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Abstract

Aberrant methylation of DNA sequences plays a criticle role in finding novel

aberrantly methylated genes and pathways in thyroid cancer (THCA). This study

aimed to integrate three cohorts profile datasets to find novel aberrantly methylated

genes and pathways in THCA. Data of gene expression profiling microarrays

(GSE33630 and GSE65144) and gene methylation profiling microarrays (GSE51090)

were downloaded from the Gene Expression Omnibus database. Aberrantly

methylated and differentially expressed genes were sorted and pathways were

analyzed. Functional and enrichment analyses of selected genes were performed

using the String database. A protein‐protein interaction network was constructed

using the Cytoscape software, and module analysis was performed using Molecular

Complex detection. In total, we identified 12 hypomethylation/high‐expression
genes and 30 hypermethylation/low‐expression genes at the screening step and,

finally, found 6 mostly changed hub genes including PPARGC1A, CREBBP, EP300,

CD44, SPP1, and MMP9. Pathway analysis showed that aberrantly methylated

differentially expressed genes were mainly associated with the thyroid hormone

signaling pathway, AMP-activated protein kinase (AMPK) signaling pathway, and

cell cycle process in THCA. After validation in the Cancer Genome Atlas database,

the methylation and expression status of hub genes was significantly altered and the

same with our results. Taken together, we identified novel aberrantly methylated

genes and pathways in THCA, which could improve our understanding of the cause

and underlying molecular events, and these candidate genes could serve as aberrant

methylation‐based biomarkers for precise diagnosis and treatment of THCA.
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1 | INTRODUCTION

Thyroid cancer (THCA) is a common endocrine malig-
nancy. Globally, the incidence of THCA has risen rapidly
in recent decades, and the prevalence accounts for
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approximately 5.11% of malignant head and neck tumors.
The average annual increase in the incidence of THCA is
nearly 6.6%, which is the highest among all cancers.1

THCA affects women more often than men (female‐to‐
male ratio 1:2 to 1:3), and it usually occurs in people aged
between 25 and 65 years.2 Multiple factors might cause
THCA, including obesity, smoking, overweight, and
radiation exposure.3 The accumulation of various genetic
and epigenetic alternations in thyroid follicular epithelial
cells is also regarded as an essential process in driving the
initiation and progression of THCA.4,5

As we know, epigenetics involves heritable alterations in
gene expression that are not mediated by changes in the
DNA sequence. DNA methylation is closely related to
embryonic development,6 regulation of gene expression,7

X‐chromosome inactivation,8 genomic imprinting,9 and
genomic stability.10 Aberrant methylation of DNA se-
quences, including hypermethylation of tumor‐suppressor
genes and hypomethylation of oncogenes, has been
implicated to play a critical role in tumorigenesis. Amongst
others, P16,11 Ras association domain family 1 isoform A,11

mammary serpin,12 and CDKN2/p16INK4A 13 are inactivated
in THCA due to hypermethylation in the promoter region
of the genes. Considering that there are no typical
symptoms in the early stages of thyroid neoplasia, early
detection of THCA by genetic diagnosis is crucial to guide
the treatment and to improve the prognosis of THCA.

Owing to the application of a high‐through sequencing
method, the identification of disease‐related biomarkers is
effectually stated in many research articles.14-20 Gene
expression profiling has been used to find various differen-
tially expressed genes (DEGs), and DNAmethylome analysis
has made it possible to identify differentially methylated
genes (DMGs). Althoughmultiple studies have demonstrated
specific genes with aberrant DNA hypermethylation or
hypomethylation in THCA,21,22 the comprehensive profile
and pathways of the interaction network remain elusive.

The comprehensive analysis of multiple datasets
possesses sufficient power to identify key genes and
pathways involved in cellular processes and biological
functions compared with individual investigations. In the
current study, data of gene expression profiling micro-
arrays (GSE33630 and GSE65144) and gene methylation
profiling microarrays (GSE51090) were integrated and
analyzed by a series of bioinformatics tools. Aberrantly
methylated DEGs and pathways were identified in
THCA. A protein‐protein interaction (PPI) network was
constructed, and hub genes were revealed. By this means,
we expect to find novel aberrantly methylated genes and
pathways in THCA, and shed light on the underlying
molecular mechanisms that orchestrate thyroid
carcinogenesis.

2 | METHODS

2.1 | Microarray data

In the current study, the gene expression profiling data
set (GSE33630 and GSE65144) and gene methylation
profiling data set (GSE51090) were obtained from Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/). A total of 60 THCA and 45 normal specimens
were obtained in GSE33630, while 12 THCA and 13
normal samples were obtained in GSE65144. Both of
these expression microarrays used the platform GPL570
(Affymetrix Human Genome U133 plus 2.0 Array,
Thermo Fisher scientific, USA). For the gene methylation
profiling microarray, GSE51090 included a total of
83 primary thyroid tumor samples and 8 adjacent normal
tissue samples. The platform of this methylation micro-
array was GPL8490 (Illumina HumanMethylation27
BeadChip).

2.2 | Data acquirement and processing

The raw data of the gene expression profiling datasets
for GSE33630 and GSE65144 were downloaded
from GEO public repositories. Subsequently, data
were normalized and analyzed using GeneSpring
GX 11.5 (Agilent Technologies Pty Ltd). The threshold
set for upregulated and downregulated genes was a
fold change ≥1.5 and P ≤ .05. For the gene methylation
profiling data set (GSE51090), we used GEO2R
online software to analyze the raw submitter‐supplied
data of microarrays and identify DMGs. GEO2R
is an interactive web tool that allows users to compare
different groups of samples in a GEO series to
screen genes that are differentially expressed in
experimental conditions. P < .05 and |t| > 2 were used
as the cutoff criteria to find DMGs. Finally, hypo-
methylation/high‐expression genes and hypermethy-
lation/low‐expression genes were selected using a
Venn diagram.

2.3 | Functional and pathway
enrichment analysis

Gene ontology (GO) analysis, including the cellular
component, molecular function, and biological process,
and the Kyoto Encyclopedia of Genes and Genomes
pathway enrichment analysis were conducted for the
selected hypermethylation/low‐expression genes and
hypomethylation/high‐expression genes by Search Tool
for the Retrieval of Interacting Genes (STRING). The
STRING (https://string‐db.org/) database was not only
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used to construct the PPI network but also offered
systematic and integrative functional annotation tools for
investigators to unravel the biological meaning behind an
extensive list of genes. P< 0.05 was regarded as statistical
significance.

2.4 | PPI network construction and
module analysis

The functional PPI analysis is essential for interpreting the
molecular mechanisms of key cellular activities in carcino-
genesis. In this study, we used the STRING database
to construct the PPI network of hypomethylation/high‐
expression genes and hypermethylation/low‐expression

genes, respectively. An interaction score of 0.4 was regarded
as the cutoff criterion, and the PPI was visualized.
Subsequently, the Molecular Complex detection in Cytoscape
software was conducted to screen modules within the PPI
network with Molecular Complex detection score >3 and
number of nodes >4. The top 3 hub genes were selected by
CytoHubba app in Cytoscape software.

2.5 | Validation of the hub genes
in the TCGA database

The Cancer Genome Atlas (TCGA) database has generated
comprehensive, multidimensional maps of the key genomic
changes in various types of cancers. MEXPRESS (http://
mexpress.be/) is a data visualization tool designed for the
easy visualization of TCGA expression, DNA methylation,
and clinical data, as well as the relationships between them.
To confirm our results, we used MEXPRESS to validate
hypermethylation/low‐expression hub genes and hypo-
methylation/high‐expression hub genes in TCGA database.

3 | RESULTS

3.1 | Identification of aberrantly
methylated and DEGs in THCA

The flowchart of this study is shown in Figure 1. For DEGs
of the gene expression microarray, 154 overlapping upregu-
lated genes (1473 in GSE65144 and 299 in GSE33630) and
238 overlapping downregulated genes (1498 in GSE65144
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F IGURE 1 The flowchart of this study. DEG, differentially
expressed gene; DMG, differentially methylated gene; GO, gene
ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI,
protein‐protein interaction; TCGA, the Cancer Genome Atlas

FIGURE 2 Identification of aberrantly methylated and differentially expressed genes was analyzed by Funrich software. Different color
areas represented different datasets. (A) Hypermethylation and low expression genes. (B) Hypomethylation and high expression genes
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and 300 in GSE33630) were identified. For DMGs of the gene
methylation microarray, 3231 hypermethylation genes and
1053 hypomethylation genes were found. Then, a total of
12 hypomethylation/high‐expression genes were obtained by
overlapping 1053 hypomethylation genes and 154 upregu-
lated genes; 30 hypermethylation/low‐expression genes
were obtained by overlapping 3231 hypermethylation
genes and 238 downregulated genes (Figure 2). The heat
map of 12 hypomethylation/high‐expression genes and
30 hypermethylation/low‐expression genes in GSE65144 is
shown in Figure 3.

3.2 | GO and pathway functional
enrichment analysis

The GO annotation and pathway enrichment analysis of all
the aberrantly methylated DEGs were implemented using
the online tool STRING. Hypermethylation/low‐expression
genes were enriched mainly in the response to hormone
and endogenous stimulus (Figure 4A), and hypomethyla-
tion/high‐expression genes were mostly enriched in the
regulation of transmembrane receptor protein, extracellular
matrix disassembly, and activin receptor signaling pathway
(Figure 4B). Cell component enrichment analysis indicated
that hypermethylation/low‐expression genes were corre-
lated with cytoplasm (Figure 4C), whereas hypomethyla-
tion/high‐expression genes were predominant at the
extracellular region (Figure 4D). As for molecular function,
hypermethylation/low‐expression genes were enriched

mainly in protein binding, transcription factor binding,
and enzyme binding (Figure 4E), while hypomethylation/
high‐expression genes were mostly enriched in carbohy-
drate derivative binding, receptor binding, and hyaluronic
acid binding (Figure 4F). The pathway analysis showed that
hypermethylation/low‐expression genes were involved in
the thyroid hormone signaling pathway, AMP‐activated
protein kinase (AMPK) signaling pathway, viral carcino-
genesis pathway, Notch signaling pathway, and pathway in
THCA (Figure 4G), while hypomethylation/high‐expression
genes significantly enriched in the transforming growth
factor beta (TGF‐beta) signaling pathway, drug metabolism,
and pyrimidine metabolism (Figure 4H).

3.3 | PPI network construction, module
analysis, and hub gene selection

PPI networks were constructed on the basis of the
STRING database. Module analysis was conducted by
Molecular Complex detection in Cytoscape software. Hub
genes were selected by cytoHubba in Cytoscape software.
For hypermethylation/low‐expression genes, the PPI
network is shown in Figure 5A, and modules are
displayed in Figure 6A,C. Significant core modules
demonstrated functions of the thyroid hormone signaling
pathway, FOXO signaling pathway, microRNAs in
cancer, transcriptional misregulation in cancer, Fc
gamma R‐mediated phagocytosis, and chemokine signal-
ing pathway (Figure 6B,D). Top 3 hub genes were
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FIGURE 3 The heat map of 12 hypomethylation/high‐expression genes and 30 hypermethylation/low‐expression genes in GSE65144



PPARGC1A, CREBBP, and EP300 (Figure 5B). The PPI
network of hypomethylation/high‐expression genes is
illustrated in Figure 5C, and modules are displayed in
Figure 6E,G. Significant vital modules showed functions
including the TGF‐beta signaling pathway, cytokine‐
cytokine receptor interaction, proteoglycans in cancer,
pyrimidine metabolism, drug metabolism, and metabolic
pathways (Figure 6F,H). Top 3 hub genes were CD44,
SPP1, and MMP9 (Figure 6D).

3.4 | Validation of the hub genes
in the TCGA database

Hypermethylation/low‐expression hub genes and hypo-
methylation/high‐expression hub genes were then validated

in another database TCGA to confirm the results. MEX-
PRESS is an intuitive web tool for the fast and straightfor-
ward querying and visualization of the relationship between
expression and methylation in TCGA on a single‐gene
level.23 In the default MEXPRESS plot, the samples are
ordered by their expression value. These views show how
hub gene expression and methylation are negatively
correlated, which was confirmed by the Pearson correlation
coefficients on the right of Figure 7. For the hypermethyla-
tion/low‐expression hub genes, normal samples tended to
have higher expression than tumor samples (Figure 7A‐C).
However, tumor samples tended to have higher expression
than normal samples for hypomethylation/high‐expression
hub genes (Figure 7D‐F). The outcomes are summarized in
Table 1. The methylation and expression status was
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F IGURE 4 The gene ontology annotation and pathway enrichment analysis of all the aberrantly methylated and differentially
expressed genes. (A) Biological process, (C) cellular component, (E) molecular function, and (G) KEGG of hypermethylation/low‐expression
genes. (B) Biological process, (D) cellular component, (F) molecular function, and (H) KEGG of hypomethylation/high‐expression genes.
The high enrichment score means that the genes were found more frequently in the particular ontology. KEGG, Kyoto Encyclopedia of
Genes and Genomes



significantly altered and the same with our results, which
suggested the stability and reliability of our findings.

4 | DISCUSSION

Exploring the underlying mechanisms of the initiation and
development of THCA not only has prognostic implications
but also may be helpful in monitoring the treatment
response, surveillance for tumor recurrence, and guidance
of clinical decisions. In recent years, microarrays based on
high‐throughput platforms have emerged as a promising
and efficient tool to screen the expression and methylation
levels of thousands of genes simultaneously in the human
genome. To our knowledge, the current study is the first to
collectively analyze the information of both gene expression
profiling microarrays and gene methylation profiling
microarrays in the development of THCA.

The GO enrichment analysis revealed that the
primary molecular functions of the hypermethylation/
low‐expression genes were in the response to hormone
and endogenous stimuli, while the hypomethylation/
high‐expression genes were enriched mainly in the
regulation of transmembrane receptor proteins, extra-
cellular matrix disassembly, and the activin receptor
signaling pathway. This finding is consistent with the
knowledge that endogenous hormones play a significant

role in THCA initiation and progression.24 The destruc-
tion of the extracellular matrix by enzymes often
involves in tumor invasion and metastasis. Activin
functions as a tumor‐suppressor protein and potently
inhibits the growth of primary cultures of human
follicular epithelial thyroid cells.25 Transmembrane
receptors, such as G protein‐coupled receptor 30, play
a fundamental role in cell proliferation, invasion, and
metastasis in THCA.26 The Kyoto Encyclopedia of Genes
and Genomes enrichment analysis of hypermethylation/
low‐expression genes showed that methylation may
affect the development and progression of THCA
through the cancer‐associated pathways and AMPK
signaling pathway. The AMPK pathway regulates both
iodide and glucose uptake in normal thyroid cells, and it
is highly activated in papillary thyroid carcinomas.27

The Kyoto Encyclopedia of Genes and Genomes path-
way analysis of hypomethylation/high‐expression genes
revealed that hypomethylated genes were involved in
the pyrimidine metabolism and TGF‐β signaling path-
way. Pyrimidine synthesis is vital for DNA replication in
tumor cells,28 and TGF‐β acts as a tumor suppressor to
impede progress of the cell cycle.29 Together, these
results suggest that hypermethylation and hypomethy-
lation play a critical role in cancer development.

The PPI network of hypermethylation/low‐expression
genes illustrates an overview of their functional
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FIGURE 5 PPI network and hub genes of aberrantly methylated and differentially expressed genes. (A) PPI network and (B) hub
genes for hypermethylation/low‐expression genes. (C) PPI network and (D) hub genes of hypomethylation/high‐expression genes.
PPI, protein‐protein interaction



connections, of which, the top 3 hub genes were selected:
PPARGC1A, CREBBP, and EP300. PPARG coactivator
1 alpha (PPARGC1A) functions as a mediator of the
transcriptional outputs triggered by metabolic sensors,
together orchestrating a network controlling cellular
energy expenditure. Increased PPARGC1A expression
might be an underlying feature of metastatic cancer
progression.30 The tumor‐suppressor gene EP300 plays an
essential role in cell proliferation and differentiation.
Somatic mutations of EP300 are implicated in different
types of cancer, including breast and ovarian cancers and
cancer cell lines.31 CREB binding protein (CREBBP) is
involved in the regulation of the cell cycle during the
G1/S transition. Therefore, PPARGC1A, CREBBP, and
EP300 might be candidate genes for aberrant methylation
that modulate energy metabolism, cell cycle, and
proliferation in THCA. After constructing the PPI
network for hypomethylation/high‐expression genes,
the top 3 hub genes were CD44, SPP1, and MMP9.

CD44 is a glycosylated transmembrane glycoprotein that
plays a role in sustaining proliferation of THCA cells. The
high expression of CD44 is a potential predictor of poor
prognosis.32,33 Secreted phosphoprotein 1 (SPP1) is a
matricellular glycoprotein whose expression is elevated
in various types of cancer and has been shown to be
involved in tumorigenesis and metastasis in THCA.34 The
function of matrix metalloproteinases (MMPs) is not only
in the degradation of the extracellular matrix but also in
development, angiogenesis, inflammation, cancer pro-
gression, and especially in promoting migration and
invasion of cancer cells.35 In summary, these 3 genes are
related to prognosis, tumorigenesis, and metastasis
of THCA.

The top 2 modules of the PPI network of hyper-
methylation/low‐expression genes were associated with
the thyroid hormone signaling pathway and Fc gamma
R‐mediated phagocytosis, suggesting that the hyper-
methylation mainly affects the expression of genes in
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F IGURE 6 Top 2 modules for aberrantly methylated and differentially expressed genes. Hypermethylation/low‐expression genes:
(A) module 1 and (B) the enrichment and pathway analysis of module 1. (C) Module 2 and (D) the enrichment and pathway analysis
of module 2. Hypomethylation/high‐expression genes: (E) module 1 and (F) the enrichment and pathway analysis of module 1; (G) module 2
and (H) the enrichment and pathway analysis of module 2



those pathways. The thyroid hormone signaling path-
way is related to THCA initiation and progression. Fc
gamma R‐mediated phagocytosis is responsible for
removing the target tumor cells. Core modules within
the PPI network of hypomethylation/high‐expression
genes possessed functions including the TGF‐beta
signaling pathway and pyrimidine metabolism, which
affects DNA replication and the cell cycle in tumor
cells.28

Previous studies using profiling arrays have mostly
analyzed either methylation or gene expression data, but
not both. Furthermore, individual investigations have
limited numbers of overlapping gene profiles and
insufficient power to identify critical genes and pathways.
Our research jointly analyzed information on both gene
expression profiling microarrays and gene methylation
profiling microarrays by bioinformatics analysis of
available microarray data. In this way, it is possible to
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FIGURE 7 Validation of the hub genes in the TCGA database. In the default MEXPRESS plot, the samples are ordered by their
expression value. These views show how hub gene expression and methylation are negatively correlated, which are confirmed by the
Pearson correlation coefficients on the right. (A‐C) For the hypermethylation/low‐expression hub genes, normal samples tended to have
higher expression than tumor samples. (D‐F) However, tumor samples tended to have higher expression than normal samples for
hypomethylation/high‐expression hub genes. TCGA, the Cancer Genome Atlas



come up with more reliable and precise screening results.
However, we validated only candidate aberrantly methy-
lated DEGs in the TCGA database. Further molecular
biological experiments are needed to confirm the func-
tion of the identified genes in THCA.

In summary, our study provides a comprehensive
bioinformatics analysis of aberrantly methylated DEGs
that may be involved in the progression and development
of THCA. In addition, we found 6 mostly changed hub
genes including PPARGC1A, CREBBP, EP300, CD44,
SPP1, and MMP9, which were significantly enriched in
several pathways, including those associated with the
thyroid hormone signaling pathway, AMPK signaling
pathway, and the cell cycle in THCA. These findings may
provide novel insights for unraveling the pathogenesis of
THCA, and these candidate genes could serve as aberrant
methylation‐based biomarkers for the precise diagnosis
and treatment of THCA.
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