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The mucosal immune system is the first line of defense against pathogens. Germinal
centers (GCs) in the Peyer’s patches (PPs) of the small intestine are constantly generated
through stimulation of the microbiota. In this study, we investigated the role of gd T cells in
the GC reactions in PPs. Most gd T cells in PPs localized in the GCs and expressed a TCR
composed of Vg1 and Vd6 chains. By using mice with partial and total gd T cell
deficiencies, we found that Vg1+/Vd6+ T cells can produce high amounts of IL-4, which
drives the proliferation of GC B cells as well as the switch of GC B cells towards IgA.
Therefore, we conclude that gd T cells play a role in sustaining gut homeostasis and
symbiosis via supporting the GC reactions in PPs.
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INTRODUCTION

Mucosal surfaces of the body are a major entry site for non-self-antigens. The gut-associated
lymphoid tissue (GALT) represents the major challenging site for the mucosal immune system, as it
has to protect against harmful pathogens, preserve tissue integrity, but should also maintain the
tolerance towards commensal microbiota and food antigens (1, 2). Peyer’s patches (PPs) are
constantly stimulated by the gut microbiota, which drives the formation of constitutively active
germinal centers (GCs) (3, 4). They are formed inside the follicle and are organized into two
different anatomical zones, the dark zone (DZ) and the light zone (LZ) (5). B cells in the DZ
proliferate extensively (6), maturate in their affinity through somatic hypermutation (SHM), and
switch their immunoglobulin (Ig) isotype through class switch recombination (CSR) (7). The gut
represents the major induction site for production of IgA (8, 9) in order to maintain the homeostasis
of the microbiome (10), and this process is mainly regulated through interleukin-4 (IL-4) (11–13)
and transforming growth factor-b (TGF-b) (14, 15). In the LZ, GC B cells are interspersed among a
network of follicular dendritic cells (FDCs) (16, 17), which act as an antigen reservoir for the B cells
(6). Furthermore, FDCs produce the chemokine CXCL13, sensed by its receptor CXCR5, whose
expression attracts GC B cells and T follicular helper (TFH) cells to the LZ (18, 19), where the
positive selection of high-affinity GC B cells occurs (20, 21). Positively selected GC B cells can
recirculate to the DZ to perform multiple rounds of SHM and selection for high-affinity binding to
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the antigen (22, 23). These movements between LZ and DZ are
regulated by mutual up- and downregulation of CXCR4 and
CD86 expression on the surface of the GC B cells (24). Finally,
selected high-affinity B cells can leave the GC as plasma cells or
memory B cells or re-enter the GC for further diversification
(25–27).

gd T cells are involved in many immunological processes
including humoral immunity; however, their role herein is not
completely understood (28, 29). In mice, subpopulations of gd T
cells are divided according to their expressed segments in the
variable region of the g-chain (30). Vg1+ T cells are enriched in
tissues like spleen and liver (31, 32) and can produce interferon-g
(IFN-g), IL-4, and IL-13 to help in defense against tumor cells,
intracellular pathogens, or extracellular parasites (33–36). In
particular, a specific subset of Vg1+ T cells that co-expresses
the Vd6 chain can produce large amounts of IL-4 in the spleen
and liver (37). In contrast, Vg4+ and Vg6+ T cells home to
different lymphoid and non-lymphoid tissues, where they help in
defense against various bacteria through production of IL-17
(38–40).

It has been shown that gd T cells are able to help B cells for the
production of antibodies (28, 29, 41). However, the influence of
gd T cells on the GC reactions in PPs and IgA production is
unclear. Here, we focus on the role of gd T cells in supporting the
GC reactions in different mutant mice, which are completely or
partially deficient for gd T cells. We show that gd T cells are
located in the GCs of PPs and that their absence alters not only
the development of IgA+ GC B cells but also the structure of the
GCs. Specifically, we found that a restricted subset of Vg1+ T cells
in PPs expressing the Vd6 chain produced IL-4, thus influencing
B cell isotype switch towards IgA.
MATERIAL AND METHODS

Animals
Tcrd-GDL mice (42), Tcrd-H2BeGFP mice (43), and Tcrd−/−

mice (44) were bred and housed under specific pathogen-free
conditions in the central animal facility at the Hannover Medical
School. B6.TCR-Vg1−/− mice (45) and B6.TCR-Vg4−/−/Vg6−/−

(46) mice were kindly provided by Dr. Rebecca L. O’Brien
(National Jewish Health, Denver, USA). Mice were used for
experiments at 8 to 12 weeks after birth. All experiments were
conducted according to local and institutional guidelines. The
study was approved by the Lower Saxony State Office for
Consumer Protection and Food Safety, file references: 33.12-
42502-04-15/1889, 33.12-42502-04-15/2060, 33.12-42502-04-
16/2167, and 33.12-42502-04-19/3289.

Depletion of gd T Cells
For conditional depletion of gd T cells, Tcrd-GDL mice were
treated i.p. two times, separated by 48 h, with 15 ng of diphtheria
toxin (DTx; Merck) per gram body weight (42).

Salmonella Infection
Tcrd-GDL mice were injected with DTx for depletion of gd T cells
as described above and compared to non-depleted Tcrd-GDL
Frontiers in Immunology | www.frontiersin.org 2
mice. Three days after the first injection, all mice were orally
infected with 5×109 Salmonella typhimurium (attenuated SL1344
DaroA strain, kindly provided by Dr. Dirk Bumann, University of
Basel, Switzerland). To reduce confounding effects, co-housed
littermates were used. Due to regulatory limitations, these
experiments were performed in an S2 restriction area. At day
10, mice were sacrificed, and spleen, mesenteric lymph nodes
(mLNs), small intestine (SI), and PPs were collected, homogenized
with an Ultra-Turrax (IKA), and plated at different dilutions on
LB-media (Lennox, Carl Roth) plates with streptomycin (90 ng/
ml; Sigma-Aldrich) overnight at 37°C. The next day, the colony-
forming units (CFUs) were counted.

Anti-gd TCR Injection
Tcrd-H2BeGFP mice were injected i.p. once a week for five times
with anti-gd TCR (clone GL3, 300 µg/mouse) antibodies. One
week after the last injection, mice were sacrificed, and PPs were
analyzed by flow cytometry.

Flow Cytometry and Cell Sorting
Mice were sacrificed, and PPs were isolated from the small
intestine. Single-cell suspensions from PPs were obtained with
the gentleMACS™ Dissociator (Miltenyi Biotec) and filtered
through 100 µm cell strainers (Sysmex). Fc-receptors were
blocked with 5% anti-FcR antibodies (clone 2.4 G2) in FACS
buffer (3% FCS, 40 mM EDTA, PBS) for 30 min on ice. Live/dead
cell discrimination was performed by the use of Zombie Aqua
Fixable Viabil i ty Kit (BioLegend) according to the
manufacturer’s instructions. Cell suspensions were stained for
flow cytometry by using the following antibodies: antibodies
against IgD (clone 11-26c.2a, BV605), CD138 (clone 281-2,
BV711), Vg1.1 (clone 2-11, BV711), CXCR4 [clone 2B11,
phycoerythrin (PE)], Vd6.3/2 (clone 8F4H7B7, PE), CD95
(clone Jo2, PE-Cy7), and CXCR5 (clone 2G8, unlabeled),
which were purchased from BD Bioscience; antibodies against
CD3 (clone 17A2, Pacific blue), CD4 (clone GK1.5, BV605), CD4
(clone RM4-5, BV650), CD44 (clone IM7, BV605), CD19 (clone
6D5, APC-Cy7), PD-1 (clone 29F.1A12, PE-Cy7), Vg4 (clone
UC3-10A6, APC), and APC-conjugated streptavidin, which were
purchased from BioLegend; antibodies against B220 (clone RA3-
6B2, eFluor450), GL7 (clone GL-7, eFluor450), NK1.1 (clone
PK136, PE-Cy7), CD86 (clone GL1, APC), and PE-conjugated
streptavidin, which were purchased from eBioscience; and
antibodies against b TCR (clone REA310, APC Vio770), which
were purchased from Miltenyi Biotec. The following antibodies
against gd TCR (clone GL3, Alexa Fluor 488 or unlabeled) and
against Vg6 (clone 17D1, unlabeled) were produced in-house
with rat hybridoma cell lines. Anti-Vg7 antibody (clone F2.67,
DyLight 650) was provided by P. Pereira (Pasteur Institute, Paris,
France). Vg6 staining was performed as previously described
(47). Briefly, after pre-incubation with anti-gd TCR (clone GL3)
for 15 min on ice, anti-Vg6 (clone 17D1) was added and cells
were incubated for further 30 min on ice. Anti-Vg6 antibodies
were detected with anti-IgM (clone RM-7B4, PE; BD Bioscience)
antibodies. Samples were acquired using LSRII (BD Bioscience),
and data were analyzed using FlowJo software (Version: 10.1,
Tree Star). Fluorescence minus one (FMO) controls of Vg7 TCR,
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Vd6.3/2, CD86, CXCR4, and NK1.1 stainings are shown in
Supplementary Figures 1B–E.

The cell sorting was performed in the Cell Sorting Core Facility
of the Hannover Medical School by using the FACSAria Fusion
(BD) or the FACSAria II (BD). gd T cells of Tcrd-H2BeGFP mice
were sorted after staining with fluorophore-conjugated anti-b TCR
and GFP expression; while B cells after staining with anti-B220
antibodies. The purity of sorted populations was 95–99%.

BrdU Incorporation
Three-week gd T cell–depleted and non-depleted Tcrd-GDL
mice were injected i.p. with bromodeoxyuridine (BrdU; 1 mg/
ml). 2 h after the injection, PPs of mice were collected, and cells
were stained with a BrdU Flow Kit (Cat. 552598, BD Bioscience)
according to the manufacturer’s instructions. Briefly, cells were
firstly stained with surface markers, fixed, and permeabilized.
After treatment with DNase I, cells were stained with anti-BrdU
antibodies conjugated with APC for 30 min at room temperature
and then analyzed by flow cytometry.

IL-4 Secretion Assay
Ninety-six-well plates (Nunc) were coated overnight with
monoclonal antibodies (mAb) anti-CD3 (1 µg/ml, clone 17A2,
unlabeled, in-house produced by rat hybridoma cell lines) and
CD28 (1 µg/ml, clone 37.51, unlabeled, purchased from
eBioscience) to stimulate gd T cells. Single-cell suspensions of
PPs were obtained like previously described. Then 4×106 cells/ml
were resuspended in RMPI 1640 (10% FCS, 1% Pen/Strep, 1% L-
Glutamine) and incubated at 37°C for 2 h. After stimulation,
antibodies for surface staining were added for 30 min on ice
together with anti-FcR antibodies (clone 2.4 G2) and live/dead
cell discrimination agent (Zombie Aqua Fixable Viability Kit,
BioLegend). Next, IL-4 secretion assay (Miltenyi Biotec) was
performed according to the manufacturer’s instructions. Briefly,
cells were incubated for 5 min with IL-4 catch antibodies on ice
and afterwards for further 45 min at 37°C to secrete IL-4. The
secreted IL-4 was then detected with PE-labeled IL-4 detection
antibodies for 10 min on ice. After washing, cells were acquired
and data analysis was performed using Flowjo software (Version:
10.1, Three Star). Gating strategy and FMO control of IL-4 are
shown in Supplementary Figure 1A.

In Vitro Culture of PP B Cells
After cell sorting, gd T and B cells isolated from PPs were
resuspended in cell culture media (IMDM, 10% FCS, 1%
penicillin-streptomycin, 1% L-glutamine, and 50 µM ß-
mercaptoethanol) in a ratio of 1:10 (gd T cells: B cells) and
transferred into a ninety-six-well U bottom plate (Sarstedt). The
total number of cells was 55,000 per well in a volume of 100 µl of
cell culture media. For the induction of IgA isotype switch (48),
the following cytokines were added or not to the media: murine
IL-4 (100 ng/ml; PeproTech), murine IL-5 (1 ng/ml; PeproTech),
human TGF-b (1 ng/ml; PeproTech), and Escherichia Coli LPS
(10 µg/ml, Sigma-Aldrich). Cells were incubated for three days at
37°C and 5% CO2. Afterwards, murine IL-6 (1 ng/ml;
PeproTech) was added to the culture media, and cells were
incubated for additional 3 days before being analyzed.
Frontiers in Immunology | www.frontiersin.org 3
Hematoxylin and Eosin Staining
Five centimeters of the proximal part of the small intestine of the
mice were rolled and fixed in 2% buffered formalin for 4 h and
embedded in paraffin. Sections (5 µm) were stained with
hematoxylin and eosin (H/E; Sigma-Aldrich). After washing
and mounting, slides were acquired with a Zeiss Axioscan.Z1
with 10× objective, and images were analyzed by Zen Blue
software (Version: 2.3, Zeiss).

Immunohistology
A cut of the proximal, medial, and distal parts of the PPs were
taken, and frozen sections (8 µm) were fixed in ice-cold acetone
for 10 min. After rehydration, sections were incubated with 10%
rat sera or 5% mouse sera and anti-FcR antibodies (clone 2.4 G2)
in TBS-T for 15 min at RT according to the staining. For GC
staining, sections were incubated for 1 h at RT with the following
antibodies: anti-Ki-67 (1:100, clone SolA15, FITC, eBioscience),
anti-GL7 (1:100, clone GL7, Alexa Fluor 647, BioLegend), anti-
CD86 (1:100, clone GL1, APC, eBioscience), and anti-CXCR4
(1:100, clone 2B11, PE, BD Bioscience). For the FDC staining,
sections were incubated for 1 h at RT with anti-FDC-M1 (1:100,
clone FDC-M1, unlabeled, BD Bioscience) or anti-CD35 (1:100,
clone 8C12, BV421, BD) antibodies. Together with the anti-
CD35 antibodies, the following antibodies were used: anti-GL7
(1:100, clone GL7, Alexa Fluor 647, BioLegend) and anti-IgD
(1:100, clone HB250, Cy5, home-made); for nuclei visualization,
propidium iodide was used (4 min; 1 µg/ml, Sigma-Aldrich). To
visualize the FDC-M1 antibodies, sections were stained for 1 h at
RT with mouse anti-rat IgG (H+L) F(ab’)2 fragment (1:200, Cy3,
Jackson ImmunoResearch). After blocking with 10% rat sera for
15 min at RT, sections were then stained for 1 h with anti-IgD
(1:100, clone HB250, Cy5) in-house produced with rat
hybridoma cell lines. All sections, except the ones stained with
anti-CD35 antibodies, were stained with DAPI 1µg/ml (Sigma-
Aldrich) for 3 min. Afterwards, they were mounted with
FluorSave reagent (Merck) and treated similarly for high
comparability. For analysis of the marker expression,
composite pictures of whole PPs were acquired using Zeiss
Axioscan.Z1 with a 10× objective. For analysis of Ki-67,
CXCR4, CD35, CD86, GL7, and FDC-M1 expression, the same
adjustment was applied to all pictures using Zen Blue software
(Zeiss), and GCs were selected and extracted based on their
DAPI signal for further analysis with ImageJ (Version: 1.52p).
Areas of Ki-67, CXCR4, CD35, CD86, and FDC-M1 staining
were measured automatically using a self-written macro. In
short, GC area was selected manually based on DAPI signal.
Only this GC region was then used for automatic analysis of
expression of Ki-67, CXCR4, CD35, CD86, and FDC-M1. Single
channels were binarized, and a fixed threshold was applied
before signal area was measured automatically. The calculated
areas for the different markers were normalized to GC size.

Confocal Microscopy
Sixteen µm sections of PPs were cut and fixed in ice-cold acetone
for 2 min. After rehydration, sections were blocked with 5% rat
sera and anti-FcR antibodies (clone 2.4 G2) in PBS-T for 30 min
at 37°C. For the staining, sections were incubated for 30 min at
November 2021 | Volume 12 | Article 729607
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37°C with the following antibodies: anti-GL7 (1:100, clone GL7,
Alexa Fluor 647, BioLegend) and anti-IgD (1:100, clone HB250,
Cy5, home-made). All sections were then stained with DAPI
1µg/ml (Sigma-Aldrich) for 3 min and mounted with FluorSave
reagent (Merck).

For the acquisition of confocal z-stack images, a Zeiss LSM
980 confocal microscope (Zeiss) with 63× oil objective lens was
used at the optimal interval of 1 µm to the z-direction. The areas
of GCs and B cell follicles were measured with Zen Blue software
(Zeiss). The number of gd T cells (calculated based on the
expression of eGFP) was normalized to the area of GC or B
cell follicle. Z-stack images and AVI videos were generated using
Imaris software (Version 9.5.1, Bitplane) at 24 frames per second.
Gamma values of DAPI were adjusted for better visibility.

Isolation of Igs From Feces for ELISA
Feces were collected and mixed in protein isolation buffer [1 mM
PMSF (Carl Roth), 1× protein inhibitor solution (Roche) in PBS]
until a homogenous solution was formed. The tubes were
centrifuged at 5,000 g, 4°C for 10 mins, and total protein
concentration was measured by using Advanced Protein Assay
reagent (Cytoskeleton) according to the manufacturer’s
instructions. Samples were frozen at −20°C until analysis.

Ninety-six-well plates (Nunc) were coated with goat anti-
mouse/human ads-UNLB (1:3,000 in PBS; SouthernBiotech),
overnight at 4°C. Unspecific binding sites were blocked with
3.5% BSA (Biomol) in PBS for 1 h at 37°C. Samples were adjusted
to a concentration of 8 µg/µl with PBS. As reference for
quantification, serial dilutions of Ig standard [mouse IgA-
UNLB (1–0.0005 µg/ml); SouthernBiotech] were established.
Standard and samples were incubated for 3 h at RT in the
dark. Afterwards, HRP-coupled antibodies [goat anti-mouse IgA
(1:8,000, SouthernBiotech)] were incubated for 1 h at RT in the
dark. The enzymatic reaction was started by adding TMB
substrate (Thermo Fisher Scientific) and was stopped with
0.5M H2SO4 (Carl Roth). Absorbance was measured at 450 nm
with reduction at 595 nm using a SpectraMax iD3
(Molecular Devices).

Intestinal Permeability Assay
Mice were fasted for 3 h, and then fluorescein isothiocyanate
(FITC)-coupled dextran (4,000 Da, Sigma-Aldrich) was
administered by gavage (600 mg/kg body weight). After 1 h, mice
were sacrificed and blood was taken from the retro-orbital sinus of
the eye. Plasma was obtained by centrifugation, diluted 1:2 with
PBS, and added to a plate with black background (Costar) in
duplicates. A standard curve of FITC-dextran (25–0.024 µg/ml)
was added as a reference for quantification. Fluorescent signal was
measured at 485 nm excitation and 528 nm emission wavelength
using a SpectraMax iD3 (Molecular Devices).

16S rRNA Gene Sequencing
Feces was used to extract DNA with the QiAamp Fast DNA Stool
Kit (Qiagen) according to the manufacturer’s instructions.

Total DNA of samples was processed following the protocol
for 16S Metagenomic Sequencing Library Preparation (Illumina,
Frontiers in Immunology | www.frontiersin.org 4
Part # 15044223 Rev. B). In brief, PCR of bacterial 16S rRNA
(V3-V4 regions) was performed to create a single amplicon of
approximately 460 bp. Illumina sequencing adapters and dual-
index barcodes were added to the amplicons using the Nextera
XT Index Kit (Illumina). Paired-end sequencing was carried out
on Illumina MiSeq platform (Illumina) with MiSeq Reagent Kit
V3 (Illumina).

16S Metagenomic rRNA Gene Sequencing
Data Analysis
Illumina BaseSpace 16S Metagenomics app (Illumina) was used
to generate a classification of reads at taxonomic levels from
kingdom to species. The classification step uses a proprietary
algorithm that provides species-level classifications for paired-
end reads, involving matching short subsequences of the reads to
a set of 16S reference sequences (Greengenes database).

Statistical Analysis
Results from experiments were analyzed by GraphPad Prism
(Version: 8.4.3, GraphPad Software). The values presented are
mean ± SEM of n independent experiments. Differences between
individual groups were analyzed as indicated in figure legends by
either unpaired Students t-test or one-way ANOVA followed by
Tukey’s multiple comparison post-test. P values < 0.05 were
considered to be significantly different.
RESULTS

gd T Cells Localize in GCs of PPs
To date, few data are available regarding the localization of gd T
cells in PPs (49). To investigate this further, we took advantage of
a mouse model expressing histone2B-coupled eGFP in the nuclei
of all gd T cells (43). We performed confocal z-stack imaging on
individual sections of PPs and quantified gd T cells in the B cell
follicles and in the GCs. We found that significantly more gd T
cells are located in the GCs compared to the B cell follicles
(Figures 1A, B, and Supplementary Movie 1). We next
examined the different populations of lymphocytes in PPs, of
which 83% were B cells, 8% were ab T cells, and 1.5% were gd T
cells (Figure 1C). Among gd T cells, we found that 29% were
Vg1+ T cells, 5% were Vg4+ T cells, 1.5% were Vg6+ T cells, and to
our surprise, 48% were Vg7+ T cells, most probably co-isolated
intraepithelial gd T cells (Figures 1D, E). We then focused on
Vg1+ T cells and specifically analyzed the expression of the
markers NK1.1 and Vd6.3/2, since they define different
functional subsets of Vg1+ T cells. Vg1+/Vd6+ T cells represent
a distinct subpopulation in spleen and liver of mice that can
produce higher amounts of IL-4 than IFN-g, whereas, Vg1+/
NK1.1+ T cells can produce more IFN-g than IL-4 and share
functional properties with invariant NKT cells (37, 50, 51). In
PPs, approximately 20% of Vg1+ T cells expressed the Vd6.3/2
chain, but only 1.5% of them expressed the NK1.1 marker,
leading us to hypothesize that a considerable proportion of gd
T cells in PPs are able to produce IL-4 (Figure 1F). To investigate
November 2021 | Volume 12 | Article 729607
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the ability of Vg1+ T cells to produce IL-4, we thus measured the
secretion of this cytokine in vitro. We found that ca. 30% of
unstimulated and stimulated Vg1+ T cells isolated from Tcrd-
H2BeGFP mice and Vg4−/−/Vg6−/− mice produced high levels of
IL-4 (Figure 2A). We further corroborated these data by
comparing gd T cells from Tcrd-H2BeGFP mice and Vg4−/
Frontiers in Immunology | www.frontiersin.org 5
−/Vg6−/− mice (possessing Vg1+ T cells) with Vg1−/− mice
(possessing Vg4+ and Vg6+ but not Vg1+ T cells) (Figure 2B).
In contrast to the other strains, gd T cells from Vg1−/− mice were
not able to secrete IL-4, indicating that the Vg1+ T cells are the
major producer of IL-4 among gd T cells (Figure 2B). Notably,
the stimulation with mAbs directed against CD3 and CD28 did
A

B

D

E F

C

FIGURE 1 | Most of the gd T cells localize in GCs of PPs and express the Vg1+ TCR. (A) Confocal fluorescence microscopy of frozen sections of PPs from
Tcrd-H2BeGFP mice stained with anti-IgD (red), anti-GL7 (orange), and DAPI (blue) to detect the nuclei. GFP-expressing gd T cells (green) are highlighted with an
arrow. Scale bar, 50 µm. (B) gd T cells inside the B cell follicles (IgD+) and germinal centers (GC; IgD−, GL7+) were quantified. For the quantification, sections of PPs
were analyzed from different mice. Each dot represents an individual cut. Bar graph, mean ± SEM. n = 5 mice. (C) FACS analysis of B cells (CD19+, TCRb−), ab T
cells (CD19−, CD3+, TCRb+), gd T cells (CD19−, CD3+, GFP+) in PPs from Tcrd-H2BeGFP mice. Bar graph, mean ± SEM. n = 8. (D) FACS analysis of Vg1 TCR,
Vg4 TCR, Vg6 TCR, and Vg7 TCR gated on gd T cells (TCRb−, CD3+, GFP+) of PPs from Tcrd-H2BeGFP mice. (E) Quantification of Vg1 TCR, Vg4 TCR, Vg6 TCR,
and Vg7 TCR expressed on gd T cells (TCRb−, CD3+, GFP+) of PPs from Tcrd-H2BeGFP mice. Bar graph, mean ± SEM. n = 6. (F) FACS analysis of Vd6.3/2, and
NK1.1 gated on Vg1+ T cells (TCRb−, CD3+, GFP+, Vg1 TCR+) of PPs from Tcrd-H2BeGFP mice. Bar graph, mean ± SEM. n = 6. Each dot represents an individual
mouse. *P < 0.05.
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not make a difference for gd T cells, probably because they are
continuously activated by the gut microbiota.

TFH cells play a key role during GC reactions by providing
help to the B cells and by producing IL-4 (52). Therefore, we
investigated these cells, but no differences in TFH cell frequencies
in PPs could be observed (Supplementary Figure 2A). Moreover,
their ability to produce IL-4 was not compromised in any of the
mutant mice (Supplementary Figure 2B). Interestingly, the
number of TFH cells producing IL-4 was lower compared to
the number of the IL-4-producing Vg1+ T cells (Figure 2A and
Supplementary Figure 2B), suggesting that these two cells
represent together the main source of IL-4 in the PPs.

Taken together, gd T cells could be detected in high
frequencies in GCs of PPs. These were mainly Vg1+ T cells co-
expressing the Vd63/2 chain and able to secrete IL-4.
Frontiers in Immunology | www.frontiersin.org 6
Depletion of gd T Cells Does Not Alter the
Permeability and the Microbiota of the Gut
Next, we applied a newly established mouse model for
conditional depletion of gd T cells with DTx, namely, the Tcrd-
GDL mice (42). After injection of DTx, all gd T cells are depleted,
but after 3 weeks they start to regenerate (Supplementary
Figure 3A). To exclude the possibility that gd T cell depletion
might compromise the permeability of the gut, we first evaluated
possible differences in the structure of the gut cells and
epithelium. H/E staining of the small intestine did not show
any remarkable architectural differences (Supplementary
Figure 4A). To control potential changes in gut permeability,
we performed a FITC-dextran absorption assay, which did not
show significant changes in the permeability in Tcrd-GDL mice
at 8 days after gd T cell depletion when compared to control
A

B

FIGURE 2 | gd T cells represent a major source of IL-4 in PPs. (A, B) IL-4+ gd T cells were measured by flow cytometry with an IL-4 secretion assay. PPs from
Tcrd-H2BeGFP, Vg1−/−, and Vg4−/−/Vg6−/− mice were stimulated with mAbs directed against CD3 (1 µg/ml) and CD28 (1 µg/ml) for 2 h and compared to the
unstimulated controls. (A) FACS analysis of IL-4+ Vg1+ T cells in PPs of Tcrd-H2BeGFP and Vg4−/−/Vg6−/− mice gated on Vg1+ T cells (CD19−, TCRb−, CD3+, GFP+,
Vg1 TCR+). Bar graph, mean ± SEM. n = 3–5 per group. ANOVA test was applied with Tukey post-hoc test. (B) FACS analysis of IL-4+ gd T cells of PPs from Tcrd-
H2BeGFP, Vg1−/−, and Vg4−/−/Vg6−/− mice gated on gd T cells (CD19−, TCRb−, CD3+, GFP+). Bar graph, mean ± SEM. n = 3–5 per group. ANOVA test was applied
with Tukey post-hoc test. Each dot represents an individual mouse. **P < 0.01, ***P < 0.001, ****P< 0.0001.
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Tcrd-H2BeGFP mice (Supplementary Figure 4B). These
findings implicate that no increased translocation of pathogens
would occur across the epithelial intestinal barrier.

We then asked whether gd T cell depletion might influence
the gut microbiota. To investigate this, we performed 16S
metagenomic analysis of the bacteria from feces of non-
depleted and gd T cell-depleted (8 days, 3 weeks, and 8 weeks)
Tcrd-GDL mice. However, species diversity, as estimated by the
Shannon index, was not significantly different between the
groups (Supplementary Figure 4C). Moreover, on a
compositional level, the distribution of the families across the
samples was very similar (Supplementary Figure 4D).

In conclusion, absence of gd T cells did compromise neither
the structure and the function of the small intestinal mucosa nor
the composition of the intestinal microbiota of depleted Tcrd-
GDL mice.

gd T Cells Influence the Development of
IgA+ GC B Cells and the Structure
of the GCs
As most of the gd T cells in PPs are located within the GCs, we
next examined the influence of gd T cell on GC B cells. To this
end, we analyzed Vg1−/−mice, Vg4−/−/Vg6−/−mice, non-depleted
Tcrd-GDL mice, and Tcrd-GDL mice at 8 days, 3 weeks, and 8
weeks after gd T cell depletion. We chose these three time-points,
since 8 days after depletion no gd T cells are present in the PPs, at
3 weeks after depletion the gd T cells slowly start to regenerate,
and 8 weeks after depletion, the percentage of gd T cells is similar
as before depletion, giving us the opportunity to compare their
functions before and after regeneration (Supplementary
Figure 3A). Interestingly, we found a reduction of IgA+ GC B
cells in all mutant and depleted (8 days and 3 weeks) mice when
compared to non-depleted Tcrd-GDLmice. Only after 8 weeks of
depletion, when gd T cells are regenerated, the IgA+ GC B cells
increase again (Figures 3A, B), indicating that gd T cells are
important for the isotype switch towards IgA. However, the
relative frequencies of GC B cells normalized to B cells in Vg4−/
−/Vg6−/− mice did not change when compared to non-depleted
Tcrd-GDL control mice (Supplementary Figure 5A). Only in
the Vg1−/− mice we found a significant reduction of this
frequency (Supplementary Figure 5A), supporting the finding
that Vg1+/Vd6.3/2+ T cells, as IL-4 producers, are important for
isotype switch of GC B cells.

To further determine whether gd T cells are important for the
IgA class switch in vitro, we isolated B cells from the PPs and
stimulated them with LPS, in the presence or absence of the IgA-
inducing cytokines IL-4, IL-5, TGF-b, and IL-6 (Figures 3C, D)
(48). In the presence of all cytokines, B cells are able to switch
towards IgA, while in the absence of IL-4, this process was
compromised (Figures 3C, D). Interestingly, when gd T cells
were added to the culture, in the absence of IL-4, the number and
the frequency of mature IgA+ B cells were statistically increased
compared to the samples without gd T cells, consistent with our
in vivo findings (Figures 3C, D).

Next, we examined the structure of the DZ and the LZ of the
GCs by using two different markers, CXCR4 for the DZ and
Frontiers in Immunology | www.frontiersin.org 7
CD86 for the LZ (21, 53). Three weeks after gd T cell depletion,
Tcrd-GDL mice showed a decrease of the DZ/LZ ratio to a value
of 1.0 compared to Vg4−/−/Vg6−/− mice, non-depleted Tcrd-GDL
mice, and 8-day depleted Tcrd-GDL mice, which all presented a
DZ/LZ ratio of approximately 1.5. At the same time, Vg1−/− mice
presented a milder reduction of DZ/LZ ratio compared to 3-week
depleted Tcrd-GDL mice (Figures 4A, B).

To further corroborate the changes in the DZ and the LZ of
the GCs observed after gd T cell depletion, we performed
immunofluorescence staining with antibodies directed against
CXCR4 and CD86 in sections from the proximal, medial, and
distal parts of the PPs. Automated analysis of the pictures
confirmed a significant reduction of CD86+ GC B cells (LZ) in
3 weeks after gd T cell depletion Tcrd-GDLmice (Figures 4D, E),
confirming the data obtained by FACS analysis (Figures 4A, B).
On the other hand, Vg1−/− mice presented an increase in the DZ
area (Figures 4C, E). Moreover, while in untreated control Tcrd-
GDL mice the border of the DZ and LZ were in most of the cases
discernible, in Vg1−/− and Vg4−/−/Vg6−/− mice, the two areas
overlapped, thus altering the spatial organization of the GCs
(Figure 4E). These data indicate a role for gd T cells in keeping
the structure of the GCs.

As theDZand theLZ structure ofGCswas altered in the absence
of gd T cells, we tested whether this could alter the size of the GCs.
However, whenwe analyzed sections of PPs fromdepleted andnon-
depletedTcrd-GDL, Vg1−/−, andVg4−/−/Vg6−/−mice, the GC size was
comparable among all groups (Supplementary Figures 5B, C).

FDCs have an essential role in keeping GC structure by
providing high quantities of CXCL13, which is important for
the correct positioning of LZ GC B cells (16, 17, 19). However, we
did not find any differences in the amount and localization of
FDCs by using FDC-M1 and CD35 as markers, among all groups
(Supplementary Figures 6, 7).

Finally, to exclude the possibility that DTx treatment alone
would affect B cell dynamics in PPs, we examined GC B cells
(Supplementary Figure 3B), IgA+ GC B cells (Supplementary
Figure 3C), and DZ/LZ ratio (Supplementary Figure 3D) in
DTx-injected Tcrd-H2BeGFP mice, which are unresponsive to
DTx. However, we found no differences in control and injected
Tcrd-H2BeGFP mice (8 days and 3 weeks after the injection).

Taken together, these data further support the hypothesis that gd
T cells are important for the isotype switch ofGCB towards IgA via
production of IL-4 and for keeping up the structure of the GCs.

GC B Cells Proliferate Less in gd
T Cell–Depleted Mice
To investigate possible mechanisms underlying the reduction of
IgA+ GC B cells and the change in the structure of the GCs, we
analyzed the proliferation of cells within the GCs by the
expression of Ki-67. Proliferation and cell division is classically
restricted to the DZ of GCs (54, 55), but under certain conditions
it can also appear in the LZ of GCs, especially in mice (20, 21, 56).
Ki-67 expression was severely reduced 3 weeks after gd T cell
depletion in Tcrd-GDL mice, whereas in Vg1−/− and Vg4−/−/
Vg6−/−mice we did not find any significant differences compared
to non-depleted Tcrd-GDL mice (Figures 5A, B). However, in
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Vg1−/− and Vg4−/−/Vg6−/− mice, as previously highlighted, the
separation between the DZ and the LZ was impaired (Figure 4E).
To further determine whether GC B cell proliferation was altered
by the absence of gd T cells, we quantified GC B cells that
incorporate the thymidine analog BrdU during 2 h pulse in 3-
week gd T cell–depleted and non-depleted Tcrd-GDL mice
(Figures 5C, D). Significantly fewer BrdU+ GC B cells were
present in the depleted mice when compared to the non-depleted
mice, indicating that indeed gd T cells have an important role in
controlling GC B cell proliferation (Figure 5C, D).
Frontiers in Immunology | www.frontiersin.org 8
We next sought to test whether a direct interaction between
the gd TCR and B cells could be responsible for the changes in
the GCs observed above. Therefore, we injected Tcrd-H2BeGFP
mice once a week for 5 weeks with antibodies directed against the
gd TCR (clone GL3). No differences could be detected between
injected and control mice for IgA+ GC B cells (Supplementary
Figure 8A) as well as in the DZ/LZ ratio (Supplementary
Figure 8B). This implies that a direct interaction between gd
TCR and B cells is not responsible for the alteration of IgA+ GC B
cells and the structural changes of the GCs.
A

B

D

C

FIGURE 3 | gd T cells are involved in the generation of IgA+ GC B cells. (A, B) PPs were isolated from non-depleted and gd T cell–depleted (8 days, 3 weeks, and 8
weeks) Tcrd-GDL, Vg1−/−, and Vg4−/−/Vg6−/− mice. (A) FACS analysis of IgA+ germinal center (GC) B cells (CD19+, CD138−, GL7+, CD95+, IgA+). (B) Quantification of
IgA+ GC B cells (CD19+, CD138−, GL7+, CD95+, IgA+). Bar graph, mean ± SEM. n = 8–27 per group. Each dot represents an individual mouse. (C, D) Co-culture
experiments of gd T cells together with B cells isolated from PPs of Tcrd-H2BeGFP mice in the presence or absence of additional cytokines (100 ng/ml IL-4, 1 ng/ml
IL-5, 1 ng/ml TGF-b) and 10 ng/ml LPS as indicated in the graphs. To all conditions 1 ng/ml IL-6 was added 3 days after the beginning of the culture. (D) FACS
analysis was performed to quantify the percentage and absolute number of membrane IgA+ B cells (B220+, CD3−, IgM−, IgA+) cultured in presence or not of gd T
cells, LPS, and cytokines as indicated. Bar graph, mean ± SEM. n = 4–5. ANOVA test was applied with Tukey post-hoc test. *P < 0.05, **P < 0.01, ****P < 0.0001.
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gd T Cells Support the Formation of GC
B Cells During Salmonella Infection
As IgA+ GC B cells were reduced in absence of gd T cells, we
investigated the concentration of IgA in the feces of Tcrd−/−,
Vg1−/−, Vg4−/−/Vg6−/−, depleted, and non-depleted Tcrd-GDL
mice. IgA was significantly decreased in Vg1−/−, Vg4−/−/Vg6−/−,
and Tcrd−/− mice (Figure 6A), corroborating the finding that gd
Frontiers in Immunology | www.frontiersin.org 9
T cells contribute to the production of IgA in PPs. To further
determine the role of gd T cells in the IgA-dependent immune
response to an infection with a gut-associated pathogen, we used
the Salmonella enteric mouse model. The SL1344DaroA strain of
S. typhimurium, which has a metabolic mutation that attenuates
its virulence, was selected for this purpose (57). One day after gd
T cell depletion or mock depletion, Tcrd-GDLmice were infected
A B

D

E

C

FIGURE 4 | gd T cells affect the structure of GCs. (A) FACS analysis of dark zone (DZ; CD19+, CD138−, GL7+, CD95+, CXCR4high, CD86low) and light zone (LZ;
CD19+, CD138−, GL7+, CD95+, CXCR4low, CD86high) GC B cells of PPs. (B) Quantification of DZ/LZ ratio. Bar graph, mean ± SEM. n = 8–27 per group. ANOVA
test was applied with Tukey post-hoc test. (C, D) Quantification of CXCR4 and CD86 area of GCs. For the quantification, sections from the proximal, medial, and
distal part of the PPs were analyzed for each mouse. Each dot represents an individual cut. Bar graphs, mean ± SEM. n = 5 mice per group. ANOVA test was
applied with Tukey post-hoc test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. (E) Fluorescence microscopy of frozen sections of PPs from non-depleted and
gd T cell–depleted (8 days and 3 weeks) Tcrd-GDL, Vg1−/−, and Vg4−/−/Vg6−/− mice stained with anti-CXCR4 (red), anti-CD86 (blue), and DAPI (white) to detect the
nuclei. Scale bar, 50 µm. All sections were handled and treated similarly, and all pictures were acquired using the same settings.
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C

FIGURE 5 | Decreased proliferation in the DZ of GCs after gd T cell depletion. (A) Fluorescence microscopy of frozen sections of PPs from non-depleted and gd T
cell–depleted (8 days and 3 weeks) Tcrd-GDL, Vg1−/−, and Vg4−/−/Vg6−/− mice stained with anti-Ki-67 (green) and DAPI (white) to detect the nuclei. Scale bar, 50 µm.
All sections were handled and treated similarly, and all pictures were acquired using the same settings. (B) For the quantification, sections from the proximal, medial,
and distal part of the PPs were analyzed for each mouse. Each dot represents an individual cut. Bar graph, mean ± SEM. n = 5 mice per group. ANOVA test was
applied with Tukey post-hoc test. (C, D) Non-depleted and 3-week gd T cell–depleted Tcrd-GDL mice were injected with bromodeoxyuridine (BrdU) and analyzed 2
h after injection. (C) FACS analysis of BrdU+ GC B cells gated on GC B cells (CD19+, CD138−, GL7+, CD95+) from PPs. (D) Quantification of BrdU+ GC B cells
(CD19+, CD138−, GL7+, CD95+, BrdU+). Bar graphs, mean ± SEM. n = 4 mice per group. T-test was applied. Each dot represents an individual mouse. *P < 0.05,
**P < 0.01.
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with S. typhimurium and analyzed 7 days after the infection
(Figure 6B). gd T cell–depleted Tcrd-GDL mice exhibited
significantly higher bacterial burden compared to the non-
depleted mice in all the analyzed organs (PPs, spleen, and
mLNs) with the exception for SI (Figure 6C), indicating that
gd T cells can reduce the bacterial spread and clearance into
different organs. Moreover, analysis of GC B cells 7 days after the
infection showed a reduction in the frequency and absolute
number of GC B cells in gd T cell–depleted Tcrd-GDL mice
when compared to the non-depleted mice (Figure 6D).

Together, these data indicate that gd T cells are important
for mounting a proper humoral immune response against
S. typhimurium.
Frontiers in Immunology | www.frontiersin.org 11
DISCUSSION

The GC reactions require a coordinated interplay between
several cell types and cytokines to efficiently generate mature B
cells producing high-affinity IgA (4, 22, 58). So far, several studies
showed the influence of gd T cells in spleens and LNs on the GC
reactions, resulting in changed Ig isotypes, antibody production,
and TFH cell development (28, 59–61). However, the importance
of gd T cells for mucosal immune responses in PPs was not yet
systematically investigated.

Here we found that Vg1+ T cells represent the biggest subset
of gd T cells in PPs. A great amount of these Vg1+ T cells co-
expressed the Vd6.3/2 chain and produced IL-4, which promotes
A B
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FIGURE 6 | gd T cells contribute to the immune response against Salmonella infection. (A) Concentration of IgA isolated from feces of non-depleted and gd T cell–
depleted (8 days and 3 weeks) Tcrd-GDL, Tcrd−/−, Vg1−/−, and Vg4−/−/Vg6−/− mice were measured by ELISA. Bar graph, mean ± SEM. n = 3–12 per group. ANOVA
test was applied with Tukey post-hoc test. (B) Non-depleted or depleted Tcrd-GDL mice were orally infected for 7 days with Salmonella and analyzed at day 10.
(C, D) Non-depleted Tcrd-GDL or depleted Tcrd-GDL mice were orally infected for 7 days with Salmonella. (C) Quantification of colony-forming units (CFUs) from
PPs, spleen, mesenteric lymph nodes (mLNs), and small intestine (SI) of non-depleted and gd T cell–depleted (8 days) Tcrd-GDL mice. Bar graphs, mean ± SEM.
n = 5–6 per group. T-test was applied. (D) Analysis of germinal center (GC) B cells (CD19+, CD138−, GL7+, CD95+) of non-depleted and gd T cell–depleted (8 days)
Tcrd-GDL mice after Salmonella infection. Bar graphs, mean ± SEM. n = 6 per group. T-test was applied. Each dot represents an individual mouse. *P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001.
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the isotype switch of GC B cells towards IgA. This specific subset
was previously characterized as mainly resident in spleen and
liver, where it expressed a very restricted TCR repertoire (37).

Several studies highlighted the central role of IL-4 in CSR to
IgA (11–13) and proliferation of GCs (62, 63). So far, this
important cytokine was thought to be mainly produced by
TFH cells in PPs (19, 64, 65); however, we did not find any
significant differences in this T cell subtype. Probably, both gd T
and TFH cells are the great contributors to the production of IL-
4 in GCs. It has been described that in the LNs, gd T cells could
help TFH cells during their maturation through the release of
Wnt ligands (61). It was thus conceivable to find a similar
function in PPs; however, TFH cells in PPs develop from
different progenitors than in other secondary lymphoid organs
(66, 67). Moreover, GCs in PPs are constitutively formed due to
microbiota stimulation (68, 69), underlying the profound
differences between PPs and other secondary lymphoid organs.
Still, TFH cells have crucial roles in the production of antigen-
specific antibodies, GC reactions, and production of IL-4.

In the absence of ab T cells, GC reactions are still occurring.
Indeed, upon infection, GCs can be found in Tcrb−/−mice, which
lack ab T cells but not gd T cells (70). Another study could show
that SHM appears with the same frequency in Tcrb−/− mice
compared to control mice, highlighting that gd T cells can also
support SHM in the absence of ab T cells (71). As for IgA, in
non-immunized mice, their level, together with IgM and IgG,
was decreased in Vg1−/− mice (41). Also in another study, the
concentration of IgA in serum, saliva, and fecal samples was
reduced in Tcrd−/− mice (72). Additionally, after oral
immunization with cholera toxin and tetanus toxin, the
reduction of IgA was even stronger when compared to control
mice. Interestingly, for IgM and IgG levels, no effects could be
observed, indicating a specific role of gd T cells in PPs for the
production of IgA (72).

In humans, a specific gd T cell subset of “innate” Vg9+/Vd2+ T
cells expresses CXCR5, co-stimulatory molecules (ICOS and
CD40L), and produces IL-4, IL-10, and CXCL13 to help B cells
in development and production of IgA, IgG, and IgM (73). Co-
culture experiments of gd T cells and B cells showed that the
helping effect observed from gd T cells is as high as from TFH
cells (74–76). Interestingly, in patients who suffer from IgA
nephropathy, there is a positive correlation between the
proportion of IgA+ B cells and gd T cells. The enhancement of
IgA was abolished after removal of gd T cells (77). Therefore, it is
not surprising that besides ab T cells, gd T cells play an
important role in helping B cell maturation and switching to
IgA in GC reactions.

In summary, our data lead to a better understanding of the
role of gd T cells in PPs GC reactions. We propose that Vg1+/
Vd6+ T cells produce large amounts of IL-4 in PPs of mice and
specifically support CSR to IgA and proliferation of GC B cells in
mice. It remains to be determined whether Vg1+/Vd6+ T cells
need to recognize specific signals via their TCR or whether this
help is independent of cognate gd TCR antigen. In sum, gd T cells
in PPs help B cells to establish and sustain the GC reactions and
thereby, synergistically with local ab T cells, maintain the
Frontiers in Immunology | www.frontiersin.org 12
symbiosis of the gut and its microbiota and contribute to IgA-
dependent immune responses against intestinal pathogens.
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