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The origin and early evolution of animal development remain among the many
deep, unresolved problems in evolutionary biology. As a compelling case for the
existence of pre-Cambrian animals, the Ediacaran embryo-like fossils (EELFs)
from the Weng’an Biota (approx. 609 Myr old, Doushantuo Formation, South
China) have great potential to cast light on the origin and early evolution of
animal development.However, their biological implications can be fully realized
only when their phylogenetic positions are correctly established, and unfor-
tunately, this is the key problem under debate. As a significant feature of
developmental biology, the cell division pattern (CDP) characterized by the
dynamic spatial arrangement of cells and associateddevelopmentalmechanisms
is critical to reassess these hypotheses and evaluate the diversity of the EELFs;
however, their phylogenetic implications have not been fully realized. Addition-
ally, the scarcity of fossil specimens representing late developmental stages with
cell differentiation accounts for much of this debate too. Here, we reconstruc-
ted a large number of EELFs using submicron resolution X-ray tomographic
microscopyandfocusedon theCDPsandassociateddevelopmentalmechanisms
as well as features of cell differentiation. Four types of CDPs and specimens
with cell differentiation were identified. Contrary to the prevailing view, our
results together with recent studies suggest that the diversity and complexity of
developmental mechanisms documented by the EELFs are much higher
than is often claimed. The diverse CDPs and associated development features
including palintomic cleavage, maternal nutrition, asymmetric cell divisions,
symmetry breaking, establishment of polarity or axis, spatial cell migration and
differentiation constrain some, if not all, EELFs as total-group metazoans.

This article is part of the theme issue ‘The impact of Chinese palaeontology
on evolutionary research’.
1. Introduction
Molecular clock estimates indicate that animals probably originated before the
Cryogenian [1,2], but the current fossil record does not support this proposal
well [3]. The exceptionally preserved Ediacaran embryo-like fossils (EELFs)
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Figure 1. Ediacaran embryo-like fossils with equal and synchronous cell division and their extant analogues. (a–f ) Fossil embryos with equal and synchronous
cleavage at different stages. (g,j ) Diagrams showing 4- and 8-celled embryos with spiral cleavage pattern; (h1–h4) a 4-celled fossil embryo from different views. (i)
Transparent model for a 4-celled fossil embryo. (k1–k5) An 8-celled fossil embryo from different views. Note the well-preserved nuclei displayed in (k2), (k4) and
(k5). (l–q) Early cleaving process of living sponge Spongilla lacustris (after [19,20]).
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with cellular and subcellular structures have great potential to
deepen our understanding of the gap between the fossil
records and the molecular clock estimates, since they were
initially described as animal embryos [4] and thought to
‘open a new era in the study of early animal evolution’ [5,
p. 529]. This interpretation has been supported by many
later studies [6–16]. And what is more important, the age of
the EELFs, roughly around 610 Myr old [17], is much earlier
than the celebrated, megascopic Ediacaran Biota.

The most abundant EELFs from the Weng’an Biota are
spherical with diameter around 450–800 µm [18]. During cell
division, their total volumes remain unchanged while the
daughter cells increase in number and decrease in volume
(figure 1). Cell division without cytoplasmic growth, i.e. palin-
tomic cleavage, can be found in metazoan embryos. And
largely because of this feature and the 2n pattern of cell
number growth, the EELFs were interpreted as animal embryos
[4,11]. However, the animal interpretation has been challenged
by alternative hypotheses, including giant bacteria [21], non-
metazoan holozoans (mesomycetozoan-like protists) [22], stem
metazoans [23,24] or multicellular algae [24,25], because, at
least inpart, palintomiccleavage isnot anexclusive characteristic
of animal embryos, and it can also be found within some non-
metazoan holozoans (e.g. mesomycetozoans, also known as
ichthyosporeans) and green algae (e.g. volvocine algae) [25–27].

The debate on the affinities of the EELFs largely derives
from a viewpoint that these cleaving EELFs were morphologi-
cally simple with extremely low diversity [22], yielding very
few phylogenetic signals [18,22,26]. The EELFs with equal
and synchronous cleavage [4] have long been thought to rep-
resent the whole story of the EELFs from the Weng’an Biota
[22,26]. A few previous studies have reported EELFs with dis-
tinctive cell division patterns (CDPs), including polar-lobe
formation [8,15] and meroblastic cleavage [16], but the signifi-
cance of these discoveries has not been fully realized [18,26].
Additionally, animal adult forms reported previously, including
small bilaterianVernanimalcula [28] and tubular cnidarians [29],
are not widely accepted [26,30–32], leading to a conclusion that
these abundant EELFs are non-metazoan protists without com-
plex later developmental stages [22,26]. This viewpoint was
challenged by a discovery of some EELFs (Megaclonophycus-
stage Megasphaera) with ‘matryoshkas’ which were interpreted
as stem-group metazoans with cell differentiation and
germ–soma separation [24]. But this hypothesis is likewise
controversial [26,33] (but see [34]). More recent studies on
EELFs such asHelicoforamina [35] andCaveasphaera [36] revealed
cryptic diversity and holozoan affinity for these EELFs.
However, it is still unclear how diverse the EELFs are.
Furthermore, the exact phylogenetic positions within the
holozoan tree for different EELFs remain contentious.

To test these competing hypotheses, we reconstructed a
large number of the Weng’an EELFs using submicron resol-
ution X-ray tomographic microscopy and scanning electron
microscopy. Our new results not only are helpful to under-
standing the biodiversity of the EELFs, but also provide us
significant evidence to reconstruct their developmental
sequences and constrain their phylogenetic positions.

2. Results
(a) Type 1: Ediacaran embryo-like fossils with equal and

synchronous cleavage
The fossils with equal and synchronous cleavage (figure 1a–f )
were the first EELFs reported from the Weng’an Biota [4,11].
They were assigned into a morphological taxon, Megasphaera
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Figure 2. Ediacaran embryo-like fossils with asynchronous cleavage (a–d ) and bilateral cell arrangement (e–l ). (a–d ) A 7-celled specimen with well-preserved
nuclei. (a,c) Surface renderings with different views. (b,d ) Transparent renderings of (a) and (c), respectively. Note that the small cells (cell-1 to cell-6) possess one
nucleus each (green and cyan in (b)) while the large cell-7 possesses two nuclei ( pink in (d )). (e–i) A specimen at 7-cell stage from different views. (i,f ) Trans-
parent renderings showing bilateral cell arrangement. ( j–l ) A 7-celled specimen. ( j ) Surface rendering, (k,l ) transparent renderings from different angles.
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[11,37]. As iconic members of the Weng’an Biota, however, the
CDP of these EELFs was poorly understood [4,18,23]. In
addition to palintomic cleavage, these EELFs have several dis-
tinctive features. First, they usually have a single-layered
smooth (figure 1a–c,e,f ) or sculptured envelope (electronic sup-
plementary material, figure S1 K–Q) [38] (but see an exception
in Fig. 22.8 of [37]) with an even number of equal-sized cells
inside, suggesting that they were undergoing equal and syn-
chronous cleavage. This is why the number of the cells is
equal to 2n (n = 0, 1, 2, 3…), and the daughter cells are always
equal to each other in size [4,23]. Second, the geometric
relationships between the cells at early cleaving stages are regu-
lar, stable and consistent (figure 1, electronic supplementary
material, figure S1). For example, the cells are always organized
as a tetrahedron at the 4-cell stage (figure 1h,i), and the 4-, 8-
and 16-celled specimens have specific spatial arrangements
of cells similar to extant animal embryos with spiral cleavage
(figure 1g–k). Third, a large number of specimens possess
large intracellular structures (LISs) (figure 1k) and small spheri-
cal granules within the cells. The origin of the LISs has been
much more contentious [7,22,23,39]; however, based on high-
resolution reconstructions and computed tomographic quanti-
tative analysis as well as comprehensive taphonomic analysis,
they have been shown to be cell nuclei [40,41].

(b) Type 2: EELFs with equal and asynchronous
cleavage

Some EELFs with equal but asynchronous cleavage are also
common in the Weng’an Biota [23]. At each division, the
daughter cells are equal-sized, but one cell divided slower
than the others, giving rise to a temporary large cell that is
twice as big as the others. For example, the specimen illus-
trated in figure 2a–d has six small cells and a large cell [40].
Quantitative computed tomographic analysis shows that the
large cell is almost twice as big as the other cells (electronic
supplementary material, table S1). Furthermore, the large
cell possesses two nuclei, and each nucleus has a similar
size to the other nuclei in the six small cells (electronic sup-
plementary material, table S1). All the data suggest that the
large cell is ready for the third round of cytokinesis while
the other six cells have finished the third round of cell div-
ision. In summary, the EELFs with equal and asynchronous
cell division usually have an uneven number of cells, and
the cell with a slower pace of division is twice as large as
the others. Apart from asynchronous cell division, the other
features, including spatial arrangement of cells, cell compac-
tion and preservation of nuclei, are similar to those of type 1
EELFs.

(c) Type 3: EELFs with bilaterally symmetric cell
arrangement

Here are shown for the first time someEELFs from theWeng’an
Biota with a bilaterally symmetric cell arrangement. For
example, the two specimens in figure 2e–l were undergoing
asynchronous cell division, and this is why the cell number of
each of the two specimens is seven (cell number does not fit
2n pattern). Furthermore, the cleaving cells in the two speci-
mens are not equal in size, and they can be assigned into
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Figure 3. Ediacaran embryo-like fossils undergoing unequal and asynchronous cleavage and their extant analogue. (a–f ) Different views of 2-cell stage specimens;
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three classes in termsof size. For instance, among the seven cells
of the specimen illustrated in figure 2e, cell-5 is the largest one,
and cells 1, 2, 3 and 4 are intermediate,while cells 6 and7 are the
smallest ones. When compared with the 7-celled specimen in
figure 2a–d, it is apparent that the relative cell sizes and arrange-
ment in the two 7-celled specimens displayed in figure 2e–l are
different, suggesting that the unequal sizes of the cells result
from both asynchronous and unequal cell divisions. What is
more important, the spatial cell arrangement of the two speci-
mens displays obvious bilateral symmetry, which is different
from that of any EELFs reported previously. This bilaterally
symmetric cell arrangement reflects potential developmental
regulation on theorientations of cell divisionplanes, suggesting
the establishment of polarity or axis in this type of EELFs.

(d) Type 4: EELFs with unequal and asynchronous
cleavage

Here, we report a unique group of EELFs with unequal, asyn-
chronous cleavage, and show specific cell arrangement
patterns (figure 3). Two specimens of this type of EELF
were reported from the Weng’an Biota [6]; however, they
have been overlooked because they lack detailed
investigation. Based on a large number of specimens, we
established a developmental sequence marked by unequally
asynchronous cell division and a traceable large polar cell
through different developmental stages (figure 3). Synchro-
tron and nanofocus tomographic microscopy reveal several
distinct features of these fossils. First, similar to other
EELFs, their cell division is by palintomic cleavage, but the
number of cells does not follow the typical 2n pattern because
of the asynchronous cell division. Instead, the cell number
increases from 1 to 2, and then to 3, 4, 5 and so on. Second,
the asymmetric cell division started to happen from the
first round of cleavage and continued to much later stages,
giving rise to a giant cell. The small cells formed a cap-like
structure and covered the giant cell. Therefore, each specimen
has a polarity marked by the axis through the cap of small
cells to the giant cell. Third, the size of the giant cell
decreased gradually from early to later cleaving stages (the
diameter ratio of the giant cell to the whole specimen
decreased from ca 89% at the 2-cell stage to 53% around the
15-cell stage), but it always was relatively larger than the
rest of the cells at each cleaving stage, making it traceable
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through each developmental stage. Meanwhile, the cap of
small cells grew larger from early to later stages and even-
tually embraced the giant cell, probably via cell migration
(figure 3r,s). Fourth, most specimens illustrated in figure 3
are naked, without envelopes, but the complete specimens
in fact possess bi-layered envelopes, and the inner layer
is thin and smooth (figure 3a,b,e,f; electronic supplemen-
tary material, figure S2A–D) while the outer layer is
thick and ornamented (electronic supplementary material,
figure S2B–D), making them different from the type 1
EELFs (electronic supplementary material, figure S1),
though both specimens have been assigned to the same
morphological taxon, Megasphaera ornata [18]. Finally, excep-
tionally preserved subcellular granules with spherical or
oval shapes can be observed in the majority of these EELFs
(electronic supplementary material, figure S3). Different
from fossilized nuclei, the granules always appear in large
number, and have much smaller sizes, ranging from less
than 10 µm to about 50 µm. The tomographic data suggest
that the granules were coated by a membrane (electronic sup-
plementary material, figure S3I–L). These coated granules
have been widely interpreted as nutrient sources such as
yolk granules or lipid droplets [23,40].

(e) Type 5: elongate EELFs developing from cleaving
embryos to late stages with cell differentiation

Herewe present a collection of EELFs bearing elongate olive- or
peanut-like shapes (figures 4 and 5). Tomographic reconstruc-
tions suggest that some specimens were permineralized at
early cleavage stages. As illustrated in figure 4, three specimens
are of the 2-cell stage (figure 4a–k) while another one is of the
8-cell stage (figure 4l–t). All the specimens at different cleavage
stages are similar to each other in size, around 1 mm long and
0.4–0.5 mm wide, suggesting that they were undergoing
palintomic cell division. These elongate cleaving specimens
have an ornamented envelope (figure 4g,h), similar to those
in spherical cleaving EELFs reported previously (electronic
supplementary material, figure S1 K–Q). Nevertheless, many
cleaving EELFs had secondarily lost their ornamented envel-
opes (figure 4a–f,l,m). The two cells of the specimens in
figure 4a–k detach from each other after cytokinesis. Such a fea-
ture resulted from degradation during post-mortem processes.
This interpretation is supported by taphonomic experiments
showing that embryonic cells of living sea urchins became
rounded and disaggregated during initial degradation [43].
In the specimen displayed in figure 4n–t, the cleaving cells
with tightly sutured polyhedral shapes maintain their original
geometric relations.

Some exquisite intracellular structures have been pre-
served in these cleaving specimens. For example, the two
cells of the specimen in figure 4g–k contain many small
spherical structures (figure 4j,k,w, x; electronic supplementary
material, movies S1 and S2), which are ca 10–20 µm in diam-
eter and were interpreted as lipid drops or yolk granules [23].
The cells of the specimen displayed in figure 4l–t preserved
nuclei, one for each (figure 4s,t,y,z; electronic supplementary
material, movie S3).

In addition to these cleaving specimens, some other
elongate EELFs exhibit three concentric layers (electronic
supplementary material, figures S4 and S5). One typical speci-
men shown in figure 5a is 1.2 mm long and 0.4–0.5 mm wide
with a sculptured surface. High-resolution tomographic recon-
struction and scanning electronmicroscopic (SEM) observation
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suggest that the specimen is tri-layered with membrane-like
boundaries between the three layers (figure 5b–k; electronic
supplementary material, figure S4A,C,D). The outer layer
(red in figure 5b; L1 in figure 5c0,h0) consists of three thin
laminae (electronic supplementary material, figure S5A,B).
The outer lamina has an ornamented surface and is uniform
in thickness, while the middle lamina is not uniform in thick-
ness. Underneath the middle lamina, there is the third
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lamina, a thin membrane-like structure (electronic supplemen-
tary material, figure S5B,E), which is ca 5 µm in thickness,
separating the outer layer and the middle layer.

The inner layer looks like an olive-shaped core (cyan in
figure 5b; L3 in figure 5c0,h0) with an undulating surface defined
by a membrane-like structure (figure 5c). Intriguingly, this layer
differentiated into dark (L3-d in figure 5c0) and bright (L3-b in
figure 5c0) areas with distinct grey values. Energy-dispersive
X-ray spectroscopy (EDS) elemental mapping indicates that
the specimens are almost homogeneous in their chemical
composition, with both the dark and bright areas being phos-
phatized (electronic supplementary material, figure S6).
However, a slight difference in Ca depletion and C enrichment
in the inner layer (electronic supplementary material, figure
S6A2–A3)wasobserved, implying thatpossibleorganic remains
(e.g. kerogen) were preserved in the inner layer. Though the
signal of C could be altered by the surrounding epoxy, the Ca
depletion supported this inference. Therefore, both the chemical
composition and the packing density of the initial textures of the
biological structures which have been permineralized by nano-
metre-sized, randomly oriented apatite crystals (electronic
supplementary material, figure S5) that render the contrast
seen in X-ray and electron images. In the light of high-resolution
tomography,multicellular structuresof the inner layerhavebeen
identified (figure 5c–s; electronic supplementary material,
movie S4).However, themulticellular structures arenot uniform
since many ‘cell clusters’ have developed (figure 5h,l–s). These
cell clusters were membrane-bounded and separated from the
matrix. Additionally, a number of spherical vesicles with differ-
ent sizes can be observed in this layer (figure 5l,n,q,r,s,
arrowheads). These vesicles are unlikely to be cellular and are
generally smaller than the cell clusters.

The middle layer (yellow in figure 5b; L2 in figure 5c0,h0)
has decayed much relative to the other two layers. However,
remains of the biological structures of this layer can still be
observed (figure 5d–h; electronic supplementary material,
movie S4). More specimens with three concentric layers are
displayed in electronic supplementary material, figure S4,
and some of them show well-preserved middle layers with-
out typical void-filling mineralization but with multicellular
structures (e.g. electronic supplementary material, figure
S4F–J,K–P).

We propose that the elongate EELFs with palintomic
cell cleavage in figure 4 are of early developmental stages,
while the specimens possessing tri-layered architecture
(electronic supplementary material, figures S4 and S5) have
developed into late stages with cell differentiation. The
elongate EELFs have been assigned into a life cycle of spheri-
cal Megaspheara (type 1 EELFs) as late developmental stages
undergoing germination or propagule release [22]. However,
our new evidence of parallel early cleaving stages shows that
they are not late developmental stages of spherical
Megasphaera.
3. Discussion
(a) Cell division patterns, developmental sequences and

subcellular structures reflect biology rather than
geology

Nearly all of the phosphatized EELFs from the Weng’an Biota
have undergone taphonomic and diagenetic processes [44].
Indeed, the shapes and sizes of cells could be altered to some
extent during post-mortem and diagenetic processes, and
EELFs with bad quality of preservation are quite common in
the Weng’an Biota [14]. However, the logic of these arguments
cannot be used to deny that biological features could be pre-
served in some specimens with high fidelity. For example,
the regular cell arrangements and regular changes of cell
sizes in the four types of EELFs characterized by distinctive
CDPs, as well as the subcellular structures including nuclei
(in type 1 and type 2 EELFs) and nutritional granules (in
type 4 EELFs) (table 1), suggest that they did not suffer much
from diagenetic alteration. The CDPs and development
sequences do represent biological features rather than geologi-
cal artefacts, because taphonomic and diagenetic processes can
destroy rather than generate regular cell arrangements [43]. In
particular, we believe that the post-mortem or diagenetic pro-
cesses cannot generate complex structures such as the
bilaterally symmetric arrangement of cells in type 3 EELFs
(figure 2) and the dynamic development of type 4 EELFs
(figure 3). Furthermore, some complex developmental patterns
of EELFswith polar-lobe formation [8,15] andmeroblastic clea-
vage [16] reported previously cannot be satisfactorily
interpreted as diagenetic artefacts. Some cleaving EELFs with
more than three cells could generate artefacts similar to
polar-lobe formation by losing one or more cells during post-
mortem processes, but in these cases, they lack a neck-like
structure (polar-lobe neck) bridging the cytoplasmic polar
lobe and the host cell [15]. Furthermore, post-mortem decay
cannot produce the whole developmental sequence of polar-
lobe formation observed in the EELFs [8,15]. Quantitative
analysis showing linear relationship between the sizes of
polar lobes and the cells at different developmental stages is
also against the interpretation of diagenetic artefacts [8].

In summary, we argue that all the CDPs mentioned above
and the developmental sequences of type 1 and type 4 EELFs
cannot be explained as diagenetic artefacts; more likely, they
provide critical evidence of developmental biology. Up to
now, the diverse CDPs of these EELFs have been largely over-
looked; therefore, the developmental mechanisms and
associated phylogenetic implications underlying the diverse
CDPs have been grossly underestimated.

(b) Associated developmental mechanisms and
phylogenetic implications of cell division patterns

During the last two decades, continuing discoveries have
shed new light on the biology of EELFs. For example,
the exceptional preservation of cell nuclei and complex
ornamented envelopes provide strong evidence of eukaryotic
origin for the EELFs [12,13,40], and this viewpoint has
been widely accepted [18,26]. Recent studies on the EELFs
including Caveasphaera and Helicoframina rejected algal
interpretations and attributed them to be holozoan with
strong confidence [35,36]. Within the tree of Holozoas, three
competing hypotheses on the nature of these EELFs have
crystallized, i.e. non-metazoan holozoans [22], stem-group
metazoans [18,23,24] or crown-group metazoans [8,16]. The
well-preserved EELFs with diverse CDPs and developmental
processes presented here and previously reveal that their
development involved several specific biological features
(tables 1 and 2), including palintomic cleavage (all the Weng’an
EELFs), complex envelopes (all the Weng’an EELFs), maternal
nutrition (e.g. type 1 [23], type 4, type 5 and Caveasphaera
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[36]), asymmetric cell divisions (e.g. type 3, type 4 and polar-lobe-
forming EELFs [8,15]), symmetry breaking (e.g. type 4 and polar-
lobe-formingEELFs [8,15]), establishment of polarities or axes (e.g.
type 3, type 4 and meroblastic EELFs [16]), spatial cell migration
(e.g. type 4 and Caveasphaera [36]) and spatial cell differentiation
and separation (e.g. type 5 EELFs and EELFswith ‘matryoshkas’
[24]). This suite of features offers critical evidence to test the
competing hypotheses for the EELFs.

Some extant non-metazoan holozoans (e.g. ichthyospor-
eans) use palintomic cell division to reproduce propagules
[22,45]. In term of CDP, both equal and unequal cell division
occur in different species [46], giving rise to specific cell
arrangements that do look similar to type 1 or type 4
EELFs of certain stages. However, when the developmental
processes (e.g. sequences of type 4) are taken into account,
the similarity between them is much lower [45,46]. Moreover,
there are no proper analogues for type 3 EELFs and mero-
blastic cleavage in terms of CDP. As reproductive cells, the
propagules of ichthyosporeans aggregate within a cyst to
form a temporal multicellular organism that normally lacks
body polarity or axis. They do show temporally regulated
cell type differentiation during life cycles [47–50], but spatial
cell differentiation has not been reported in these metazoans’
relatives [47,48,50]. On the contrary, the elongate EELFs
(type 5) at later stages show distinct spatial cell differentiation
and possible separation. Similar features interpreted as germ–
soma separation have also been reported from some spherical
EELFs with matryoshkas [24]. Even though we do not know
whether the cell cluster separation in elongate EELFs rep-
resents germ–soma differentiation or not, these complex
features characterized by spatial cell differentiation and separ-
ation never occur in any non-metazoan holozoans [24]. Hence,
the diverse CDPs and associated developmental processes
suggest that at least some types of these EELFs, if not all, are
more complex than extant metazoans’ unicellular relatives.

Some authors have hypothesized that the EELFs could be
multicellular algae [25,51], even though no proper algal ana-
logues have been found for these diverse EELFs [24,35,36].
Multicellular algae, including green, red and brown algae,
have a great variety of morphology, developmental processes
and life cycles; nevertheless, palintomic cleavage with a regu-
lar CDP only occurs in embryos of volvocine algae [25,26].
Though the early cleaving process of volvocine embryos
could be broadly compared with type 1 EELFs to some
extent [25], the former use cytoplasmic bridges to link the
cells and this unique feature does not occur in any EELFs
[24]. Furthermore, according to molecular clock estimates,
volvocine algae probably arose during the Triassic, about
400 Myr later than the EELFs [52], and it is widely accepted
that volvocine algae represent a recent independent origin
of multicellularity [53]. In embryos of red and brown algae,
palintomic cell division only occurs in several early rounds
of cell division, and almost all red and brown algal embryos
are naked or not free-living—none developed within a thick,
ornamented envelope. Obviously, this is not the case for the
EELFs. Different from the algal thalli from the Weng’an
Biota, which are always naked [54], the type 5 EELFs at late
stages with complex cell differentiation and cell cluster separ-
ation still lived within a very thick, multi-layered envelope,
suggesting that they are unlikely to be multicellular algal
thalli, because algal thalli need sunlight to survive, and
obviously thick, multi-layered ornamented envelopes are
not good for photosynthesis.



Table 2. Developmental mechanisms of diverse Weng’an Ediacaran embryo-like fossils (EELFs).

EELFs development feature reference

type 1 Megasphaera palintomic cell division, complex envelope, maternal nutrition this study; [4]

type 2 Megasphaera palintomic cell division, complex envelope, maternal nutrition this study; [23,40]

type 3 Megasphaera palintomic cell division, asymmetric cell division this study

type 4 Megasphaera palintomic cell division, complex envelope, maternal nutrition, asymmetric cell division, symmetry

breaking, polarity (body axis), spatial cell migration

this study; [6]

type 5 Megasphaera palintomic cell division, complex envelope, maternal nutrition, spatial cell differentiation and separation this study

type 6a Megasphaera palintomic cell division, complex envelope, spatial cell differentiation and separation, programmed cell

death

[24]

Caveasphaera palintomic cell division, complex envelope, maternal nutrition, symmetry breaking, polarity (body axis),

spatial cell migration

[36]

Helicoforamina palintomic cell division, complex envelope, maternal nutrition [35]

Spiralicellula palintomic cell division, complex envelope, maternal nutrition [37,40]
aType 6 = Megaclonophycus-stage Megasphaera with matryoshkas [24].
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Within the extant animal kingdom, the diverse embryonic
cleavage patterns with various development processes provide
appropriate analogues for the EELFs. From the perspective of
geometric relationships of cleaving cells, the CDPs of type 1
and type 2 EELFs follow the geometry of spiral cleavage of
animal embryos. Additionally, a similar early cleavage pattern
can be found in some living sponges, for example Spongilla
lacustris (demosponge) [19] (figure 1l–q) andHalisarca dujardini
(demosponge) [6,20]. A slight difference is that the embryonic
cells of S. lacustris aggregate loosely without strong compac-
tion. In type 1 EELFs, cells were closely packed during early
stages (i.e. Parapandorina-stage of Megasphaera), resulting in
polyhedral geometries (figure 1), and at the late stage
(i.e. Megaclonophycus-stage Megasphaera), as illustrated in elec-
tronic supplementary material, figure S7, cell compaction
only occurred in the surface cell layer, leaving the internal
cells loosely aggregated. Therefore, the closely packed surface
cells have faceted shapes without gaps in between (electronic
supplementary material, figure S7A–C), while the internal
cells are round with detectable intercellular space (electronic
supplementary material, figure S7D). The morphological
variation between the surface and internal cells has been
interpreted as the onset of cell differentiation, and the com-
pacted polygonal surface cells may be the precursors of
epithelia [24].

The type 3 EELFs with a distinct cell arrangement charac-
terized by bilaterial symmetry reflect precise control over the
orientation of the cell division planes, and a bilateral cleavage
pattern also occurs in embryos of extant animals such as
tunicates [55]. The developmental sequence of the type 4
EELFs is comparable to embryonic developments of certain
living animals; for example the embryos ofAsplanchna ebbesbor-
nii (rotifer) have a very similar developmental process with
unequal and asynchronous cleavage (figure 3t1–t8) [42]. Fur-
thermore, they also show striking similarities in envelopes
and subcellular structures. The embryos of A. ebbesbornii have
ornamented, bi-layered envelopes (electronic supplementary
material, figure S2E–G) and numerous spherical yolk granules
(figure 3t1) in the embryonic cells [42]. Comparable bi-layered,
ornamented envelopes (electronic supplementary material,
figure S2A–D) and subcellular granules (electronic supplemen-
tary material, figure S3) have been observed in the type 4
EELFs. In type 5 EELFs, membrane-bounded cell clusters
developed within the inner layer, suggesting possible cell
differentiation and separation. If the middle layer proves to
be a biological structure rather than a diagenetic artefact, this
organism may have developed two cellular layers.

In summary, the diverse CDPs, developmental sequences
and associated development featuresmentioned above suggest
that someWeng’an EELFs, if not all, aremore complex than the
extant unicellular relatives of metazoans in terms of develop-
mental biology. This conclusion has also been supported by
detailed investigations on Caveasphaera [36] and Helicoforamina
[35]. In this context, some Weng’an EELFs with more complex
developmental processes and biological features (e.g. the type
4 EELFs, type 5 EELFs, type 6 EELFswithmatryoshkas,Caveas-
phaera and Helicoforamina) are in favour of the total-group
metazoan scenario (red line in figure 6), because the combi-
nation of these complex features (tables 1 and 2) can only be
found in metazoans or stem-group metazoans [26,27,47,48].
Nevertheless, it is hard to further constrain the phylogenetic
positions for some simpler Weng’an EELFs (for example the
type 1 EELFs, type 2 EFLFs and Sporosphaera [56]) within the
holozoan tree (blue line in figure 6), because we still cannot
completely reject the possibility that these simple EELFs
could be extinct metazoans’ unicellular relatives (non-
metazoan holozoans), given that they bear no unambiguous
apomorphic characters of total-group metazoans based on
current evidence.

Contrary to taking all the Weng’an EELFs to be one clade
with the same affinity [18,22,23,25,26,51,57], we propose that
these Weng’an EELFs probably represent various clades with
different phylogenetic positions within the holozoan tree.
Developmental biology of Helicoforamina revealed that the
diversity of these Weng’an EELFs is much higher than pre-
viously thought [35]; however, how diverse they are remains
unclear. We argue that the EELFs represented by different
developmental mechanisms highlight the biological diversity
of the EELFs from the Weng’an Biota. Given that the EELFs
contain a variety of forms representing different clades



Filasteria

choanoflagellates

Fungi MetazoaIchthyosporea

Opisthokonta

Holozoa

Figure 6. A simplified phylogenetic tree of the Holozoa, with Fungi as the
outgroup. The Weng’an EELFs were pinned to the holozoan tree with a
loosely constrained range of positions (indicated in blue) [35,36]. In this
study, the potential placements for the Weng’an EELFs with complex devel-
opmental processes (e.g. the type 4 EELFs, type 5 EELFs, type 6 EELFs with
matryoshkas, Caveasphaera and Helicoforamina) in the holozoan tree are indi-
cated in red (total-group metazoans). The clade marked by a cross indicates
extinct relatives of crown-group metazoans.
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within the holozoan tree, and some of them can even be pinned
to the total-group metazoan tree, they provide us a unique
window to test the ‘evo-devo’ hypotheses on the origin of
metazoans and their embryology as well.
4. Material and methods
All the EELFs for this study were collected from the grey
facies of the upper phospharite member of the Ediacaran
Doushantuo Formation in Weng’an, Guizhou Province, south-
west China [58]. The phosphatized dolomite from the grey
facies was digested using approximately 7–10% acetic acid, and
the fossils were manually sorted from the residues under a
binary stereomicroscope. A set of high-spatial-resolution tech-
niques, including propagation phase-contrast synchrotron
radiation X-ray microtomography (PPC-SRXMT), high-resol-
ution micro-CT (hr-μCT), SEM, EDS, focused ion beam SEM
(FIB-SEM) and transmission electron microscopy (TEM), was
used to obtain detailed physical and in situ chemical information
from the EELFs.

(a) SEM-EDXS, FIB-SEM and TEM
To select well-preserved specimens, all the fossils liberated from
rock matrix were first investigated using a Leo 1530VP SEM
instrument operating at 10 kV equipped with a field emission
gun, located in the Nanjing Institute of Geology and Palaeontol-
ogy, Chinese Academy of Sciences (NIGPAS). To perform
chemical composition analysis and TEM observation, several
fossil specimens were embedded in UV-cured resin and then
cut after tomographic reconstruction. We observed the physical
sections using a field emission FEI Nova NanoSEM 450 micro-
scope (FEI, Hillsboro, OR, USA) operating at 15 kV at the
Electron Microscopy Lab (EML), Institute of Geology and Geo-
physics, Chinese Academy of Sciences (IGG-CAS). The
elemental mapping was performed using an EDS system
(Oxford X-Max 80) attached to the FEI Nova NanoSEM 450
microscope. The ultrathin sections for TEM observations were
prepared with a dual-beam FIB-SEM system on a Zeiss Auriga
Crossbeam instrument at the EML of IGG-CAS. TEM analyses
were carried out on a JEM2100 microscope (JEOL, Tokyo,
Japan) operating at 200 kV, located in the EML of IGG-CAS.

(b) PPC-SRXMT and hr-μCT
Selected specimens were imaged using scanning electron
microscopy first, and the well-preserved ones were then scanned
at Beamline ID19 of the European Synchrotron Radiation Facility
(Grenoble, France) using PPC-SRXMT, or at the MicroCT Lab of
NIGPAS using hr-μCT.

(i) PPC-SRXMT
We used an undulator source which can deliver a single harmo-
nic X-ray with energy 17.68 keV. The relative monochromaticity
of the beam is so good that it is not necessary to use a monochro-
mator. Depending on the sizes of the fossil specimens, two CCD-
based high-resolution detectors with isotropic voxel sizes of 0.56
and 0.70 µm were applied. During each scan, 1800 projections
over 180° were collected. The exposure time for each projection
was 0.2 s. In order to get a phase-contrast effect, 10 and 12 mm
were adopted as the propagation distances (sample–detector dis-
tance). In addition to the simple edge detection mode, we
applied a single distance phase retrieval process [16] for some
of the fossils.

(ii) hr-μCT
We used a three-dimensional X-ray microscope (3D-XRM), Zeiss
Xradia 520 versa, which can provide nondestructive reconstruc-
tions of microfossils at submicron resolution. Unlike
conventional microCT, which relies on maximum geometric
magnification and a flat-panel detector to achieve high resol-
ution, 3D-XRM uses charge-coupled device (CCD)-based
objectives to get higher spatial resolution. Depending on the
sizes of the fossil specimens, two CCD-coupled 4× and 20×
objectives were employed, providing isotropic voxel sizes from
0.55 to 0.80 µm. The operating voltage for the X-ray tube was
set to be 40–60 kV. During each scan, 3200 projections over
360° were obtained, and a thin X-ray filter (LE1) was used to
avoid artefacts of beam hardening. Owing to the low intensity
of the X-rays, the exposure time for each projection was relatively
long, from 5 to 8 s for different scans.

(c) Volume data analyses
Volume data processing, including three-dimensional volume
renderings, ‘ROI’ (region of interest) segmentation, and making
animations, was performed using the software VGstudio Max
(v. 2.2 and 3.0, Volume Graphics, Heidelberg, Germany).

Data accessibility. All the fossil specimens were deposited at the Nanjing
Institute of Geology and Palaeontology, Chinese Academy of Sciences
(NIGPAS). The supporting tomographic data are available from the
three-dimensional model database of NIGPAS (http://fossil-ontol-
ogy.com, doi:10.12091/fossil-ontology.20211230). All data needed
to evaluate the conclusions in the paper are present in the paper
and/or the electronic supplementary material [59].
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