Fig. 1 Rocker-meth study design and performance on synthetic datasets. a The Rocker-meth method involves four main steps: (1) computation of Area
Under the Curve (AUC) values of methylation levels (i.e., beta values) in tumor versus normal samples; (2) segmentation of AUC values by a tailored
heterogeneous Hidden Markov Model (HMM); (3) filters on segments features including intra-segment homogeneity and number of CpG sites; (4)
identification of sample specific DMRs by Z-score statistics (optional). b To showcase Rocker-meth, we applied it to multiple DNA-methylation cancer
datasets, generated using array (HM450) and sequencing (WGBS and single-cell DNA-methylation) data. We also exploited orthogonal omics data (gene
expression data from TCGA and ENCODE chromatin states) to evaluate its capability of capturing biologically relevant features. ¢ Comparative study in
synthetic DNA methylation datasets. Right: Dot chart summarizing segment-wise (left) and site-wise (right) precision (diamonds), recall (triangles) and F1
(filled circles) statistical measures for Bumphunter, DMRcate, DMRseq, DSS, Metilene, and Rocker-meth in the five WGBS synthetic datasets. Right:
distribution of the differences of per site percentage of methylation (beta) between tumor and normal samples for all differentially methylated sites across
14 tumor types (TCGA datasets). The range of beta difference classes is defined on synthetic datasets and termed from class 1 (highest signal-to-noise
ratio) to class 5 (lowest signal-to-noise ratio). The fraction of emulated TCGA data is reported as pie chart. d Bar plots of the number of hyper-DMRs in
promoter-TSS, 5" UTR, or first intron of under-expressed genes. Bars refer to the number of events detected by Rocker-meth, Bumphunter, and DMRcate
across the different tumor types. DMR differentially methylated region, TCGA the cancer genome atlas, PSFSE per sample fraction of supporting events,
WGBS whole genome bisulfite sequencing, HM450 lllumina 450k array, TP tumor primary, NT normal adjacent tissue.

signal-to-noise ratio datasets (class 1-3), all tools showed good to  Comparable results related to synthetic HM450 data and the

excellent performance, in the datasets with the lowest signal-to-
noise-ratio (classes 4 and 5) Rocker-meth outperformed the
other methods, demonstrating markedly higher precision and
recall than both sequencing and array-based methods. For all
methods the decrease in terms of F1 was due to a decrease in
recall statistics (i.e., the ability to detect true positive events).
Nonetheless, in class 5 datasets Rocker-meth was still able to
identify about 32% of events, followed by Metilene (7.5%),
DMRcate (5%), and DMRseq (3%). Similar results were
obtained for site-wise statistics, summarized in Fig. 1c (right).

parameters training dataset RRBS are also reported (Supple-
mentary Data 3-4, Supplementary Figs. 5 and 6). In terms of
specificity, all methods showed excellent performance. In
particular, Rocker-meth obtained specificity >0.99 in all the
synthetic datasets. In terms of computational performance,
Bumphunter was the most efficient, followed by Metilene and
Rocker-meth (Supplementary Fig. 7).

We then assessed the performance of Rocker-meth and the
other two array-based methods considered in this study
(Bumphunter and DMRcate) in the analysis of real DNA
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methylation data on a total of 712 normal and 5623 cancer
samples across 14 tumor types from TCGA. As no ground truth
exists, we focused on events that are more likely to occur,
specifically hyper-methylation in promoter-TSS, 5’ UTR, or first
intron and under-expression. Figure 1d (top) shows the number
of under-expressed genes with a DMR in/spanning their
promoter-TSS, 5’ UTR, or first intron as predicted by Rocker-
meth, Bumphunter or DMRcate. We observed that Rocker-meth
identified a higher number of these events in 8 out of 12 tumor
types compared to Bumphunter and 10 out of 12 tumor types
compared to DMRcate. Importantly, we observed that these
results were not due to an over-calling of DMRs. In fact, as
reported in Supplementary Fig. 8a the number of hyper-DMRs
detected by Rocker-meth was always lower or comparable to the
number of DMRs identified by Bumphunter or DMRcate. These
results clearly suggest that Rocker-meth is able to detect more
expected (ie., based on biological knowledge) events across
different tumor types than the other state-of-the-art methods
(high sensitivity) while keeping the number of detected events
low (high specificity). Next, we focused on these events and run
functional enrichment analysis using clusterProfiler*> on the set
of Gene Ontology (GO) terms (C5: ontology gene sets from
MSigDB Collections version 7.4). First, we observed that the
number of significant (FDR < 0.05) GO terms from Rocker-meth
results was markedly higher than those from Bumphunter or
DMRcate in 10 out of 12 tumor types (Supplementary Fig. 8b). In
addition, Rocker-meth led to more robust GO terms enrichment,
as suggested by significantly lower distribution of FDRs in 6 out
of 12 tumor types compared to Bumphunter and 10 out of 12

compared to DMRcate (Supplementary Fig. 8c). We then studied
the ability of the methods in recapitulating other well-known
features of DNA methylation in human cancers. As reported in
Supplementary Fig. 8d, compared to Bumphunter and DMRcate
Rocker-meth predicts higher enrichment of hyper-DMRs in
promoters and 5’ associated with gene under-expression, higher
enrichment of hyper-DMRs versus hypo-DMRs in CpG islands,
and higher enrichment of hypo-DMRs versus hyper-DMRs in
intergenic regions.

Application of Rocker-meth to 6 WGBS TCGA datasets. We
applied Rocker-meth to WGBS data of 27 cancer samples from 6
tumor types (BLCA, BRCA, COAD, LUAD, LUSC, and UCEC),
both per tumor-type and pan-cancer. A median of 127,218 loss-
of-methylation and of 16,316 gain-of-methylation regions were
identified (Fig. 2a), with a median of 31.4% and 0.71% of the
cancer genome (for gain-of-methylation and loss-of-methylation
regions, respectively) characterized by differential methylation.
The highest DMR burden (i.e, the fraction of cancer genome
within DMRs) was observed for BLCA (Fig. 2b), where DMRs
span 70.5% of the genome. All tumor types showed similar levels
of gain-of-methylation burden, with values ranging from 0.18% to
1.12%. Overall, we observed that loss-of-methylation regions were
significantly larger than gain-of-methylation ones (Supplemen-
tary Fig. 9, WMW p-value <2.2e — 16); while the distribution of
the length of gain-of-methylation regions was not dependent
from the genomic annotation (maximum around 10 Kb), loss-of-
methylation regions tended to be larger when affecting intergenic
regions (Fig. 2c, p-value <2.2e — 16), thus impacting on the

150,000 ry 100.0
L]
. Gain [0} F L2
° ° ° °
& 120,0001 o o Loss 5 ? T ?
C
= S ¢ 1004
O 90,0001 o=
5 02
g g c
8 60,000 8 £
[S 5% 101 ° > »
>
(&) - [ )
Z 30,000 5
1 1 T * 7 .
0 L . , L , . 0.1 } ! | | | }
< < a a () (&) ’ < < a a (&) O
S g s 3 g% 8 s g 3§ 3 g &8
m m &) - - =} m | o - a =)
C d
BLCA BRCA COAD LUAD LUSC UCEC
BLCA BRCA COAD LUAD LUSC UCEC Pancancer 1002 =S s =s o=
1,000,000 . .00 = - — —
; |
__ 100,000+ il e = L N
Q El B = E B E 0.754
8 H i
£ 10,000 i |
s ° | et 5
..O_ © 0.50
5] ©
- 1,000 L
£
(o))
C
3 0.25
100 HNE E E HE ]
1+t
BESSEMS GESSERL GISGIOS GESEE0C gresEpe GrssIRe gissree 000 Il il ol
X = x = P g=t pg=t x = = x = a a a a a o
HOBEDT§ FOBED-§ FOSEI-§ HOBEI-§ FOBE- g Ho6E- g HoeE g SS 35 SS 55 35¢ =5
3o M g g ®ggh ®gge @ ggo ®gge ®g o ®g TA Ta Ta Tao Ta Ta
° £ 9 £ 5 £ 5 £ 05 £ 5 c 9 =
g g g g g g g . Hypo-block Neutral
a a s a a s a

Fig. 2 Differentially methylated regions from whole genome bisulfite data. a Lollipop plot showing the number of regions with gain (red) and loss (blue)
of methylation detected by Rocker-meth across 6 tumor types from TCGA. b Dot plot of the fraction of cancer genome within DMRs (DMR burden) for
gain and loss of methylation events across the different tumor types. € Box plot reporting the distribution of DMR lengths (base pairs, bp) for gain and loss
of methylation events across tumor types and genic features. d Fraction of the overlap between partially methylated domains (PMD) and highly methylated
domains (HMD) segments and the tumor type-specific hypo-blocks identified by Rocker-meth.
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overall size difference. Based on these observations on WGBS
data, which homogeneously capture the entire genome space, we
implemented the following operative classification for DMR states
with respect to the reference normal samples by distinguishing
wide from short/modest regions demonstrating loss of methyla-
tion: (i) Hyper: a gain-of-methylation region of any size, (ii)
Hypo: a loss-of-methylation region with length < 10 Kbp, (iii)
hypo-block: a loss-of-methylation region with length > 10 Kbp.

Relevant to this operative distinction, multiple studies showed
evidence of large portions of the genome particularly prone to
stochastic hypo-methylation, usually termed Partially Methy-
lated Domains (PMDs). These regions are generally intergenic,
with genomic sizes as large as 10 Mb2®, and exhibit increased
demethylation as a tissue ages, with the most prominent
demethylation level in cancer®44. We studied the association
between hypo-blocks and a recent catalog of PMDs*? and found
an extremely significant overlap between these two classes of
events (Fig. 2d, p-val <2.2e-16). Of note, Highly Methylated
Domains (HMD) (i.e., highly methylated regions that are
conserved in normal and cancer cells) correspond to regions
identified as not-differentially methylated by Rocker-meth,
demonstrating the high specificity of our tool on WGBS data.
Importantly, Rocker-meth nominates hypo-blocks that are
tumor-type specific, further refining the current knowledge of
PMDs state in cancer.

A harmonized catalog of DMRs across 14 TCGA tumor types.
We applied Rocker-meth to a wide set of 5623 cancer samples
across 14 TCGA tumor types profiled with HM450 array, com-
paring tumor samples with normal matching tissues (712 adjacent
tissue samples, requiring >=10 normal samples per tumor type).
First, upon selection of common tumor types, we compared the
methylation values at overlapping DMRs obtained in the TCGA
WGBS data with the larger array-based set and observed high
concordance in terms of their delta beta values for almost all tumor
types (Fig. 3a), despite the remarkably different sample sizes. LUAD
discrepant behavior was likely due to lack in the WGBS dataset of
CIMP-High samples, a common highly methylated subtype found
in the original TCGA-LUAD description®>. Of note, despite the
different characteristics of data (ie, array versus WGBS), we
observed comparable DMR burden for hypo-methylated events in
all tumor types, indicating that large demethylation events (hypo-
blocks) detected by Rocker-meth are not affected by the different
characteristics of the platforms (Supplementary Fig. 10a). For
hyper-DMRs we observed less correlated signal but still comparable
order of magnitude of differentially methylated genome estimated
using the two strategies, probably due to the smaller fraction of
hypermethylated genome than the hypomethylated counterpart,
making it more prone to fluctuations dictated by a different plat-
form or different sample size (Supplementary Fig. 10b).

Altogether, Rocker-meth identified a total of 16,423 hypo and
16,761 hyper DMRs in 14 tumor types dataset, with a median of
1352 hyper and of 1171 hypo DMRs across the datasets
(Supplementary Fig. 11). DMRs have a range of abundance per
dataset with extreme values for LIHC (largest number of
DMRs) and THCA (no DMRs; dataset excluded from down-
stream analyses). The latter resulted in similar findings by
applying Bumphunter to the same datasets, where the number
of DMRs in THCA (n = 148) corresponded to only 6% of the
median of the number of DMRs detected in all the other
datasets (n =2908) and include 95% (141/148) of DMRs that
were supported by less than 6 sites (default threshold for DMR
catalog inclusion). This data is in line with the TCGA-THCA
study confirming that most samples have a methylation profile
highly resembling the matching normal tissue*°.

Focusing on the 13 tumor types, we estimated that a median of
12.2% of cancer genome is characterized by DMRs (11.5% and 0.6%
for hypo and hyper DMRs, respectively); the highest DMR burden
(i.e, the fraction of cancer genome within DMRs) was observed for
LIHC and BLCA, where DMRs span more than 30% of the genome
(Supplementary Fig. 12). All tumor types but LIHC showed
approximately concordant levels of hyper DMR burden, with values
ranging from 0.1 to 1.2% (median = 0.62%)>*”. The full catalog of
DMRs is reported in Supplementary Data 5. Altogether, these
analyses also demonstrated the reliability of the Rocker-meth’s
algorithm and the robustness of the reported cancer-specific DMR
catalog, enabling the inference of genome-wide methylation states,
including large demethylation, from techniques with limited CpG
coverage such as HM450.

Inter and intra tumor type characterization of the TCGA DMR
catalog. In order to study the inter- and intra-tumor type DMR
status heterogeneity, we performed a pan-cancer comparative
analysis. The 13 tumor specific DMR sets were collapsed into one
comprehensive set, that was further refined with a strict quality
control procedure (see Methods and Supplementary Data 6).
Interestingly, we found a substantial fraction of DMRs shared in
more than half of the tumor types analyzed, with the highest
recurrence observed for hypo-blocks (42%), followed by hyper
(30%) and hypo (24%) DMRs (Fig. 3b). Conversely, DMSs reach
a lower level of prevalence: we observed that about 10% of DMSs
(AUC<0.2 for hypo-methylation or AUC>0.8 for hyper-
methylation, lenient threshold) were shared in more than half of
the tumor types, while this value drops to 2% when a more
stringent threshold was used to call differential methylation
(AUC<0.1 or AUC> 0.9, stringent threshold). Interestingly, we
estimated that tumor type-specific events correspond to about
20% for both hypo and hyper DMRs and 10% for hypo-blocks.
On the other hand, tumor type-specific signal for DMSs was
markedly higher, reaching up to 57% for stringent hyper-DMS
events. Principal component analysis based on the integrated
DMR atlas showed that the two first two components were
associated with the Per Sample Fraction of Supporting Events
(PSESE) (ie., burden of positive and negative differential
methylation; Supplementary Fig. 13; see Methods). After
removing the first two components, we applied UMAP analysis*’
and observed clear segregation of samples based on the difference
of the beta values with respect to matched normal tissue (Fig. 3c).
Of note, at the tumor type level, we observed cluster proximity
depending on the organ of origin (KIRP, KIRC, and LUAD,
LUSC) and female hormone-dependent tumors (BRCA, UCEC).
Interestingly, we verified that the two distant clusters for ESCA
reflected the two major subtypes*® (Supplementary Fig. 14), one
proximal to gastrointestinal cancers, and the other similar to
squamous epithelial cancers. Similar observations on subtypes are
also reported for BRCA and KIRP (Supplementary Fig. 15).
Taken together, this confirms a clear influence of the cell of origin
in shaping the DNA methylation changes that characterize
tumorigenesis, in line with a previous report®8. Interestingly, we
observed that the most recurrent DMRs in each tumor type were
also those showing on average higher prevalence across tumor
types (Supplementary Fig. 16).

Sample specific support of DMRs informs on patient specific
alterations. Rocker-meth’s catalog refers to tumor type-specific
DMRs. To estimate the extent to which each sample supported
tumor type-specific DMRs, we implemented a strategy based on
Z-score statistics that allows Rocker-meth to perform a single
sample-wise analysis (Rocker-meth sample score) and applied this
module to each of the TCGA cancer samples considered in this
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DMSs and Hyper DMSs were selected using AUC below 0.2 and above 0.8

(lenient) or below 0.1 and above 0.9 (stringent). ¢ Uniform manifold approximation (UMAP) of TCGA samples based on the average beta difference in

each DMRs of the consensus set with respect to matched normal tissue. d

Distribution of the per sample fraction of supporting events (PSFSE) for each

class of DMRs (hyper: top, hypo: middle, hypo-block: bottom) across tumor types. @ Unsupervised hierarchical clustering of TCGA-PRAD dataset based on

DMRs z-scores. Molecular subtypes of tumor samples are reported.

study. Figure 3d reports the distribution of PSFSE across the 13
tumor types, using the cancer-specific catalog. Both for hyper and
hypo DMRs, we observed that the majority (median 63%) of
differential methylation signal was shared among all samples of a
specific tumor type, with extreme values for some datasets such as
0 (PRAD) and 95% (LUAD and KIRC) for hyper-methylation
events and 0.07% (LIHC) and >99% (LUSC) for hypo-methylation
events.

Next, we performed unsupervised analysis via hierarchical
clustering of the median beta values of DMRs calculated at the
sample level. We focused on two datasets characterized in TCGA

6

genomic landscape studies by the presence of molecular subtypes
with distinct DNA methylation patterns, PRAD and BRCA.
Notably, in both cases, the DMRs detected by Rocker-meth were
informative to segregate samples based on their molecular
subtypes. In the prostate adenocarcinoma dataset (Fig. 3e) two
main clusters were identified, one enriched for samples harboring
mutations in SPOP or FOXAI (SPOP|FOXAlmut) (hyper-
geometric test p-value < 2.2e-16, recall = 100%) and one enriched
for samples characterized by the fusion transcript TMPRSS2-
ERG (ERG+) (p-value <22e-16, recall=96%). Within the
SPOP | FOXAlmut cluster, we observed a sub-cluster enriched
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for samples characterized by fusion transcripts involving ETV
(ETV+) (p-value <1077, recall=79%). In the breast cancer
dataset, the tumor type-specific DMRs detected by Rocker-meth
were informative to partially segregate PAM50 molecular subtypes,
but the Normal-like one (Supplementary Fig. 17). In particular, we
observed three main clusters characterized by the enrichment of
luminal A (p-value <1077, recall=68%), luminal B (p-value
<1073, recall = 43%) and Basal (p-value < 2.2e-16, recall = 81%)
samples. We also obtained a sub-cluster enriched for Her2 samples
(p-value < 1077, recall = 43%). Supplementary Fig. 18 exemplifies
the Rocker-meth sample scores for one DMR on 22q13.32 that is
hypo-methylated in SPOP | FOXA1mut PRAD samples and barely
ever in ERG + samples. Further, Rocker-meth sample score
indicates methylation event clonality at the locus that is
significantly higher than in the SPOP | FOXAImut group (median
score <—30) than in all the other subtypes.

As we observed a substantial overlap between hypo-blocks and
PMD, we studied the possibility to exploit sample-wise hypo-blocks
burden (hypo-blocks PSFSE) as a proxy to the PMD-HMD score,
recently developed to estimate cancer hypomethylation and found
associated to mitotic cell division in cancer?’. We found significant
concordance between hypo-blocks burden and PMD-HMD score
(Supplementary Fig. 19, R = —0.62, p-value <2.2e-16). Altogether,
these analyses demonstrate that the sample-based module of
Rocker-meth also provides information indicative of patient-specific
tumor features that is not redundant with the genomics.

Gene wise and chromatin-wise analyses reveal distinct features
of each DMR class. We sought to characterize the functional role
of hyper and hypo DMRs. First, we observed that the distribu-
tions of hyper and hypo DMRs around the closest Transcription
Starting Sites (TSS) were markedly different (Fig. 4a). Consider-
ing DMRs within 10Kb from a TSS, both distributions showed a
clear maximum in the proximity of the TSS; hyper-DMRs shows
a relevant fraction of events (52%) mapping within 1Kb around
TSS, while 29% of hypo-DMRs mapped around the TSS. Con-
versely, hypo-blocks were more broadly distributed around TSS
with only 2% of events within + 1Kb of the TSS, in line with their
mostly intergenic localization. We then studied the genic locali-
zation of DMRs. Figure 4b reports the genomic annotation of
hyper and hypo DMRs across tumor types (see Supplementary
Data 7 for details). As expected, all the genomic features were
differently represented in the three classes of DMRs: hyper and
hypo DMRs were characterized by a prevalence of promoter-TSS
and exon; 5" UTR was markedly represented in hyper DMRs,
while Transcription Termination Site and 3’UTR (p-value
<3x1072) were more represented in hypo-DMRs. For hypo-
blocks, we found a prevalence of intron and intergenic regions. As
repetitive DNA sequences and transposable elements (Repetitive
Elements, REs) are often aberrantly methylated in human
cancers*>°0, we investigated the enrichment of REs mapping to
the three classes of DMRs across all tumor types. Overall, we
found a markedly different representation of RE classes within
the classes of DMRs (Supplementary Fig. 20). Transposon asso-
ciated elements such as Long Interspersed Nuclear elements
(LINE) and Long Terminal Repeats (LTR) were more represented
in hypo-blocks; Low Complexity and Simple Repeats elements
that include CpG islands were prevalent in hyper-DMRs. A
relevant fraction of hypo-DMRs maps to Short interspersed
nuclear elements (SINEs). To further investigate the differential
functional role of DMRs, we mapped DMRs to the 15 chromatin
states defined by the ENCODE consortium in available matched
normal tissues from the ROADMAP consortium*42 (see method
section). We observed a similar representation of chromatin
states across the different tumor types for the three classes of

DMRs (Supplementary Fig. 21). A selection of representative
chromatin states and their distribution across the three DMR
classes is reported in Fig. 4c (the distribution for all states is
reported in Supplementary Fig. 22). Hyper and hypo DMRs show
significantly higher overlap with Active and Flanking Active
Transcription Starting Sites (TssA, TssAFlnk) compared to hypo-
blocks. Hypo-DMRs show distinctive over-representation of
Enhancers (Enh) compared to hyper-DMRs, while hyper-DMRs
show specific enrichment of Bivalent Enhancers (EnhBiv) and
Repressed Polycomb (ReprPC) states, in agreement with previous
reports®!>2. Furthermore, a region-based analysis using LOLA>3
highlighted a conserved enrichment of the cistrome of EZH2—
the catalytic subunit of Polycomb Repressive Complex 2 (PRC2)
that operates H3K27me3 deposition—from embryonic stem cells
in hyper DMRs (Supplementary Fig. 23). In addition, we found
that shared hyper-DMRs confirmed their evident co-localization
with the EZH2 cistrome (Fisher Exact Test p-value <2.2e-16,
OR=7.0)>2. Finally, hypo-blocks displayed specific over-
representation of inactive elements, including Heterochromatin
(Het) and Quiescent (Quies) states, supporting the choice of
using 10 Kbp to discriminate between functionally distinct events.

Integrative analysis of DMRs and gene expression. To study the
role of DMRs associated with altered transcriptional programs,
we performed an integrative pan-cancer analysis of DMRs
detected by Rocker-meth and gene expression data from TCGA.
Given that the function of DNA methylation depends on the
genomic context>>*>, we decided to analyze the association
between DMRs and differential expressed genes segregating
DMRs based on their genic annotation. Figure 4d and Supple-
mentary Data 8 reports the results of the association analysis
between DMRs and differentially expressed genes across the 13
tumor types (full analysis including hypo-blocks is reported in
Supplementary Fig. 24). As expected, we were able to confirm a
strong enrichment of under-expressed genes for hyper-DMRs
affecting their promoter/TSS regions (Fisher Exact Test, OR =
3.6, p-value <2.2e-16, statistically significant in 11 out 13 of
tumor types). Further, we found strong associations for hyper-
DMRs in 5/ UTR (OR = 4.4, p-value <2.2e-16, 11/13), and intron
(OR =1.2, p-value <2.2e-16, 11/13) regions. For over-expressed
genes, less marked yet significant associations were found. Top
associations were found for hypo-DMRs in promoter-TSS
(OR =27, p-value <2.2e-16, 9/13) and Intron (OR=2.1, p-
value <2.2e-16, 6/13). Notably, we observed expected negative
associations for hyper-DMRs in strong regulatory regions, such as
promoter-TSS (OR =0.83) and 5 UTR (OR=0.68). We then
studied the associations observed between differential expression
of a gene and the presence of concordant DMR (i.e., hyper for
under and hypo for over-expression) affecting its regulatory genic
regions. For this and downstream integrative DNA-methylation/
gene expression analyses PAAD was excluded due to the low
number of differentially expressed genes (n = 308), probably due
to the low purity of tumor samples (median 38% by PAMES?®).
We observed that hyper-DMRs directly explained a median of
4.1% of all under-expressed genes, while hypo-DMRs explained a
median of 0.39% of all over-expressed genes. The highest frac-
tions of hyper-methylated and under-expressed genes were
observed in COAD (7.3%), ESCA (5.6%), and PRAD (5.2%)
(Supplementary Fig. 25). For all tumor types, hyper-DMRs in
promoter/TSS contributed the most to the fraction of hyper-
methylated and under-expressed genes with median values of
1.6%. For hypo-DMRs, introns contributed the most to the
fraction of hypo-methylated and over-expressed genes with
median values of 0.13%. Interestingly, comparable fractions were
observed also for hyper-methylated and over-expressed genes
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Fig. 4 Functional and regulatory role of DMRs. a Density plot of hyper (red), hypo (blue), and hypo-blocks (green) Differentially Methylated Regions
(DMRs) around 10 Kbp of TSS. b Box plot showing the distribution of the fraction of DMRs across the distinct tumor types annotated to the different genic
features for hyper-DMRs, hypo-DMRs, and hypo-blocks. € Box plot of ChromHMM states from matched normal tissues. Each dot represents a tumor type,
and the fraction of segments within each class of DMRs is reported. Neutral refers to the not-differentially methylated genome obtained from the Rocker-
meth segmentation. Statistical significance is estimated using pairwise Wilcoxon test. d Dot plot showing the Odds-ratio of the pan-cancer enrichment of
hyper (red) and hypo (blue) Differentially Methylated Regions (DMRs) in under-expressed (left) and over-expressed (right) genes estimated by Fisher
Exact Test (FET) for different genic annotations. Error bars show the 95% confidence interval. e Lollipop plot reporting the Odds-ratio (OR) of the
enrichment (by proportion test) of Transcription Factors in the set of differentially expressed genes deregulated by hyper-DMRs (red) and hypo-DMRs
(blue) in their regulatory regions. The size of the dots associates (inversely) with p-values. f Fraction of matched ChromHMM states in DMRs associated
with transcription factors, grouped by deregulation. -1: TF is downregulated, O: TF is not deregulated. 1 TF is upregulated (FDR <0.05 is used to call
differential expression). g Bar plots showing the distribution of TF families for the TFs affected by DMRs.

(median 1.9%, Supplementary Fig. 25b) and hypo-methylated and
under-expressed genes (0.27%, Supplementary Fig. 25c). In
summary, we observed that (i) alterations in DNA-methylation
affect a small fraction of concordantly differentially expressed
genes, and (ii) a not-negligible number of less characterized
associations between DNA methylation and gene expression
events exist.

DMRs associated with transcription factors genes are affected
by the underlying chromatin state. We then performed specific
analyses on these sets of differentially methylated and differen-
tially expressed genes. First, we observed that for both hyper and
hypo DMRs the distribution of the distance to TSS was different
based on the direction of differential expression of corresponding
genes (Supplementary Fig. 26). In particular, for hyper DMRs and
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under-expressed genes we found that methylation essentially
involved the region around TSS, while a more widespread
methylation downstream to the TSS was observed for over-
expressed genes. For both hyper and hypo DMRs, we found that
first intron was predominantly affected compared to others
(Supplementary Fig. 27), likely due to the enrichment of cis-
regulatory elements in this genic feature®”. Interestingly, TFs were
significantly enriched in all of these sets of tumor-type specific
hyper-methylated/differentially expressed genes (Fig. 4e, median
OR=7.5 by proportion test). For hypo-DMRs, we found sig-
nificant over-representation of TFs for 7 out of 12 tumor types
(median OR =2.6). According to previous analysis, also for TFs
we observed a marked fraction of discordant differentially
methylated and expressed genes across all tumor types (Supple-
mentary Fig. 28), in particular for hyper-methylated TFs. We
therefore exploited chromHMM states to investigate the differ-
ence between under and over expressed hyper-methylated TFs.

Considering tumors’ corresponding normal tissue ROADMAP
data, we found that the hyper-DMRs involving under- and over-
expressed TFs were characterized by different patterns of chromatin
states (Fig. 4f, all chromatin states displayed in Supplementary
Fig. 29). DMRs associated with under-expressed TFs showed
enrichment of Active TSS (TssA) compared to over-expressed TFs,
indicating that these genes were originally active in matched normal
tissues, and likely present an over methylation that either precede or
follows gene downregulation in tumors. On the other hand, DMRs
associated with over-expressed TFs were characterized by the
absence of TssA and by the presence of Repressed Polycomb
(ReprPC) in matched normal tissue, indicating that these genes
were originally silenced by PCR2 and thus low in DNA
methylation. This specific pattern of chromatin states for
activated/repressed genes through hyper-methylation was found
significant for all tumor types with available normal tissue data, but
KIRP. We then exploited a recent curated annotation of TFs®® to
investigate the difference between these two sets of hyper-
methylated TFs. Interestingly, we found significantly different
representation of TF classes between under-expressed and over-
expressed hyper-methylated TFs (Fig. 4g and Supplementary
Fig. 30). We observed that under-expressed TFs were largely
C2H2 ZF, while over-expressed TFs were enriched for the class
Homeodomain. These data were statistically validated in 9 and 7
out of 12 tumor types for under- and over-expressed hyper-
methylated TFs, respectively (Supplementary Fig. 31), suggesting a
common underlying process. Altogether, those results suggest a
peculiar association between cancer DNA hypermethylation and
gene deregulation depending on the baseline chromatin state
(normal cells) in the proximity of key regulatory TFs.

Application of Rocker-meth to single-cell DNA-methylation
dataset from Colorectal Cancer patients. Finally, to challenge
the extent of the DMR catalog utility, we applied it to the single
cell DNA-methylation (scMeth) data of 1265 cells from 10 CRC
patients*l. Upon assessment of the concordance of average beta
difference values (primary tumor vs control) between TCGA-
COAD and bulk-wise scMeth data (R=0.54 for hyper, R =0.51
for hypo DMRs and hypo-blocks, Supplementary Fig. 32), we
applied the Rocker-meth’s catalog to the scMeth data of 93
normal (NC) and 581 primary tumor (TP) cells and observed the
expected segregation of cells based on their disease status
(Fig. 5a). For TP cells, we found patient-specific segregation
suggesting marked inter-tumoral heterogeneity. This observation
was confirmed using the top 10% most variable 1Kbp tiling
windows (Supplementary Fig. 33). Notably, we observed expected
patterns of beta values in TP vs NC cells for all classes of DMR:s.
Following the same strategy applied on single samples from the

array-based TCGA dataset, we calculated the Per Cell Fraction
of Supporting Events (PCFSE) and evaluated corresponding
distributions in the scMeth dataset (Fig. 5b). Interestingly, we
observed a patient-specific prevalence of hyper-DMRs, with
CRC11 and CRCO1 patients showing the lower fractions
(PCFSE < 0.25) of supported events. However, for 9/10 patients
we found a limited range for PCFSE, suggesting that most of the
primary tumor cells from a given patient tend to support the
same subset of events, thus indicating a low degree of intra-
tumoral heterogeneity in most of DMRs. Patient-specific signal
and low degree of intra-tumoral heterogeneity were also observed
for hypo-DMRs. Of the three classes of DMRs, hypo-blocks show
the higher values of PCFSE suggesting a low degree of intra- and
inter-tumoral heterogeneity for this methylation class and their
high prevalence across CRC cells, in line with our previous
findings and a recent description of structural DNA methylation
loss*®. Interestingly, for hypo-DMRs and hypo-blocks in CRCO1,
we observed multimodal distribution for PCFSE, suggesting the
presence of multiple methylation clones. This result was com-
patible with findings from the original study*!, where the authors
found the presence of two lineages characterized by different
genomic alterations and levels of genome-wide hypo-methylation.
Indeed, for all DMR classes we observed different distributions of
PCESE between the two lineages, suggesting the utility of this per-
cell measure in capturing heterogeneity in scMeth assays (Fig. 5¢).
Finally, we investigated the reliability of Rocker-meth’s catalog in
providing more detailed information about the clonal architecture
of CRCO1 tumor sample. Notably, UMAP analysis applied to beta
values was able to segregate CRCO1 primary tumor cells based on
their sub-lineages, originally defined based on different sub-
clonal SCNAs (Fig. 5d and Supplementary Fig. 34). Of note, the
catalog reported could aid the interpretation of single cell DNA
methylation data, mitigating the sparsity of measurements and
allowing for comparisons with large-scale studies based on other
technologies.

Discussion

Rocker-meth is a computational tool to perform differential analysis
of DNA methylation data, focused on the detection of DMRs
and amenable to multiple experimental platforms data. The novelty
of the method is the use of an ad hoc heterogeneous HMM algo-
rithm to segment AUC values, which, as opposed to delta beta, are
not dependent on the magnitude of the DNA methylation signal
provided suitable sample sizes (Supplementary Fig. 35a). Specifi-
cally, in the context of small delta beta we observed that using AUC
allows for a refined definition of DMR boundaries (Supplementary
Fig. 35b). In principle, Rocker-meth enables the detection of both
focal and large alterations, exploiting the sparseness of DNA
methylation sites throughout the genome, without imposing artifi-
cial boundaries to the DMRs. Through a comprehensive parametric
study and a wide range of test on synthetic and real data we
demonstrated the capability of Rocker-meth to recapitulate known
cancer features and define meaningful segments, obtaining excellent
performance when compared with state-of-the-art tools. In parti-
cular, the comparative analysis on real data exploiting well-known
association between DNA methylation and gene expression sug-
gested that Rocker-meth may provide more functionally meaningful
results compared to available state-of-the-art methods (Fig. 1d and
Supplementary Fig. 8).

Importantly, this comparative analysis should be interpreted in
the light of the lack of universal definition of DMR and on the
absence of proper gold standards in terms of genome-wide
methylation states. It is therefore remarkably difficult to properly
compare the performance of different tools as often developed
with different intents. This not only applies in terms of the
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were imputed using KNN).

genomic size and magnitude of differential signal of potential
DMRs, but also on the establishment of the required biological
effect for a DMR to be functionally meaningful. For instance, very
short differential signal at/around TFBS signal could be mole-
cularly meaningful®®® but hard to distinguish from noise,
therefore requiring orthogonal detection approaches and ulti-
mately experimental validation. Relevant to certain applications,
Rocker-meth does not implement covariate analysis, otherwise
considered in methodologies such as DMRcate, DSS, and Bum-
phunter; similarly, it is not designed for the analysis of Differ-
entially Variable Regions, offered by other tools3%-61.62, All
together these considerations elicit the selective use of either one
approach based on the biological context or the parallel appli-
cation of multiple complementary strategies.

10

By applying Rocker-meth to 6 WGBS cancer datasets, we
observed that a large fraction of the cancer genome is involved in
DNA methylation alterations with high level of consistency across
tumor types. Specifically, we estimated that 31.4 and 0.71% of the
cancer genome is characterized by gain and loss of methylation.
When analyzing the characteristics of regions with gain and loss
of methylation, we observed marked differences in terms of
structure and genomic locations, including focal gain of methy-
lation and widespread loss of methylation across tumor types. In
particular, we found that loss of methylation was generally wider
when affecting intergenic compared to genic regions. We there-
fore proposed a operative classification based on region length for
loss of methylation regions, terming hypo-blocks as DMRs that
display loss of methylation regions involving more than 10 Kb.
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We observed that hypo-blocks significantly overlap with a recent
curated catalog of tissue agnostic PMDs, indicating the potential
of Rocker-meth to identify PMDs in unsupervised and tissue-
specific manner.

While studies have presented pan-cancer characterization of
DNA methylation based on single CpG sites3$63-67, this is the
first harmonized pan-cancer catalog based on DMRs built on
more than 6000 human samples across all TCGA tumor types
with available adjacent normal tissue data for differential analysis
(n210). We observed consistent findings between WGBS and
array-based data analysis in terms of DMR burden, length, and
beta difference. In line with recent studies®®%%, we observed that
different tumor types show similar DMR patterns and that a
consistent fraction of DMRs is shared in more than half of the
tested tumor types. Interestingly, we found that hypo-blocks
constituted the class of DMRs with the highest prevalence, fol-
lowed by hyper and hypo DMRs. Upon testing our method in the
presence of a small set of controls, we found that Rocker-meth
was able to well recapitulate original analysis (Supplementary
Note and Supplementary Figs. 36-39); while we showed con-
sistent results with imbalanced sets, we recognize that this
depends on the homogeneity of the control set signal and that
alternative shrinkage-estimator-based methods could be more
suitable in case of marked heterogeneity or small sample size.
Further, the catalog is defined under the assumption that the
adjacent tissues represent proper controls, thus well capturing the
cell-of-origin of corresponding tumors.

We then demonstrated the reliability of Rocker-meth to per-
form sample-wise analysis thanks to the intrinsic characteristic of
DMRs to be extremely recurrent within a given tumor type, in
line with our previous observation for methylation sites®® and in
contrast to genomic alterations such as Single Nucleotide Var-
iants (SNVs) and Somatic Copy Number Variants (SCNAs).
DMRs detected by Rocker-meth were informative in distin-
guishing the different tumor types and relevant subtypes. Rele-
vant to clinical applications and precision oncology, Rocker-meth
enables the assessment of DMRs on single sample data while
identifying subtype-specific methylation events and clonality
estimates through Z-score statistics. Notably, we have already
applied successfully the Rocker-meth method to analyze plasma
cfDNA methylation dynamics of castration-resistant prostate
cancer patients!8.

As expected, the analysis of hypo-blocks revealed enrichment
for intergenic regions, such as satellite repeats and transposable
elements, while hyper and hypo DMRs preferentially map to
regulatory genic regions, mainly within £1Kb of TSS. Chromatin
state annotation analysis clearly showed distinct functional roles
between the three classes of DMRs and in particular between
hypo-DMRs (regulatory) and hypo-blocks (global), supporting
the value of our three-class DMRs classification.

Pan-cancer integrative analysis of DMRs and gene expression
recapitulated well-known associations, such as the relationship
between hyper-methylation in regulatory genic regions and
under-expression®. For instance, hyper DMRs on the 5UTR,
promoter or TSS of a gene associate with gene under-expression.
Similar, but less marked associations were found between hypo-
DMRs and over-expression. Altogether though, about 4% of
under-expressed and 0.4% of over-expressed genes can be linked
to the presence of hyper and hypo DMRs in their regulatory
regions (primary regulation). Interestingly, non cis regulatory
effects of differential methylation in cancer have been recently
reported, with relevant links to the response to immunotherapy”?
and metastatic potential’!. While these associations were not
explored in this work, our PSESE represents a valuable metric to
measure cancer specific DMR burdens and might be considered
in such studies.

Next, we found significant enrichment of TFs7? in differentially
methylated and expressed genes. Overall, we observed similar
representation of hyper-methylated under and over expressed
TFs, suggesting that a relevant fraction of TFs can be regulated
through context dependent effects. We found evidence that these
two sets of TFs were characterized by different chromatin states.
In particular, DMRs associated with over-expressed TFs were
enriched for repressed polycomb state in the corresponding
matched normal tissue, in line with the majority of these genes
being members of the homeodomain class of TFs. These results
are consistent with a recent report that demonstrated the inter-
play between DNA hypermethylation in cancer and de-repression
in a subset of genes”3.

Finally, we demonstrated the utility of our catalog of DMRs for
the analysis of scMeth data, characterized by sparse and noisy
signal. Our analysis recapitulated expected results based on ori-
ginal findings and confirmed the reliability of DMRs inferred
from TCGA data*!. Distinguishing cells based on their lineage
and sub-lineage membership, we also demonstrated that Rocker-
meth’s catalog was able to capture intra-tumor heterogeneity.

We anticipate that our method could be applied in other
contexts where large numbers of control and test samples are
available. The comprehensive robust catalogs of DMRs here
provided represents a novel resource in two main settings. First,
the characterization of DMRs allows for the integration of other
molecular or phenotypic layers in a functional genomics context,
providing a detailed map of DNA methylation deregulation in
primary tumors. Second, future studies focusing on the devel-
opment and identification of non-invasive cancer biomarkers,
such as those describing new DNA-methylation-based assays for
the analysis of cell-free tumor DNA, will be able to exploit the
signal from the catalog of DMRs, thus augmenting statistical
power for small cohorts. We envision that cancer-specific and
pan-cancer DMRs, either provided here or generated by applying
Rocker-meth to other datasets of interest, could facilitate the
development of multi-purpose liquid biopsy tests for the early
detection of cancer and the monitoring of patients’ treatment
response.

Methods

The Rocker-meth tool. Rocker-meth (Receiver operating characteristic curve
analyzer of DNA methylation data, Fig. 1) consists of four main modules: (1)
computation of Area Under the Curve (AUC) values from Receiver operating
characteristic (ROC) Curve analysis of methylation levels (i.e., beta values) in
tumor versus normal samples; (2) segmentation of AUC values by a tailored het-
erogeneous Hidden Markov Model (HMM); (3) estimation of intra-segment
homogeneity by Wilcoxon-Mann-Whitney (WMW) test on beta values of CpG
sites in tumor versus normal samples; (4) identification of sample-specific DMRs
by Z-score statistics. These steps are described in the following text.

Computation of AUC values (step 1). DNA methylation status is usually reported as
the fraction of alleles that are methylated (beta value, ranging from 0 (unmethy-
lated) to 1 (fully methylated)). To identify Differentially Methylated Sites (DMSs),
we computed the Area Under Curve (AUC) of a Receiver Operating Characteristic
(ROC) curve for each site in each cancer type. ROC curves display the accuracy of a
binary classification, which assumes hyper-methylation in tumor samples. Thus,
AUC scores close to 1 identify optimal segregations between tumor and normal
samples with tumor samples on average showing beta values greater than normal
samples (hyper-methylation). On the contrary, AUC scores close to 0 correspond
to sites in which tumor samples demonstrate on average lower beta values than
normal samples (hypo-methylation).

Segmentation of AUC values (step 2). In order to identify differentially methylated
regions (DMRs), we exploited a strategy inspired by our previous work on the
analysis of Copy Number Alterations and runs of homozygosity>*74. We modeled
AUC values by means of a discrete state hidden Markov model (HMM) with
continuous output. We model HMM states by Gaussian emission probabilities.
Supplementary Fig. 40 reports normal qq-plot analysis of the AUC scores across
the 14 TCGA datasets considered in this study. This analysis supports the use of
such a model. A discrete HMM with continuous output is characterized by the
following elements:
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®  The number of hidden states, K, in the model. The states are denoted as
S=1{S;,...,Sk} while g; denotes the actual state at position i (I <i<n).

®  The observed data O ={0O;,...,On}.

®  The initial state distribution, 7, where m;; = P(q; = Sg).

® The emission probability distributions by(i) that is the probability of
observing O; at position i given the state S;: bi(i) = P[O;| q;= Si]

®  The transition matrix, A, giving the probability of moving from one state to
another, Ay, =P(qi ;=S| qi=S) for ISisn—1and 1< m<K.

To model our problem, we used a three-state HMM (K = 3) where the hidden
states represent hypo-methylated (S; = hypo-methylation), not differentially
methylated (S, = no differential methylation) and hyper-methylated (S; = hyper-
methylation) states of the genome and the observations are the AUC values at each
CpG position i (AUC)).

The emission distributions are truncated Gaussian densities with the following
form:

L] P(AUCi|qi:51):g}‘(AUCi; 6,)
P(AUCi|qi=SZ)=gl” (AUCGC; 0,)
P(AUCi|Cli:S3):g;4 (AUC; 05)

Where 6, = (1, (1—F)-0gag) 6> = (42 F-o7oy) and 6= (s, (1—F)-07,) are the
means and the variances and / and u are the lower and upper bounds (I=0, u = 1)
of the three truncated gaussian densities g. F is a parameter used to split the total
AUC signal variance in two parts: the variance of not differentially methylated state
and the variance of differentially methylated states. o7, is estimated by calculating
the standard deviation of all AUC values.

Finally, to take into account the distance between consecutive CpG sites d = (d,
dy,..., dy.1), we decided to incorporate them into the transition probabilities matrix
A; defined for 1<i<n — I:

1—pi—ety A=) Hie)
A=l D paoeny M)
P(l—;’/:) p(lfzem) - P(l B e—f{)

where p represents the probability of moving from one state to another in the
homogeneous HMM, f; = di/dxorm and dyorm is the distance normalization
parameter. The parameter dyom modulates the effect of genomic distance d; on the
transition probabilities: the larger dyorm is, the smaller is the probability to jump
from one state to another.

We used y;, 43 (the mean of hypo-methylation and hyper-methylation states), p
(transition probability) as algorithm parameters instead of estimating them with an
Expectation-Maximization (EM) algorithm; the rationale is they well define the
methylation states (y; and p13) and set the resolution of our computational method
(the capability to detect DMRs of different size, p). Finally, once all the parameters
have been set, the Viterbi algorithm is exploited to find the best state sequence and
consequently to associate each AUC value to one of the three states, thus
identifying AUC segments.

Intra-segment homogeneity (step 3). For each AUC segment, intra-segment
homogeneity is assessed through the Wilcoxon-Mann-Whitney test between the
CpG-wise averaged beta values in cancer samples and normal samples. Resulting p-
values are then adjusted by FDR (i.e., Benjamini-Hochberg procedure)..

Rocker-meth Sample Score (step 4). A tailored Z-score statistics strategy was
developed to enable sample-wise analysis of DMRs. For each DMR z and tumor
sample i Rocker-meth Sample Score (RockerSS) is calculated by the following
formula:

(Bi.) — median; (,B;z>

RockerSS;, = —
mad; (,sz>

where j indicates the index over normal samples, (8;,)and (ﬁ;) are the median beta
values of CpG sites within a DMR z for tumor and normal samples, respectively, and
median; and mad,; are the median and the maximum absolute deviation of the (ﬁ;z)
across normal samples j. Expressing beta values as the percentage of methylation, to

avoid over-estimation of RockerSS in cases for which mad; (ﬁ;z> <1,% (a single

percentage point of DNA methylation), we set mad; (ﬁ;z) =1

To control for the impact of the sparseness of an assay design on the DMR
lengths (as in the case of certain arrays), the tool includes a parameter
(max_distance) to allow users to intentionally split DMRs if adjacent CpG sites are
more distant than a user-defined selectable value.

Rocker-meth was developed as a package for the statistical language R (https:/
cran.r-project.org/) and is freely available under MIT license at https://github.com/
cgplab/Rocker-meth.

Synthetic datasets. We considered 15 synthetic DNA methylation datasets
emulating Infinium Human Methylation 450 K BeadChip (HM450, n = 5), reduced
bisulfite sequencing (RRBS, n = 5) and whole-genome bisulfite sequencing (WGBS,
n=>5) data. In particular, we considered 8 datasets from the Metilene website
(http://www.bioinf.uni-leipzig.de/Software/metilene/) (class 1 to 4, as in Jiihling
et al.33); 2 datasets were generated with the metilene package using the scripts
simulate_DMRs_RRBS.R and simulate_DMRs_WGBS.R with Mixture Factor
¢=0.55 to mimic more challenging signal-to-noise ratios (here referred to as
class 5) (Supplementary Data 1). To generate the HM450 synthetic datasets, we
modified the original simulate. DMR_RRBS.R script to simulate synthetic data at
HM450 specific CpG sites (restricted to chromosome 10). The script is available at
the zenodo repository https://doi.org/10.5281/zenodo.2586588 (simula-
te_DMR_450k.R). Given the non-uniform distribution of the HM450 probes along
the genome (genic vs intergenic), to ensure appropriate coverage of DMRs we set
the following parameters: min DMR length = 5, max DMR length = 10, number of
DMRs = 20 for non-promoter regions; min DMR length = 8, max DMR

length = 20, number of DMRs = 60 for promoter regions.

Comparison study on synthetic data. We applied Rocker-meth, Metilene ver-
sion 0.2-433, DSS version 2.28.031, DMRseq version 1.0.1332, DMRcate version
1.16.03%, and Bumphunter version 1.22.02% on the 10 RRBS and WGBS synthetic
datasets. For all methods, we used default parameters. For HM450 datasets, we
considered only array DMR detection tools (i.e., Rocker-meth, Bumphunter, and
DMRcate) and metilene. Rocker-meth was run with p =0.05, F= 0.4, Dporm =
105, mu = 0.25 (default parameters). AUC segments with WMW p-value (FDR)
20.05 or comprising less than 6 data points were discarded for downstream
analysis. The evaluation of the performance of all algorithms was assessed

by precision, recall, and F1 statistical measures as in Jithling et al.>* and speci-
ficity. For segment-wise statistics, we required that predicted DMRs have an
overlap greater than 30% with simulated DMRs. For the computational time, we
considered the mean of the running times in RRBS and WGBS synthetic
datasets.

Cancer Datasets. We downloaded DNA methylation data of 14 tumor types of The
Cancer Genome Atlas from the GDC Legacy Archive (https://portal.gdc.cancer.gov/
legacy-archive/search/f); specifically, BLCA (Bladder Urothelial Carcinoma), BRCA
(Breast invasive carcinoma), COAD (Colon adenocarcinoma), ESCA (Esophageal
carcinoma), HNSC (Head and Neck squamous cell carcinoma), KIRC (Kidney renal
clear cell carcinoma), KIRP (Kidney renal papillary cell carcinoma), LIHC (Liver
hepatocellular carcinoma), LUAD (Lung adenocarcinoma), LUSC (Lung squamous
cell carcinoma), PAAD (Pancreatic adenocarcinoma), PRAD (Prostate adeno-
carcinoma), THCA (Thyroid carcinoma), and UCEC (Uterine Corpus Endometrial
Carcinoma). DNA methylation values were originally generated using Illumina
HumanMethylation450 BeadChip (http://www.illumina.com). These datasets were
selected for the presence of at least 10 normal adjacent tissue samples for each
tumor types, in order to provide a sufficient number of cases in the control group.
Upon exclusion of metastatic tumors and of duplicated experimental data, this
dataset comprises a total of 5623 tumor samples and 712 normal samples. Gene
expression data were downloaded as raw counts from Recount2 (https://
jhubiostatistics.shinyapps.io/recount/). Upon exclusion of metastatic tumors, this
dataset comprises a total of 6719 tumor samples and 643 normal samples. Details
about the DNA methylation and gene expression datasets are reported in Supple-
mentary Data 9-10. Beta tables and AUC are also available in a zenodo repository
(https://doi.org/10.5281/zenodo.2586588). WGBS data from Zhou et al.40 were
downloaded from http://zwdzwd.io/trackHubs/TCGA_WGBS/hg19/
bw_mindepth5/. For Fig. 3c—e we considered only cancer samples with available
PAMES (cancer-specific thresholds) tumor purity estimates >0.5, as reported in
Benelli et al.>®.

Application of Rocker-meth and other state-of-the-art methods in TCGA
datasets. We applied Rocker-meth on 14 tumor types for a total of 5623 tumor
samples and 712 normal samples using default parameters (p = 0.05, F=0.4,

mu = 0.25, and Dnorm = 10°). In particular, we applied Rocker-meth to each
tumor type dataset considering the primary tumor samples (TP) as the test set and
the corresponding normal tissue samples (NT) as the control set. Only DMRs with
FDR <0.05 and supported by at least 6 sites were considered for downstream
analysis. The threshold of the number of sites for nominating reliable DMRs was
selected based on specific analysis on synthetic data, as reported in Supplementary
Note. Bumphunter (version 1.22.0) and DMRcate (version 1.16.0) were also
applied to the same data using default parameters.

Genomic annotation and functional role of DMRs. Association of DMRs to
different genomic features, assignment of the closest transcript and computation
of the distance to closest TSS were done by the annotatePeaks function of the
HOMER package’”, using RefSeq as gene set and hg19 as genome build (Sup-
plementary Data 11). To calculate the association between DMRs and repetitive
elements (REs), we downloaded RepeatMasker data from UCSC table browser
(https://genome.ucsc.edu/cgi-bin/hgTables, June 2017). BEDTools intersect’® with
—f 0.99 was used to associate DMR to REs. Inferred chromatin states for the hgl9
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genome were downloaded from (https://egg2.wustl.edu/roadmap/data/
byFileType/chromhmmSegmentations/ ChmmModels/coreMarks/jointModel/
final/, Roadmap Epigenomics consortium). For each of the analyzed tumor types,
we queried the Encode dataset for the matched tissue of origin. A total of 10
projects presented a suitable normal tissue profile (BRCA:E119 - HMEC Mam-
mary Epithelial Primary Cells, LUAD:E096 - Lung, LUSC:E096 - Lung,
PAAD:E098 - Pancreas, LIHC:E066 - Liver, ESCA:E079 - Esophagus, COAD:E101
- Rectal Mucosa Donor 29, KIRP:E086 - Fetal Kidney, KIRC:E086 - Fetal Kidney,
UCEC:E097 - Ovary). For each tumor specific segmentation of methylation
(including neutral segments), the fraction of chromHMM segments that are
within segments were computed for the 15 chromatin states42. As a result, each
chromHMM segment was assigned to a differentially methylated state if it was
completely within a methylation segment. To calculate the co-localization between
hyper-DMRs and EZH2 biding sites, we downloaded the ENCODE Regulation
“Txn Factor’ track from UCSC database (http://hgdownload.cse.
ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegTtbsClustered/) and con-
sidered only binding sites supported by more than half of the samples (cell types).
Statistical significance of the overlap between hyper-DMRs and EZH2 binding
sites was assessed by BEDTools fisher using —F 0.5.

Integrative analysis of DMRs and gene expression. Homogeneous tran-
scriptomic data for the TCGA datasets were obtained from the recount2 resource””.
After count rescaling using the recount R package, differential expression analysis
was performed using DESeq278 comparing Primary Solid Tumor samples against
Solid Tissue Normal samples for each tissue type. The pan-cancer analysis of
differentially expressed genes is available at https://doi.org/10.5281/
zeno0do.2586588. To associate each DMR to the corresponding gene, the annota-
tePeaks function of the HOMER package’> was used. For Supplementary Fig. 26,
the distance between each DMR and TSS was calculated by the sum of the distance
to TSS estimated by HOMER and half-length of the DMR. Transcripts lengths were
downloaded from Ensembl Biomart (August 2017)7°. For transcription factors, we
used the manually curated list reported in ref. °3. To nominate the state of DMRs
associated with transcription factors we queried ENCODE tissue data for a subset
of tumor type as previously described. In this case we overlapped each DMR with
the chromHMM segments and obtained a fractional representation of the chro-
matin states within the same tissue in the matching normal samples.

Comparison study of Rocker-meth, Bumphunter, and DMRcate in TCGA
datasets. To assess the performance of Rocker-meth, Bumphunter, and DMRcate
on real data, we evaluated the ability of each method in recapitulating well-known
features of DNA-methylation in human cancers by odds-ratios (OR). For the
presence of hyper-DMRs in the promoter, TSS or 5’ region of a gene and its under-
expression, we estimated ORs from the proportion of hyper-DMRs being in the
promoter, TSS or 5’ region of a gene and the proportion of genes being under or
over-expressed. For CpG islands, we estimated ORs from the proportion of DMRs
mapping to CpG islands being hyper-methylated and the proportion of DMRs
mapping to CpG islands being hypo-methylated. For intergenic regions, we esti-
mated ORs by the ratio between the proportion of DMRs mapping to intergenic
regions being hypo-methylated and the proportion of DMRs mapping to intergenic
regions being hyper-methylated.

Per sample/cell fraction of supporting events. To estimate the recurrence of
DNA methylation events, we used the following strategy. For each tumor type, we
considered the hyper- and hypo- DMRs, indicating as ny,,,,and n,,,,the total
number of DMRs identified. We then considered the Rocker-meth sample score
(RockerSS) of each DMR z in tumor samples i. Per sample fraction of supporting
events (PSFSE) were calculated as follows:

O(RockerSS,; — 3
PSESE, s = 2. O(RockerSS,; — 3)
nhyper

_ 22,06(—RockerSS,; + 3)

PSFSE, ),

nhypo ’
where O is the Heaviside function. The selected threshold (4-/—3) is reasonably
defined to minimize false positives.

Analysis of TCGA WGBS dataset. We applied Rocker-meth with default para-
meters to 6 tumor types (BLCA, BRCA, COAD, LUAD, LUSC, and UCEC)
comprising 6 normal and 27 cancer samples*’. Normal samples were pooled
together and used as a reference for each tumor type due to the low sample size.
Pancancer set of DMRs was retrieved applying Rocker-meth to the 27 cancer
samples. DMRs from WGBS were then annotated using the annotatePeaks func-
tion of the HOMER package and overlapped with the DMRs from the Illumina
HM450 data using the R package GenomicRanges®.

Pan-cancer catalog of DMRs. Starting from significant DMRs obtained for each
tumor type, ‘bedtools --multiinter® clustering’® was used to define shared and
private regions of differential methylation across 13 tumor types. After this step,

further refinement of the integrated DMR set was performed applying the fol-
lowing strategy:

® For each tumor type, we compute the average Beta median of each
integrated DMR in each normal and tumor sample. Consistently with
previously applied filters, DMRs with less than 6 probes are discarded.

® Median Beta values are tested with Wilcoxon-Mann-Whitney test (two-
sided) comparing normal tissues and primary tumors. After applying
Benjamini-Hochberg correction, DMRs with FDR <0.05 and mean beta
difference >5 were considered significant.

® In addition, only DMRs with at least 3 sites with concordant differential
signals (AUC <0.25 for hypo, AUC >0.75 for hyper) were retained.

®  Last, the threshold of 10 kb was used to distinguish short hypomethylated
regions and hypo-blocks, following the criteria used for tumor-type specific
catalogs.

Those additional checks were designed to guarantee the good quality of pan-
cancer segments, given the possibility that collapsing the single DMR sets together
could generate small regions that might not retain the expected signal. The
resulting refined pan-cancer DMR catalog contains a total of 8098 regions
(Supplementary Data 6). For the pan-cancer DMRs analyses of shared and private
DMRs, segments that were detected in multiple projects but presented no
dominant state across projects were discarded.

Dimensionality reduction and clustering. Starting from the previously defined
integrative DMR atlas, for each tumor sample we computed the difference between
each tumor sample DMR beta and the median beta in normal samples from the
same cohort. DMRs in chromosome X and Y were excluded to avoid biases due to
uneven sex distribution. Fast truncated principal component analysis was per-
formed using the ‘irlba’ R package, setting the number of components to 50, center
= TRUE and scale = FALSE. The first 30 components explained more than 95% of
the total variance, with the first 2 accounting for nearly 50% of the variance.
Following the observation that the first two principal components were mainly
associated with hyper and hypo/hypo-block PSFSE (Supplementary Fig. 13), we
excluded them and used the next 13 (n = number of analyzed tumor types)
components to perform a non-linear dimensionality reduction. UMAP analysis
was performed using the ‘uwot’ R package with normalized laplacian initialization,
euclidean distance and parameters a =2, b =1.6. For BRCA, ESCA, and KIRP
subtypes, we queried a comprehensive annotation using the TCGAbiolinks
package!.

PMD/HMD analysis. Previous definition of partially methylated domains (PMD)
and highly methylated domains (HMD) regions genome wide for hgl9 genome was
obtained from https://zwdzwd.github.io/pmd*’. We utilized the stringent definition
of PMD/HMD based on Beta standard deviation across samples. Of note, the
utilized definition has been obtained using a bulk of different cancer types and
normal samples. To define pairs of events between WGBS Rocker-meth segmen-
tation and PMD/HMD regions a minimum overlap of 30% of the region was
required.

Analysis of scTrio DNA methylation dataset. Single cell DNA methylation
values from Bian et al.*! were downloaded from the GEO repository GSE97693.
HEp-2 cells were discarded. Genomic-based lineage, sub-lineage, and location
information were obtained from the original work. For each DMR from the COAD
catalog (TCGA based) we computed the mean Beta value for each cell, removing
missing values. This resulted in a matrix with columns equal to the number of cells
and rows equal to the number of DMRs. The overall Beta difference was measured
for each DMR based on pooled normal colon cells (NC) and pooled tumor primary
cells (PT) and compared with results from TCGA-COAD. For heatmap visuali-
zation, we filtered out cells with more than 10% of missing values across DMRs.
Single cell z-scores were computed using the previously reported formula and using
the pool of normal cells as control. For the z-score analysis in Fig. 5b, all cells that
had more than 50% of missing values within DMRs for at least one class were
discarded. Even though the aggregation by DMRs greatly reduced the inherent
sparsity of data, a process of imputation was necessary to allow for further
dimensionality reduction analysis. DMRs without Beta values were imputed using
the ‘impute.knn‘ function from the impute package. For the analysis focused on
patient CRCO1 cells, we added also all the cells from available metastatic lineages.
Dimensionality reduction was performed using UMAP#’ on the first 50 principal
components with parameters a = 2, b = 1.6, norm-laplacian initialization, and
1-Pearson correlation as distance metric.

Data analysis and visualization. Statistical analyses, data processing, and visua-
lization were performed using the R environment (R Core Team, http://cran.r-
project.org/) and the tidyverse package®2. For box plots, lower and upper bars
correspond to the minimum and maximum non-outlier values of the data dis-
tribution. Outliers are defined as values outside of the range (Q1 — 1.5 (Q3 —
Q1), Q3 + 1.5x (Q3 — Q1)), where Q1 and Q3 are the first and third quartile,
respectively.
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Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
Source data are available in Supplementary Data 1-11. Additional data are available at
https://doi.org/10.5281/zenodo.2586588.

Code availability
Rocker-meth is freely available under MIT license at https://github.com/cgplab/
Rockermeth.
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