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Abstract: Integrin ligands containing the tripeptide sequences Arg-Gly-Asp (RGD) and iso-Asp-Gly-
Arg (isoDGR) were actively investigated as inhibitors of tumor angiogenesis and directing unit in
tumor-targeting drug conjugates. Reported herein is the synthesis, of two RGD and one isoDGR
cyclic peptidomimetics containing (1S,2R) and (1R,2S) cis-2-amino-1-cyclopentanecarboxylic acid
(cis-β-ACPC), using a mixed solid phase/solution phase synthetic protocol. The three ligands were
examined in vitro in competitive binding assays to the purified αvβ3 and α5β1 receptors using
biotinylated vitronectin (αvβ3) and fibronectin (α5β1) as natural displaced ligands. The IC50 values
of the ligands ranged from nanomolar (the two RGD ligands) to micromolar (the isoDGR ligand) with
a pronounced selectivity for αvβ3 over α5β1. In vitro cell adhesion assays were also performed using
the human skin melanoma cell line WM115 (rich in integrin αvβ3). The two RGD ligands showed
IC50 values in the same micromolar range as the reference compound (cyclo[RGDfV]), while for the
isoDGR derivative an IC50 value could not be measured for the cell adhesion assay. A conformational
analysis of the free RGD and isoDGR ligands by NMR (VT-NMR and NOESY experiments) and
computational studies (MC/EM and MD), followed by docking simulations performed in the αVβ3

integrin active site, provided a rationale for the behavior of these ligands toward the receptor.

Keywords: peptidomimetics; integrin ligands; beta-amino acids; NMR conformational analysis

1. Introduction

Integrins are a large family of heterodimeric cell adhesion protein receptors involved in
physiological and pathological processes concerning cell adhesion, cell motility, and cell survival [1,2].
In particular, αvβ3, αvβ5, and α5β1 integrins are involved in tumor angiogenesis and are overexpressed
in tumor vascular tissues [3–5]. These integrins recognize and bind the Arg-Gly-Asp (RGD) sequence
in their natural ligands [6], but also the isoDGR sequence was shown to fit into the RGD-binding pocket
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of αvβ3 integrin, establishing the same interactions [7–10]. For both sequences, flanking residues
combined to the 3D presentation determine the recognition specificity. Since the pioneering work of
Kessler and coworkers [11], many different RGD peptides and peptidomimetics have been developed as
integrin ligands and investigated as potential antitumor drugs with antiangiogenic properties [12–14]
or directing ligands in molecular imaging and targeted anticancer therapy, which emerged as
powerful weapon for reducing the toxicity of the antitumor treatments and the insurgence of drug
resistance [15–21].

In many cases, the RGD sequence is constrained in cyclic peptides such as the cyclopentapeptide
cyclo[Arg-Gly-Asp-NMe Val-D-Phe], Cilengitide 1a [22], the most studied ligand and forefather of
a whole series of cyclic ligands, in which the complementary dipeptide sequence was varied to
optimize the interaction of the RGD sequence with the integrin receptor. Based on this notion,
several peptidomimetic scaffolds were inserted to mimic this complementary dipeptide moiety such as
the bicyclic lactam in 2 [23–25], the 4-aminoproline in 3 [26], or the bifunctional diketopiperazine in
4 [27,28] (Figure 1).
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Figure 1. Cyclic RGD and isoDGR integrin ligands (azabicyclic alkane (ABA), aminoproline (Amp), 
and diketopiperazine scaffolds (DKP)). 

β-Amino acids have received considerable attention as possible substituents of α-amino acids in 
peptides to probe the structural specificity of α-amino acid-binding sites or as inhibitors of enzymes 
[33]. In addition, their incorporation into peptides of pharmacological interest was sometimes 
advantageous in terms of biological activity, metabolic stability, and conformational characteristics. 
In particular, β-amino acids stabilize distinct overall conformations of cyclopeptides and they act as 
γ-turn mimetics: [34,35], if a single β-amino acid is incorporated into a cyclic pentapeptide, it 
preferably occupies the central position of a γ-turn. These conformational preferences were 
thoroughly investigated in the field of RGD-cyclopeptides by the introduction of β-
aminocyclopropane carboxylic acids (β-ACCs) [36], which are among the most restricted β-alanine 
derivatives, and whose rigidity is conferred by the small-sized ring closure. Reiser and co-workers 
synthesized both cis- and trans-β-aminocyclopropane carboxylic acids [37] and incorporated two 
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and diketopiperazine scaffolds (DKP)).

By contrast, the number of isoDGR containing cyclic peptides and peptidomimetics which were
synthesized and tested is much more limited and, among them, the cyclic isoDGR compound 7 (Figure 1)
containing the bifunctional diketopiperazine mentioned above is one of the few low nM αvβ3 binder
reported so far [29–32].

β-Amino acids have received considerable attention as possible substituents of α-amino acids
in peptides to probe the structural specificity of α-amino acid-binding sites or as inhibitors of
enzymes [33]. In addition, their incorporation into peptides of pharmacological interest was
sometimes advantageous in terms of biological activity, metabolic stability, and conformational
characteristics. In particular, β-amino acids stabilize distinct overall conformations of cyclopeptides
and they act as γ-turn mimetics: [34,35], if a single β-amino acid is incorporated into a cyclic
pentapeptide, it preferably occupies the central position of a γ-turn. These conformational
preferences were thoroughly investigated in the field of RGD-cyclopeptides by the introduction
of β-aminocyclopropane carboxylic acids (β-ACCs) [36], which are among the most restricted β-alanine
derivatives, and whose rigidity is conferred by the small-sized ring closure. Reiser and co-workers
synthesized both cis- and trans-β-aminocyclopropane carboxylic acids [37] and incorporated two
enantiomeric cis-β-aminocyclopropanecarboxylic acids (cis-β-ACC) into two 16-membered cyclic RGD
peptidomimetics 5–6 (Figure 1). These peptides showed nanomolar affinity toward αvβ3 and α5β1

integrins in in vitro cell adhesion assays.
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These considerations prompted us to investigate the properties of other β-aminocycloalkane
carboxylic acids and herein we describe the synthesis, the conformational analysis, and some biological
investigation of two RGDs, 8–9 (Figure 2), and one isoDGR, 10 (Figure 2) cyclic peptidomimetics,
containing two cis-2-amino-1-cyclopentanecarboxylic (cis-β-ACPC) scaffolds. The RGD ligands feature
a 16-membered ring containing the RGD sequence as well as a Val residue and either (1S,2R)-cis-β-ACPC
(8) or (1R,2S)-cis-β-ACPC (9). In the case of the isoDGR ligand only the (1R,2S)-cis-β-ACPC scaffold
was used and a 17-membered ring is obtained, since the Asp residue participates to the sequence
through its β-carboxylic group (isoAsp residue). Integrin receptor competitive binding assays (Table 1)
and cell adhesion assays with an αVβ3 positive cell line (WM115, a human skin melanoma cell line)
(Table 2) were performed for all the compounds. The conformational preferences of the free ligands
were investigated by NMR and computational methods. The conformational study of cyclic peptides
and peptidomimetics is generally a complex matter, yet an essential step prior to docking calculations
that are in most cases unable to perform a rigorous sampling of the macrocycle conformations [38,39].
In this paper, minimized structures satisfying the characteristic NOE contacts and H-bonds were
employed as starting geometries for docking studies in the αvβ3 integrin.
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Table 1. IC50 values measured from competitive binding assays to αvβ3 and α5β1 integrins.

Compound αvβ3 IC50 [nM] [a] α5β1 IC50 [nM] [a]

Cilengitide (1a) 0.71 ± 0.06 14.4 ± 3.1
cyclo-[-Arg-Gly-Asp-d-Phe-Val-] (1b) 3.2 ± 1.3 166 ± 28

cyclo-[-DKP-Arg-Gly-Asp-] (4) 4.5 ± 1.1 532 ± 35
cyclo-[-Arg-Gly-Asp-(1S,2R)-β-ACPC-Val-] (8) 44.3 ± 4.0 3227 ± 1468
cyclo-[-Arg-Gly-Asp-(1R,2S)-β-ACPC-Val-] (9) 39.0 ± 1.1 468 ± 114

cyclo-(-DKP-isoAsp-Gly-Arg-) (7) 9.2 ± 1.1 1066 ± 228
cyclo-[-isoAsp-Gly-Arg-(1R,2S)-β-ACPC-Val-] (10) 5362 ± 281 2331 ± 134

[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of biotinylated
vitronectin or fibronectin binding. Screening assays were performed by incubating the immobilized integrin αvβ3 or
α5β1 with increasing concentrations (10−12–10−5 M/10−11–10−4 M) of the RGD and isoDGR ligands in the presence of
the corresponding biotinylated ECM (extracellular matrix) protein (1 µg mL−1), and measuring bound protein in the
presence of the competitive ligand. Each data point is the result of the average of triplicate wells and was analyzed
by nonlinear regression analysis with the GraphPad Prism software. Each experiment was repeated in duplicate.
All values shown are the arithmetic mean ± the standard deviation (SD) of these duplicate determinations.

Table 2. IC50 values of the cyclic peptides as determined by cell adhesion assays with WM115 cells.

Compound IC50 [µM] [a]

cyclo-(-Arg-Gly-Asp-d-Phe-Val-) (1b) 5.1 ± 1.8
cyclo-[-Arg-Gly-Asp-(1S,2R)-β-ACPC-Val-] (8) 75 ± 32.5
cyclo-[-Arg-Gly-Asp-(1R,2S)-β-ACPC-Val-] (9) 124.5 ± 10.6

cyclo-[-isoAsp-Gly-Arg-(1R,2S)-β-ACPC-Val-] (10) >300
[a] IC50 values were calculated as the concentration of compound required for 50% inhibition of cell adhesion to
vitronectin. Cell adhesion assays were performed by incubating the immobilized vitronectin with fluorescein labeled
cells and increasing concentrations (10−7–10−4 M) of the RGD and isoDGR ligands, and measuring the fluorescence
of bound cells. All values are the arithmetic mean ± the standard deviation (SD) of two independent assays each
with four replicate determinations.
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2. Results

2-Aminocyclopentanecarboxylic acids (β-ACPCs) and their heterocyclic analogs represent
a widely studied class of cyclic unnatural β-amino acids, showing interesting biological
and conformational properties. For example, cis-(1R,2S)-2-aminocyclopentanecarboxylic acid
(Cispentacin) is a potent antifungal agent [40], racemic cis-4-aminopyrrolidine-3-carboxylic acid
has been used to probe the structure of the GABA (gamma-aminobutyric acid) receptor [41],
while cis-N-Boc-4-aminopyrrolidine-3-carboxylic acid is a modestly active influenza neuraminidase
inhibitor [42]. 2-Aminocyclopentanecarboxylic acid and 4-aminopyrrolidine-3-carboxylic acid have
also found applications in the area of foldamers as promoters of helical structures, both as oligomeric
structures or in combination with α-amino acids [43,44], and were recently used by Reiser and
co-workers for the synthesis of helical peptidic foldamers in the synthesis of Neuropeptide Y
analogs [45,46].

2.1. Synthesis

For the synthesis of the cyclic peptidomimetics 8–9 either (1S,2R)-cis-β-ACPC or
(1R,2S)-cis-β-ACPC were used. The synthesis of the cyclic peptidomimetics was obtained by a mixed
solid phase/solution phase approach (Scheme 1). The linear precursors 11 and 12 were assembled by
SPPS on O-chlorotritylchloride resin as solid support using a Fmoc protection on the α-amino groups.
Fmoc-ortogonal protecting groups were selected for the side chains of the amino acids (Pbf for Arg
and tBu for Asp). The cleavage of the linear precursor from the resin was accomplished in weakly
acidic conditions.
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Scheme 1. Synthesis of cyclo-[-Arg-Gly-Asp-(1S,2R)-β-ACPC-Val-] (8) and
cyclo-[-Arg-Gly-Asp-(1R,2S)-β-ACPC-Val-] (9) via solid phase peptide synthesis of the linear
counterparts 13 and 14 after cleavage from the resin, via in solution phase macrocyclization (15 and 16)
and their full deprotection. a: 1% TFA in DCM, rt, 5 min for each cycle; b: HATU, DIPEA,
DMF, rt, 30 min. c: TFA/Et3SiH/H2O, 95%/2.5%/2.5%, rt, 8 h. DIPEA = diisopropyl ethylamine,
TFA = trifluoroacetic acid.

The macrocyclization on compounds 13 and 14 was performed under pseudo-high dilution
conditions [47], and the final deprotection was carried out by treatment with TFA/Et3SiH/water,
95%/2.5%/2.5% and was followed by purification of the cyclic peptidomimetics by preparative
HPLC. An overall yield of 10% and 9% and a purity of 96% and 99% was obtained for compounds
8 and 9, respectively.
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The same strategy (Scheme 2) was followed for the isoDGR cyclic peptidomimetic 10, using only
the (1R,2S)-cis-β-ACPC scaffold and changing the loading sequence of the amino acids on the resin.
The cyclic isoDGR compound 10 was obtained in an overall 16% yield, with a 99% purity. The overall
yields for compounds 8–10 were calculated based on the weight and loading of the resin used for the
SPPS and the millimoles of the final purified cyclic peptides (i.e., loading of the first amino acid on the
resin, all the coupling steps, cleavage, cyclization, final deprotection and purifications). We believe
that the cyclization is the crucial step lowering the yields in our case. Conformational preorganization
is in general essential for cyclization, and the presence of elements able to impart a turn to the linear
peptide chains (especially if located in the central region of the polypeptide), greatly improves the
yields [34,35]. In our case this preorganization is missing and the final yields are only satisfying.
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2.2. Biological Assays 

The cyclic peptidomimetics 8–10 were analyzed in a first instance for their competitive binding 
to purified αvβ3 and α5β1 receptors with respect to the biotinylated vitronectin or fibronectin, 
respectively. The IC50 values are collected in Table 1, where the values of Cilengitide (1a), cyclo-
[RGDfV] (1b), cyclo-[DKP-RGD] (4), and cyclo-[DKP-isoDGR] (7), measured using the same procedure 
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2.2. Biological Assays

The cyclic peptidomimetics 8–10 were analyzed in a first instance for their competitive binding to
purified αvβ3 and α5β1 receptors with respect to the biotinylated vitronectin or fibronectin, respectively.
The IC50 values are collected in Table 1, where the values of Cilengitide (1a), cyclo-[RGDfV] (1b),
cyclo-[DKP-RGD] (4), and cyclo-[DKP-isoDGR] (7), measured using the same procedure [29,48–50],
are included as reference compounds for the RGD and isoDGR series. The new RGD compounds
cyclo-[-Arg-Gly-Asp-(1S,2R)-β-ACPC-Val-] (8) and cyclo-[-Arg-Gly-Asp-(1R,2S)-β-ACPC-Val-] (9) were
found to be nanomolar αvβ3 integrin ligands, with a binding IC50 value one order of magnitude
higher than 4. On the other hand, the IC50 values measured for α5β1 were higher than those for
αvβ3, displaying a selectivity ratio (IC50α5β1/IC50αvβ3) ranging from about 12 (compound 9) to
73 (compound 8), and confirming the trend already observed in the case of ligand 4 [49], On the other
hand, the new isoDGR ligand cyclo-[-isoAsp-Gly-Arg-(1R,2S)-β-ACPC-Val-] (10) is a micromolar binder
for both integrins, much weaker than cyclo-[DKP-isoDGR] (7) in the case of αvβ3.

In vitro cell adhesion assays were also performed using WM115 cells (a human skin melanoma cell
line in which adhesion to ECM proteins is mediated predominantly by integrin αvβ3). The inhibition
of the adhesion of the cells was evaluated against plate-coated vitronectin and the IC50 values are
collected in Table 2. The IC50 value of cyclo-[RGDfV] (1b), measured using the same procedure, is also
listed for comparison.
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The trend observed in the competitive binding test on the isolated integrin (Table 1)
was substantially confirmed in the cell adhesion assay with WM115 cells. Also in this case,
despite the different stereochemistry of the two contained cis-β-ACPC scaffolds, the two cyclic
RGD peptidomimetics (8 and 9) showed IC50 values in the same micromolar range, one order of
magnitude higher than the value of the reference compound (Table 2). Similar to the binding data,
the isoDGR peptidomimetic 10 is the weakest inhibitor of cell adhesion among the tested compounds
(very high micromolar IC50 values).

2.3. NMR Studies

The structure and connectivity of ligands 8–10 were unambiguously assigned by means of mono-
and two-dimensional 1H and 13C NMR spectroscopy in H2O solution. The preferred conformations of
the cyclic peptidomimetics 8–10 were then investigated, with the aim of rationalizing the affinity of
these compounds for the αvβ3 receptor at a molecular level. The cyclic peptides are characterized by
a high density of carbonyl groups and amide protons close together. In this situation, the formation of
hydrogen bonds is favored as well as the presence of β-turn type folds. H-bonds were detected by
variable temperature-NMR (VT-NMR) experiments observing the change of NH chemical shift with
temperature, while NHi-NHi+1 NOE contacts, which are indicative of β-turn motifs, were identified by
NOESY experiments.

The chemical shifts and temperature coefficients (∆δ/∆T) of the amide protons relative to
compounds 8–10 are reported in Table 3. The chemical shift of amide protons not involved in
H-bonds generally shows significant temperature dependence (e.g., temperature coefficients in the
range −7/−9.5 ppb K−1), whereas temperature coefficients between −2 and −5 ppb K−1 are indicative
of H-bond formation.

Table 3. Chemical shifts (δ, ppm) and temperature coefficients (∆δ/∆T, ppb K−1) of amide protons of
peptidomimetics 8–10 in H2O solution.

Compound NH-Gly δ

(∆δ/∆T) [a]
NH-Arg δ

(∆δ/∆T) [a]
NH-Asp δ

(∆δ/∆T) [a]
NH-ACPC δ

(∆δ/∆T) [a]
NH-Val δ

(∆δ/∆T) [a]

8 8.37 (−7) 9.10 (−9.5) 7.73 (−2) 7.33 (−4) 7.92 (−6)
9 8.62 (−7) 8.30 (−5) 8.38 (−8) 7.59 (−5) 7.52 (−6)

10 8.04 (−3) 8.44 (−7) 8.42 (−7) 7.91 (−4) 7.74 (−9)
[a] The temperature variable experiments were performed in the range of 298–328 K.

The relevant long range NOE contacts, classified as strong or medium on the basis of a qualitative
assessment of their intensities, are shown in Table 4. Since these small cyclic molecules can fluctuate
between different conformations, NMR data were used to evaluate the most representative 3D structures.

Table 4. Relevant long range NOE contacts for compounds 8–10.

Compound NOE Contact [a] NOE Contact [a]

8 NH-Asp—NH-ACPC (s) NH-Gly—NH-Asp (m)
9 NH-Asp—NH-ACPC (s)
10 NH-Arg—NH-ACPC (s) NH-Gly—NH-isoAsp (m)

[a] s = strong, m = medium.

2.3.1. Conformational Analysis of Compound 8

The NMR data of compound 8 suggest that the NH-Asp amide proton (∆δ/∆T −2 ppb K−1,
chemical shift 7.73 ppm) is involved in an intramolecular hydrogen bond. In addition, also the ∆δ/∆T
of NH-ACPC amide proton (−4 ppb K−1) suggests that it is experiencing an intramolecular hydrogen
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bonding. The other ∆δ/∆T values are in the −6/−9.5 ppb K−1 range which is typical of solvent exposed
amide protons. In the NOESY spectrum (mixing time 700 ms) two cross peaks involving NH-Asp
can be detected: a strong NOE contact between NH-Asp and NH-ACPC, and a medium intensity
NOE with NH-Gly. These long range NOEs are exclusive and provide evidence of two preferred
conformations characterized by β-turn motifs. The NH-Asp—NH-ACPC NOE is indicative of a β-turn
at Gly-Asp (Type I conformation in Figure 3) which is possibly stabilized by a hydrogen bond between
NH-ACPC and C=O-Arg. The medium intensity NH-Asp—NH-Gly contact suggests a β-turn at
Arg-Gly (Type II conformation in Figure 3) which might be stabilized by a hydrogen bond between
NH-Asp and C=O-Val.
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2.3.2. Conformational Analysis of Compound 9

The NMR data of compound 9 point out a large conformational equilibrium, possibly also due
to a pseudo-chair ring inversion of the β-ACPC scaffold. A cross-peak of strong intensity between
NH-Asp and NH-ACPC is observed in the NOESY spectrum, suggesting that the Type I conformation
(Figure 3) might contribute also to the conformational equilibrium of the pseudopeptide 9 (in agreement
with the ∆δ/∆T value of NH-ACPC of −5 ppb K−1) [51].

2.3.3. Conformational Analysis of Compound 10

The chemical shift and the ∆δ/∆T values of the amide protons of the isoDGR derivative 10 (Table 3)
indicate that NH-Gly and NH-ACPC are involved in hydrogen bonds. Their values suggest the
presence of an equilibrium between conformations in which these protons either form intramolecular
hydrogen bonds or they are exposed to the solvent, forming hydrogen bonds with it. The other
amide protons experience only H-bonds with the solvent. Two mutually exclusive long range NOE
contacts are indicative of two different conformations, hereafter referred to as Type I’ and Type III
conformations (Figure 4). The strong cross-peak between NH-Arg and NH-ACPC is consistent with
a β-turn motif at Gly-Arg, which might be stabilized by a hydrogen bond between NH-ACPC and
C=O-isoAsp (Figure 4). This Type I’ H-bond/β-turn pattern suggested for the isoDGR cyclopeptide 10
is very similar to the Type I pattern defined for the RGD derivatives 8 and 9 (Figure 3). The medium
dipolar interaction between NH-Gly and NH-isoAsp detected in the NOESY spectrum of compound
10 suggests the presence of a pseudo β-turn at Val-isoAsp, which could be stabilized by a H-bond
between NH-Gly and C=O-ACPC through the formation of a 11-membered ring (Type III, Figure 4).
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2.4. Computational Studies

The conformation and the interaction with the αvβ3 integrin of the cyclic peptidomimetics 8–10
were investigated by means of computational studies to generate models fitting spectroscopic and
biological data.

Monte Carlo/Energy Minimization (MC/EM) conformational searches [52] of simplified cyclic
pentapeptide analogs (containing β-ACPC and methyl groups in place of Val, Arg and Asp/isoAsp side
chains), followed by molecular dynamics (MD) simulations of the RGD or isoDGR peptidomimetic
ligands, were run in water, as implicitly represented by the generalized Born/surface area (GB/SA)
solvation model [53]. The compounds displayed high flexibility, by adopting different backbone
geometries characterized by specific H-bond and β-turn patterns. Notably, the macrocycle
conformations found for the new ligands are very similar to the geometries previously detected
for other cyclic RGD pentapeptide mimics [28]. The analysis of the dihedral angle between the amino
and the carboxylic group in theβ-ACPC scaffold revealed absolute values of about 60◦, with a preference
for negative or positive values that depend on the stereochemistry of the cis-β-ACPC unit (i.e., preferred
negative values for compound 8, positive values for compound 9). The inversion of the pseudo-chair
ring conformation of the β-ACPC scaffold was indeed observed in the calculated structures of each
compound, even if rarely and independently from the macrocycle conformation.

Among the conformers within 3 kcal/mol of the global minimum calculated for the
(β-ACPC-Ala-Ala-Gly-Ala) analog of 8, cyclopeptide geometries were identified that nicely fit the
Type I and II patterns suggested on the basis of the NMR data (Figure 3). Three-dimensional structures
satisfying the characteristic NOE contact and H-bond of each pattern were selected from the MD
trajectory of ligand 8 and then employed as starting geometries for docking studies in the αVβ3 integrin
active site (see the Experimental section for computational details) [54]. The best pose of each pattern
was re-docked to generate optimized poses that were compared to the crystal structure of the cyclic
pentapeptide Cilengitide in complex with the extracellular segment of integrin αvβ3 (PDB code 1L5G).

Docking runs starting from geometries of 8 adopting the Type I pattern produced top-ranked
poses conserving most of the key interactions observed in the X-ray complex. In the best pose shown
in Figure 5, the positively charged Arg guanidinium group of ligand 8 interacts with the negatively
charged side chains of Asp218 and Asp150 in the α unit, one carboxylate oxygen of the ligand Asp
side chain is coordinated to the metal cation in the metal-ion-dependent adhesion site (MIDAS) of
the β unit, and the second carboxylate oxygen forms hydrogen bonds with the backbone amides of
Asn215 and Tyr122 in the β unit. However, several other docking poses, including those obtained
from Type II starting geometries (see the Supporting Information for the docking best pose of Type II
conformation), lose some H-bond interactions or poorly reproduce the crystallographic binding mode
mainly interacting with the β-subunit.
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crystal structure of the extracellular domain of αvβ3 integrin (α unit blue, β unit red) overlaid on the
bound conformation of Cilengitide (yellow). Only selected integrin residues involved in interactions
with the ligand are shown. The metal ion at MIDAS is shown as a red CPK sphere (space-filling model
by Corey, Pauling, Koltun). Nonpolar hydrogens are hidden for clarity.

A possible explanation of this behavior may be found in the lack of the aromatic moiety and of
the corresponding stabilizing interaction with the side chain of Tyr122 in the β subunit, as well as
in the less extended arrangement of the RGD sequence in Type II conformations that is known to
prevent the optimal binding with the integrin pocket. Indeed, in agreement with previous studies
on different cyclic RGD pentapeptide mimics, Type I conformations are characterized by extended
arrangements of the recognition motif (showing Cβ(Arg)–Cβ(Asp) distance values of about 9 Å),
while the β-turn motif at Arg-Gly of the Type II pattern induces a reduced extension of the RGD
sequence (showing Cβ(Arg)–Cβ(Asp) distance values of about 8 Å) [28].

In summary, although peptidomimetic 8 can adopt extended conformations of the recognition
motif that should be able to properly fit into the receptor active site and establish the key polar
interactions, the absence of an aromatic group and the conformational flexibility of the cyclopeptide
induce a notable mobility of the ligand in the integrin binding pocket. This fact is possibly responsible
for the non-optimal interaction pattern and of the IC50 value in competitive binding assay to αVβ3

receptor about 10 times higher than that of other cyclic RGD ligands (e.g., compound 4 in Table 1).
Similarly, different cyclopeptide geometries can be identified for compound 9 by means of MC/EM

conformational searches and MD simulations, including geometries that nicely fit the Type I pattern
suggested on the basis of the NMR data (Figure 3). Docking calculations (see the Experimental
section for computational details and the Supporting Information for the docking best pose) showed
that the conformations adopting this pattern produced top-ranked poses conserving most of the key
interactions observed in the X-ray complex. However, the non-extended arrangement adopted by the
RGD sequence in some other geometries prevents an optimal interaction with the integrin pocket.
Similar considerations to those made for the compound 8 might explain the binding affinity of ligand
9: the lack of an aromatic moiety and the conformational flexibility of the cyclopeptide make the
interaction and the geometrical preorganization less favorable than in other cyclic peptidomimetic
RGD ligands.

Finally, docking studies of the isoDGR peptidomimetic 10 revealed that both Type I’ and Type
III geometries are not able to fit unhindered the αVβ3 binding site, producing non-optimal binding
modes (as shown in the Supplementary Materials).
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3. Material and Methods

3.1. General Procedures

The synthesis of (1S,2R)-cis-2-amino-1-cyclopentanecarboxylic acid and (1R,2S)-cis-2-amino-1-
cyclopentanecarboxylic acid were performed following published procedures [55,56]. The synthetic
procedures for the preparation of compounds 8–10 and their characterization are reported in the
Supporting Information, along with the 1H NMR and 13C NMR spectra, HPLC traces.

3.2. Competitive Binding Assays to the Purified αvβ3 and α5β1 Receptors

The inhibition assays of biotinylated vitronectin and fibronectin binding to the αvβ3 and α5β1
receptors, for compounds 8–10 were carried out as previously reported [29,48–50]. IC50 values were
calculated as the concentration of compound required for 50% inhibition of biotinylated vitronectin or
fibronectin binding. Screening assays were performed by incubating the immobilized integrin αvβ3 or
α5β1 with increasing concentrations (10−12–10−5 M/10−11–10−4 M) of the RGD and isoDGR ligands in
the presence of the corresponding biotinylated ECM protein (1 µg mL−1), and measuring bound protein
in the presence of the competitive ligand. Each data point is the result of the average of triplicate
wells and was analyzed by nonlinear regression analysis with the GraphPad Prism software. Each
experiment was repeated in duplicate. IC50 values are the arithmetic mean ± the standard deviation
(SD) of these duplicate determinations.

3.3. Cell Adhesion Assays

The cell adhesion studies on WM115 cell line with the compounds 8–10 are described in the
Supporting Information.

3.4. NMR Studies

NMR experiments were performed on a Bruker Avance spectrometer (Bruker, Málaga, Spain)
operating at 500 MHz at 298 K. The concentration of each compounds was 5 mM and they are analyzed
dissolved in H2O-D2O 9:1 in a 5 mm NMR tube.

1H and 13C resonance assignment for all the ligands was performed on the base of 1D 1H, 2D COSY,
TOCSY and 1H, 13C-HSQC experiments. For conformational analysis, NOESY experiments were
acquired varying the mixing time from 400 to 700 ms. Water suppression was achieved by excitation
sculpting sequence from standard Bruker library.

For the variable temperature analysis (VT-NMR), monodimensional 1H spectra were acquired
from 298 K to 333 K.

3.5. Computational Studies

All calculations were performed using the Schrödinger suite of programs through the Maestro
graphical interface [57]. Conformational preferences of compounds were investigated by molecular
mechanics calculations using the MacroModel v11.1 implementation of the Amber all-atom force
field (denoted AMBER *) and the implicit water GB/SA solvation model [53,58]. Monte Carlo/energy
minimization (MC/EM) conformational search of the cyclopeptide analog containing methyl groups
instead of the Val, Arg and Asp/isoAsp side chains was performed as the first step to generate starting
cyclopeptide conformations for MD simulations that are not biased by electrostatic interactions. For the
search, 1000 starting structures for each variable torsion angle were generated and minimized until
the gradient was < 0.05 kJ Å−1 mol−1 using the truncated Newton-Raphson method implemented in
MacroModel [59]. Duplicate conformations and those with energy > 5 kcal mol−1 above the global
minimum were discarded. Free MD simulations of the RGD cyclic peptides (Asp and Arg side chains
were considered ionized) were then performed at 300 K using MacroModel v11.1, the force field and
the solvent defined above (1 fs integration step, 20 ns simulation time for each run, 5000 structures
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saved for the analysis), starting from the cyclopeptide backbone geometries located by the previous
MC/EM step. Each significant long range interaction between amide protons described by a NOE
was employed as a filter (distance between protons involved in the NOE contact < 3.5 Å) to select the
conformations fitting a specific experimental contact. Representative 3D structures filtered out from
MD trajectories and reproducing the H-bond patterns pointed out by NMR data, were employed as
starting geometries for docking studies.

The crystal structure of the extracellular domain of the integrin αvβ3 in complex with the
cyclic pentapeptide Cilengitide (PDB code 1L5G) was used for docking studies [60]. Flexible-ligand
docking calculations were performed using Glide version 7.0 in the Standard Precision (SP) mode [61].
The settings of the protein preparation, grid generation and docking step were defined as previously
reported [27–29]. The Glide program was initially tested for its ability to reproduce the X-ray binding
geometry of Cilengitide. The program was successful in reproducing the experimentally found binding
mode of this compound, as it corresponds to the best-scored pose (the superimposition of the docked
ligand to the crystal structure is shown in the Supporting Information, docked vs. X-ray peptide heavy
atoms RMSD = 0.3287 Å).

4. Conclusions

The synthesis, conformational analysis, and some biological investigation of two RGD,
8–9 (Figure 2), and one isoDGR, 10 (Figure 2) cyclic peptidomimetics, containing two
cis-2-amino-1-cyclopentanecarboxylic (either (1S,2R)-cis-β-ACPC or (1R,2S)-cis-β-ACPC) scaffolds were
described. The synthesis of the linear precursors was performed on the solid phase and, after cleavage
from the resin and cyclization, the integrin ligands were obtained in satisfying yields and excellent
purity. The RGD compounds 8 and 9 are good αvβ3 integrin ligands, confirming this behavior both
in an isolated receptor competitive binding assay (IC50 values 44 and 39 nM, respectively, one order
of magnitude higher than the reference compound cyclo-[RGDfV]), and in the cell adhesion assay
performed on the αVβ3 positive human skin melanoma cell line WM115 (IC50 values 75 and 124 µM,
respectively), again one order of magnitude higher than the reference compound cyclo-[RGDfV]).
The ligands were also tested for competitive binding to purified α5β1 giving IC50 values above 450 nM,
thus confirming the trend, albeit with a selectivity ratio (IC50α5β1/IC50αvβ3) ranging from about 12
(compound 9) to 73 (compound 8). On the contrary, the isoDGR ligand 10 is a micromolar for both αvβ3

and α5β1 binder (5362 and 2331 nM respectively) in the competitive binding assay and an IC50 value
could not be measured for the cell adhesion assay. The behavior of these ligands could be explained
by the conformational NMR and computational studies of the ligands and the docking simulations
performed in the αVβ3 integrin active site. The RGD ligands display intramolecular hydrogen bonds
imposing well defined conformations and extended presentation of the RGD recognition motif that
should be able to properly fit into the receptor active site and establish the key polar interactions.
However, the non-extended arrangement adopted by the RGD sequence in other geometries as well
as the absence of an aromatic moiety and of the corresponding stabilizing interaction with the side
chain of Tyr122 in the β subunit, prevent an optimal interaction with the integrin pocket and reduce
the activity of these ligands as integrin binders. On the other hand, the geometries adopted by the
isoDGR ligand 10 are not able to fit the αvβ3 binding site, producing non-optimal binding modes.

Further studies aimed at improving the activity and selectivity of these ligands (based on a rational
design and plan to modification of the structure of the peptidomimetic scaffold) are currently in
progress in our laboratories.

Supplementary Materials: Detailed synthetic procedures and characterization for compounds 8–10. Figures S1–S3:
HPLC traces of compounds 8–10. Biological Tests (cell culture, determination of IC50 values, cell adhesion
experiments). Figures S4 and S5: Cell adhesion curves for compounds 8–10. Computational studies,
docking calculations. Figures S6–S9: Docking best poses for Cilengitide and compounds 8–10.
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