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Introduction: As real time data processing is integrated with medical care for traumatic
brain injury (TBI) patients, there is a requirement for devices to have digital output.
However, there are still many devices that fail to have the required hardware to export
real time data into an acceptable digital format or in a continuously updatingmanner. This is
particularly the case for many intravenous pumps and older technological systems. Such
accurate and digital real time data integration within TBI care and other fields is critical as
we move towards digitizing healthcare information and integrating clinical data streams to
improve bedside care. We propose to address this gap in technology by building a system
that employs Optical Character Recognition through computer vision, using real time
images from a pump monitor to extract the desired real time information.

Methods: Using freely available software and readily available technology, we built a script
that extracts real time images fromamedication pumpand then processes themusingOptical
Character Recognition to create digital text from the image. This text was then transferred to
an ICM + real-time monitoring software in parallel with other retrieved physiological data.

Results: The prototype that was built works effectively for our device, with source code
openly available to interested end-users. However, future work is required for a more
universal application of such a system.

Conclusion: Advances here can improve medical information collection in the clinical
environment, eliminating human error with bedside charting, and aid in data integration for
biomedical research where many complex data sets can be seamlessly integrated digitally.
Our design demonstrates a simple adaptation of current technology to help with this
integration.
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INTRODUCTION

Current therapeutic interventions in Traumatic Brain Injury
(TBI) are generally based on low frequency physiological
response over large sample sizes, focusing on long epoch
outcomes (Chalmers et al., 1981; Carney et al., 2017). Though
this methodology can be effective in identifying large global
phenomenon, momentary individualized events are masked
within these large datasets. Thus, methodologies are emerging
that leverage higher frequency data to find momentary
phenomenon that focus on individualized patient response to
medical treatment (Carney et al., 2017; Matchett et al., 2017;
Zeiler et al., 2018a). Furthermore, within TBI care, recent
literature has emerged connecting high frequency physiology
with TBI outcome (Balestreri et al., 2015; Cabella et al., 2017;
Zeiler et al., 2018b). Yet, few studies connect the momentary
response of high frequency physiology to current hourly recorded
therapeutic infusions (Froese et al., 2020a; Froese et al., 2020b;
Klein et al., 2020). Through the use of more robust and
individualized datasets, treatment guidelines can be focused on
patient specific healthcare interventions which can lead to more
individualized and personalized care. To take advantage of
emerging technologies and new health metrics, real time high
frequency physiological and treatment care data needs to be
recorded and integrated. However, despite this increase in
computational integration within health care, there are
countless devices that are either released with insufficient
digital output or are simply too outdated to carry the
necessary hardware infrastructure to output the required data
at a high frequency. This is particularly the case with many
commercially available and clinically utilized medication pumps.
As such, treatment information inmany instances is still recorded
manually at low frequency in bedside charts, or e-charts. Such
methods are prone to errors in data entry and are time consuming
for clinical staff.

The limited compatibility of many bedside medical devices
hinders clinicians’ ability to capture high frequency data, thus
there is a need to leverage interfaces that convert such data
from bedside devices directly into digital data. Many medical
devices use text displays to convey the required information to
the user. The text display therefore has the desired
information, but based on the antiquated hardware, it lacks
the compatibility to convert the information to a digital
format. This problem is described as Text Information
Extraction (TIE) (Jung et al., 2004) and has been addressed
in other environments like text-based image processing, (Park
et al., 1999; Kim et al., 2002; Carvalho, 2016) document
decoding (Cheng et al., 1997; Feng et al., 2006) and video
text extraction (Locating Characters in Sc, 1047; Fischer et al.,
1995). All of these systems extract alphanumeric characters
using Optical Character Recognition (OCR) via computer
vision techniques, which leverage artificial intelligence to
convert image characters into digital data (Schantz, 1982).
This method, although well documented, has yet to be adapted
for the use and conversion of medical monitoring equipment.
Therefore, with the emergence of new openly available
software and the universal nature of personal computers,

there is a potential to adapt past medical devices to the
computational age.

Furthermore, for the integration of many older medical
devices the only feasible solution to digital integration is
through the use of scripting (Carvalho, 2013; Delaney et al.,
2013; Carvalho, 2021). Likewise, as clinical data collection
exceeds the limits of humans, the need to leverage scripting to
ensure accurate data collection becomes necessary (Mardis, 2011;
Delaney et al., 2013). To bridge this gap in compatibility, we have
endeavoured to build a system that uses a camera to attain real
time output from a text based display screen from bedside
intravenous medication pumps and convert it into a
continuously updated digital format to be captured and linked
with other time-series data at the bedside in real time.

MATERIALS AND METHODS

Device Set-Up and Image Capture
This work was conducted at the Winnipeg Acute TBI
Laboratories, at the University of Manitoba. The set-up
consisted of a USB connected camera (Logitech C920s Pro
HD Webcam, Logitech, Newark, CA, United States) to take
real time images of a commercially and commonly available
intravenous medication pump (Baxter Colleague 3 CXE,
Baxter Canada, Mississauga, Canada) which currently has no
digital outport. Images are captured at 60 frames/second from a
USB camera and copied directly onto a basic consumer laptop,
see Figure 1. The full Python scripting language code (Python 3,
Scotts Valley, CA: CreateSpace) can be found in either
Supplementary Appendix A or GitHub (https://github.com/
lofro/TIE_OCR). The basic operation of this system leverages
4 main libraries in python; “pytesseract,” “cv2,” “serial” and
“tkinter.” “pytesseract” and is used for the OCR processing.
(Lee, 2007) “Cv2” is also an image processing and
manipulation library. (Bradski, 2000) The use of these libraries
will be detailed in the subsections to follow. “Serial” is a library in
python that allows for the creation and use of serial sockets
(Welcome to PySerial’s Documentation PySerial 3.4
Documentation). Finally, we used the “tkinter” library to
create the display and user interface that is seen in Figure 2
(Lundh, 1999). To create a video we leveraged the “cv2.
CaptureVideo” function to extract frames and the “tkinter.
Canvas” to display these frames. When either the snapshot
button is press or the time delay is reached, the current frame
captured will be processed.

Image Processing and Feature Extraction
The TIE for these images was performed using Python. On the
initiation of the code, an interface for the image capture will
appear, as shown in Figure 2. The subsequent image
manipulations are demonstrated in Figure 3, which illustrates
our method to solve the TIE problem. The TIE problem can be
divided into the following sub-problems: detection, localization,
tracking, extraction/enhancement, and recognition (Jung et al.,
2004). Within our design we focused on localization, extraction/
enhancement and recognition, as we can assume the images

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6893582

Froese et al. Computer Vision for Bedside Pharmacological Data

https://github.com/lofro/TIE_OCR
https://github.com/lofro/TIE_OCR
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


captured have some form of desired information, and that the
features of interest stay relatively constant.

An image can be captured manually or automatically after an
allotted time. Once the image is captured it goes through the
entire TIE image processing as seen in Figure 3, proceeding
alphabetically going from A to H. The two TIE subgroups of
image localization and extraction/enhancement are performed in
unison, shown in Figures 3A–E. Initially the image is converted
to grayscale using a “cv2” function (Figure 3A), then using Canny
edge detection, the image edges are traced (Figure 3B). (Open(X).
Canny Edge) Canny highlights the edges of an image using the
intensity gradient of the image, which is the color difference on
local pixels to find the edge of shapes within the image (Canny,
1986). Using these edges, we can differentiate the display from the

larger image by the rectangular aspect of the display. To do this
the edges are grouped into contours. Contours are the bounding
points that map the outline of a continuous white shape of
Figure 3B. Each continuous white shape is bounded by the
smallest, best fitting rectangle that contains all the contours of
that group. With all shapes having a respective bounding
rectangle, the largest area rectangle can be found, which is
assumed to be the display screen and used to give Figure 3C.

The image is then enlarged to improve the small feature edges
for the adaptive mean threshold. The adaptive mean threshold
uses the area of local pixel brightness to find a mean brightness
which then can be contrasted against the pixel of interest to
identify if it should be black or white, resulting in Figure 3D.
(Open(X). Image Thres) Next, the contours of Figure 3D are

FIGURE 1 | Setup for the camera and pump. General setup for our design, with the monitor display being captured through an external camera is displayed in
image (A) and (B). In figure B the USB wire connecting the computer to camera can be seen. The current design has the camera directly in front of the text display.

FIGURE 2 | Python interface. Left Panel–Displays digital photo of medication pump taken by the camera,Right Panel - Displays the interface of our system, with
real time data being updated from the extracted features from the medication pump display.
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found in a similar way as before, (using canny edge detection)
with the exception that it looks for the continuous black portions.
Like before, the continuous black shapes are all bounded by a
rectangle and used with their respective contours to rotate the
image and crop the image for a second time. To rotate the image,
a key horizontal line is needed (highlighted by the box around a
line in Figure 3E), this line is found by using the relative height to
length of the bounding rectangle. The bounding rectangle must
have a width greater than ¾ of the image width, and of the
rectangles that meet this criterion, the one with the smallest
height is chosen. Next, with the contours from which the
previously described bounding rectangle encompasses, the line
of best fit is made. That being, a best fit line is drawn through the
key horizontal line. This is the least squares regression line with
the contours as the points of interest. The best fit line is created
using a “cv2” function and has an output of a location and an
angle of rotation. (Bradski, 2000) This angle of rotation is also the
angle for the image to rotate. To find the cropping area, the width
and location of the bounding rectangle for the key horizontal line
is used to find the x component of the cropped image (the
horizontal location and width). The y component (vertical
location and height) is assumed to be at the 5 and 90% of the
initial image height, which allows the image to be cropped
(Figure 3E). This concludes the localization of the TIE process
as the image is focused on only the text display. The last step in
enhancement/extraction is performed using Google Tesseract’s

(Google Inc., https://github.com/tesseract-ocr/tesseract/) feature
selection function, this function uses an artificial intelligence
algorithm to find all key shapes within the image. (Lee, 2007)
These are then cropped from the initial image and displayed in a
consecutive order to give Figure 3F.

Character Recognition
The last part of the TIE process, recognition, uses Google
Tesseract OCR (Lee, 2007) to give the output text shown in
Figure 3G. This process, like all OCR, involves comparing a
library of identified shapes to the data, in this way the best
matched letter is assumed. (Lee, 2007) From Figure 3G the
desired values are extracted based on the nature of the OCR
output and design of the text display, that being, the dose is
always followed by the dose amount and left/time remaining,
and the medication type is found by a list of predefined words
of interest. Together the dose amount and medication can be
paired up, and in almost any fashion given as Figure 3H. To
improve accuracy, we found the key words (those being
greater then 4 characters of alphabetical values) and
connected those with a number in a similar location, for
the full OCR code see Supplementary Appendix A.2. From
here the data is digitized and can be output into any desired
format. A full process map of the above TIE and OCR
processes, from image capture to serial output can be seen
in Figure 4.

FIGURE 3 | Steps for image processing–TIE and OCR. TIE � Text Information Extraction, OCR � Optical Character Recognition. The processing proceeds in
alphabetical order. (A) is the initial image converted to grayscale. (B) is the grayscaled image processed with the Canny function. (C) is the grayscaled cropped image
using the rectangle contours of image (B). (D) is the adaptive mean threshold function of image (C). E is the cropped and rotated image (D) with the key horizontal line
contained within a box. F is the features found with the google tesseract of image (E). (G) is the string that Google Tesseract output from image (F). (H) is the final
output of the (G) string process.
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Digitized Data Capture
Using a virtual serial port, we sent the serialized data (Figure 3H)
to Intensive Care Monitoring “Plus” (ICM+) (Cambridge
Enterprise Ltd., Cambridge, United Kingdom, http://icmplus.
neurosurg.cam.ac.uk), generating continuously updating real
time data (Figure 2). The virtual serial port is an internal
design that acts like serial port for any RS232 ASCII streaming
device and was made using freely available software (null-modem
emulator (com0com), http://com0com.sourceforge.net).
(Hatchett, 1991) In ICM+ the data was parsed into the desired
functions identical to the parsing of any other device data. ICM+
was used as an example of a data acquisition platform for the
continuous time-series capture of such data, as it is the platform
utilized by our laboratory for bedside physiology research. The
above-described design can be integrated with any data
acquisition platform which can record serial data.

Finally, to show-case the capture of continuous medical pump
data in conjunction with other monitoring devices, we recorded
continuous bifrontal cerebral regional oxygen saturations using
near infrared spectroscopy (Covidien INVOS 7100, Medtronic

Canada) and continuous non-invasive arterial blood pressure
through a finger-cuff technique (Finapres NOVA Nanocare,
Finapres Medical Systems, Enschede, Netherlands, http://www.
finapres.com/home), in a volunteer. The regional oxygen
saturation was sampled at 1 Hz, while the arterial blood
pressure was sampled at 250 Hz. Therefore, we can run our
system in parallel with any number of compatible devises as
can be seen in Figure 5.

RESULTS AND DISCUSSION

System Performance
As this entire system was a proof of concept, the design proves
that there is technology available to complete an effective TIE
process on a human-based text interface output, using an
intravenous medication pump as an exemplar (examples of
captured frames that worked can be seen in Supplementary
Appendix B). Furthermore, the design used only a common
camera, a laptop and freely available open source software, (Lee,
2007; Bradski, 2000; Hatchett, 1991) demonstrating the
accessibility of this conversion system.

Though we built a working prototype, there were some key
issues that arose when operating the system. The first and
perhaps most important, is the slightly inconsistent nature of
the OCR recognition which has been documented in the past
(Carvalho, 2016; Schantz, 1982; Lee, 2007). When implementing
OCR, there is a tendency for letters and word orders to be
mismatched. For example, a common error is the letter “f”
interpreted as a “t,” i.e. “tentanyl” instead of “fentanyl.” This can
be bypassed by backend language algorithms and deep learning
techniques (Mokhtar et al., 2018; Le et al., 2019). Another
common issue encountered is the mismatch of numbers “5,”
“6”, “8” and “9,” which in operation have become
interchangeable with one another if the image is
insufficiently processed. To overcome this problem in
operation, converting the image to Figure 3F, with
significant space between the lines of text, improved
recognition. Also, the enlargement of features made the edges
more robust (improving extraction/enhancement of the image).
Though it must be acknowledged, in our described design and
camera setup, we did not require these improvements to get
sufficiently accurate data. Such modifications may be necessary
with cheaper and lower resolution cameras.

The second issue is the interference that background noise can
have on the image, which interferes with extraction and
enhancement. If the display is dim, with a light that reflects
directly in the camera, there are scenarios in which the captured
image data can be masked behind this light. Likewise, if the
camera is moved into such an angle as to obscure the image, the
OCR software fails to accurately extract the information.
Currently, there are no working examples that we know of
that effectively adjust images at obscure angles to effectively
output a coherent final image however, there are emerging
proposed solutions (Oakley and Satherley, 1998; Li and
Doermann, 1999; Li et al., 2000; Witten et al., 2004).
Therefore, in the implementation of this design the most

FIGURE 4 | Process Map–From Image Capture to Serial Output Figure
displays the process taken to convert the image into its digital information and
the steps to send the data to ICM+ (data acquisition platform). The best fit
rectangles and line are the key shapes used to crop and rotate the
image. Feature Extraction is a Google Tesseract function to find key shapes.
Key Information Reduction Function is a function used to find and order the
alphanumeric of interest.
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effective solution is setting up the camera to extract clear,
centered images.

Reflections on Impact of the Designed
System
The TIE/OCR Process
This system of converting real time data from a medical device
display into digital data, is the first that we have knowledge of.
As such, this system illustrates that there is a bridge between
computers and older devices that lack the necessary
compatibility, using TIE processing. In this way there is an
opportunity to extract data even when there is no capability of
directly accessing the digital port, or when no digital output is
offered. However, the design and operation of this system
enforces the desire for a robust TIE methodology, due to the
tenuous precision in the output. The mixed precision is caused
by errors mostly relating to the OCR methodology for
recognition, thus the field of text extraction is expanding
with new developments and emerging improvements to all
aspects of the TIE processing. These include word detection
using Markov Random Field (Yalniz and Manmatha, 2019)
and canonical correlation analysis, enhancing image quality by
layering multiple images, (Wemhoener et al., 2013) smoothing
edges by using corner detection, (Yalniz and Manmatha, 2012)
and having more robust feature detection methods (Witten
et al., 2004; Oakley and Satherley, 1998; Li et al., 2000; Li and

Doermann, 1999) with more areas and designs proposed to
improve information retrieval from images (Allan et al., 2003).
These improvements highlight ideas to incrementally change
the TIE methodology and enhance text extraction.
Furthermore, by leveraging Deep Learning techniques
before and after the OCR process, the shortcomings that are
inherit with the OCR could be addressed. The two key areas to
apply these Deep Learning solutions would be the creation of
the improved text images (Figures 3E,F) and error correction
(Figures 3G,H), which have emerging methods to address
them (Mokhtar et al., 2018; Le et al., 2019; Namysl and Konya,
2019; Yin et al., 2019; Karthikeyan et al., 2021).

For individuals who endeavour to build a similar TIE system,
the use of a prebuilt OCR is recommended. The open-source
nature of Google Tesseract OCR makes it easily adaptable but
supported under the Google banner also gives it access to a vast
database to build its character recognition library on. As well,
Google Tesseract OCR offers language conversion for over 50
different languages. (Lee, 2007) As global health becomes
integrated, systems that can be adapted for a global
community become imperative. These platforms bear the
added benefit of being supported by a wide group of people,
improving not only its functionality but its robustness as it
pertains to various aspects including varying text font styles
and languages. Therefore, although in theory it is possible to
build one’s own OCR system, there is limited practical reason to
do so.

FIGURE 5 | ICM + Final Output. Displays the final output on ICM + over a 60 s period from top to bottom; the arterial blood pressure, fentanyl, sodium chloride and
regional oxygen saturations.
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Application to Bedside Medical Big Data
Aside from the novel application of computer vision to solve a
digitization problem for medical device data, the TIE also offers
the removal of the human element within data collection, as
humans account for a large amount of the inconsistency within
data processing (Barchard and Pace, 2011). In both the clinical
care provision and biomedical research fields, data accuracy is
critical. Errors in bedside or e-chart data entry, associated with
human-based methods, can impact care delivery and safety for
patients by allowing for treatment decisions to be made on
inaccurate information. Similarly, accuracy of data in
biomedical research is paramount as the focus of care becomes
more responsive and individualized.

The TIE also improves the volume and frequency of data
collection from such medical devices, exponentially higher
than any human-based recording method. In almost all
clinical data extraction, but in particular TBI data, the
treatment methodologies are often updated at an hourly
rate, with limited concern for the minute-to-minute
fluctuations within care. Emerging studies in TBI research
identify an optimal cerebral perfusion pressure which is
coupled to minute to minute changes in physiology,
(Steiner et al., 2002; Aries et al., 2012), with measures like
intracranial pressure being well documented as having
targeted goals to achieve (Cabella et al., 2017; Carney et al.,
2017; Zeiler et al., 2020). Such targets require the
implementation of high frequency data analysis, however
the treatments associated with these goals is either
undocumented, or lack precision in documentation as to
the exact momentary changes within care. Thus, methods to
improve time resolution, allowing data to be linked with other
physiologic information for a clearer picture of treatment
response/effect, is required, as highlighted in our example
in Figure 5. Moreover, the nature of digitized information
makes the update, dissemination, and archiving to prevent
data loss a nearly trivial task. Thus, the breakdown or damage
to one device can be mitigated by having continuous multi-
connected data streams, limiting data loss.

FUTURE DIRECTIONS

Despite the novel and interesting results described, future work is
required in this area for further optimization. For this type of
design there is a need to focus on three basic future
implementations: the first, is creating a more robust TIE
process with a focus on image enhancement and recognition.
Such work will encompass variation in camera face angles and
screen brightness/hues. The goal is to improve the efficiency of
the output to more suitably honed results. Thus, the
implementation of some previously proposed solutions to the
OCR process using Deep Learning methods will be explored,
including; convolutional neural networks, (Allan et al., 2003)
neural machine translation techniques (Mokhtar et al., 2018) and
provide improved lexicons.

The second area to address is a refined layout and interface.
The goal for this style of technology is to have any user intuitively

operate the device. As such, there will be work put in place to
design a functional package that can be downloaded and will run
like any other application. All of this will be done with freely
available open-source software in order to promote the goal of
improved data management and global health. One further aim is
to expand applications to other medical devices and pumps that
are commercially available.

Finally, to deploy this technology in both simulated and
real-world healthcare environments. An example would be to
setup this device in a simulation lab which is utilized to
practice critical resuscitation skills for clinicians and
trainees, prior to real-world application. Once feasibility
and accuracy has been assessed in the simulated
environment, the system can then be deployed in a real-
world critical care environment here at the Health Sciences
Centre in Winnipeg or other centers. Here real-time
operational limitations will be explored, and the algorithms
improved as needed. All future renditions and investigations
will lead to improvements in the source code, which will be
made openly available as new versions arise on GitHub.
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