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Quantum simulation of quantum chemistry is one of the most compelling applications of quantum computing. It is of particular
importance in areas ranging from materials science, biochemistry, and condensed matter physics. Here, we propose a full quantum
eigensolver (FQE) algorithm to calculate the molecular ground energies and electronic structures using quantum gradient descent.
Compared to existing classical-quantum hybrid methods such as variational quantum eigensolver (VQE), our method removes the
classical optimizer and performs all the calculations on a quantum computer with faster convergence. The gradient descent
iteration depth has a favorable complexity that is logarithmically dependent on the system size and inverse of the precision.
Moreover, the FQE can be further simplified by exploiting a perturbation theory for the calculations of intermediate matrix
elements and obtaining results with a precision that satisfies the requirement of chemistry application. The full quantum
eigensolver can be implemented on a near-term quantum computer. With the rapid development of quantum computing
hardware, the FQE provides an efficient and powerful tool to solve quantum chemistry problems.

1. Introduction

Quantum chemistry studies chemical systems using quan-
tum mechanics. One primary focus of quantum chemistry
is the calculation of molecular energies and electronic struc-
tures of a chemical system which determine its chemical
properties. Molecular energies and electronic structures are
calculated by solving the Schrodinger equation within chem-
ical precision. However, the computational resources needed
scale exponentially with the system size on a classical com-
puter, making the calculations in quantum chemistry intrac-
table in high dimension.

Quantum computers, originally envisioned by Benioff,
Manin, and Feynman [1–3], have emerged as promising tools
for tackling this challenge with polynomial overhead of com-
putational resources. Efficient quantum simulations of chem-
istry systems promise breakthroughs in our knowledge for
basic chemistry and revolutionize research in new materials,
pharmaceuticals, and industrial catalysts.

The universal quantum simulation method [4] and the
first quantum algorithm for simulating fermions [5] have laid
down the fundamental block of quantum chemistry simula-
tion. Based on these techniques and quantum phase estima-
tion algorithm [6], Aspuru-Guzik et al. presented a quantum
algorithm for preparing ground states undergoing an adiabatic
evolution [7], and many theoretical and experimental works
[8–24] have been developed since then. In 2002, Somma
et al. proposed a scalable quantum algorithm for the simula-
tion of molecular electron dynamics via Jordan-Wigner trans-
formation [25]. The Jordan-Wigner transformation directly
maps the fermionic occupation state of a particular atomic
orbital to a state of qubits, which enables the quantum simula-
tion of chemical systems on a quantum computer. Then, the
Bravyi-Kitaev transformation [26–30] encodes both locality
of occupation and parity information onto the qubits, which
is more efficient in operation complexity. In 2014, Peruzzo
et al. developed the variational quantum eigensolver (VQE)
[18, 31], which finds a good variational approximation to the
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ground state of a given Hamiltonian for a particular choice of
ansatz. Compared to quantum phase estimation and Trotteri-
zation of the molecular Hamiltonian, the VQE requires a
lower number of controlled operations and shorter coherence
time. However, the VQE is a classical and quantum hybrid
algorithm; the optimizer is performed on a classical machine.

Meanwhile, implementations of quantum chemistry sim-
ulation have been developing steadily. Studies in present-day
quantum computing hardware have been carried out, such as
nuclear magnetic resonance system [32, 33], photonic system
[34–36], nitrogen-vacancy center system [37], trapped ion
[38, 39], and superconducting system [40–42]. Rapid devel-
opment in quantum computer hardware with even the claims
of quantum supremacy greatly stimulates the expectation of
its real applications. Quantum chemistry simulation is con-
sidered a real application in Noisy Intermediate-Scale Quan-
tum (NISQ) computers [22, 43, 44]. The FQE is an effort on
this background. In the FQE, not only calculation of Hamil-
tonian matrix part is done on quantum computer, but also
the optimization by gradient descent is performed on quan-
tum computer. FQE can be used in near-term NISQ com-
puters and in future fault-tolerant large quantum computers.

2. Method

2.1. Preparing the Hamiltonian for Quantum Chemistry
Simulation. A molecular system contains a collection of
nuclear charges Zi and electrons. The fundamental task of
quantum chemistry is to solve the eigenvalue problem of
the molecular Hamiltonian. The eigenstates of the many-
body Hamiltonian determine the dynamics of the electrons
as well as the properties of the molecule. The corresponding
Hamiltonian of the system includes kinetic energies of nuclei
and electrons and the Coulomb potentials of nuclei-electron,
nuclei-nuclei, and electron-electron, and it can be expressed
in first quantization as
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in atomic units ðℏ = 1Þ, where Ri, Zi,Mi and ri are the
positions, charges, and masses of the nuclei and the positions
of the electrons, respectively. Under the Born-Oppenheimer
approximation which assumes the nuclei as a fixed classical
point, this Hamiltonian is usually rewritten in the particle
number representation in a chosen basis:
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where⋯ denotes higher-order interactions and a†i and aj are
the creation and annihilation operators of particle in orbital i
and j, respectively. The parameters hij and hijkl are the one-
body and two-body integrations in the chosen basis functions

fψig. In Galerkin formulation, the scalar coefficients in
Equation (2) can be calculated by
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In order to perform calculations on a quantum computer,
we need to map fermionic operators to qubit operators. We
choose the Jordan-Wigner transformation to achieve this
task due to its straightforward expression.

The Jordan-Wigner transformation maps Equation (2)
into a qubit Hamiltonian form:
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i,α
hiασ

i
α + 〠

i,j,α,β
hijαβσ

i
ασ

j
β+⋯, ð4Þ

where Roman indices i and j denote the qubit on which the
operator acts and Greek indices α and β refer to the type of
Pauli operators; i.e., σix means Pauli matrix σx acting on a
qubit at site i. Apparently, H in Equation (2) is a linear com-
bination of unitary Pauli matrices. The methods used in this
paper finding the molecular ground state and its energy are
all based on it.

In this work, we present the FQE to find the molecular
ground-state energy by gradient descent iterations. Gradient
descent is one of the most fundamental ways for optimization
that looks for the target energy value along the direction of
the steepest descent. Here, it is performed in a quantum com-
puter with the help of linear combination of unitary opera-
tors. We analyze the relationships between the gradient
descent iteration depth and the precision of the ground-
state energy. The explicit quantum circuit to implement the
algorithm is constructed. As illustrative examples, the
ground-state energies and electronic structures of four mole-
cules, H2, LiH, H2O, and NH3 are presented. Taking H2O
and NH3 as examples, a comparison between the FQE and
VQE, a representative hybrid method, is given. FQE can be
accelerated further by harnessing a perturbation theory in
chemical precision. Finally, we analyze the computation
complexity of FQE and summarize the results.

2.2. Quantum Gradient Descent Iteration. The classical gra-
dient descent algorithm is usually employed to obtain the
minimum of an target function f ðXÞ. One starts from an ini-
tial point Xð0Þ = ðx01, x02,⋯, x0NÞ ∈ℝN , then moves to the next
point along the direction of the gradient of the target func-
tion, namely,

X t+1ð Þ =X tð Þ − γ0∇f X tð Þ
� �

, ð5Þ

where γ0 is a positive learning rate that determines the step
size of the iteration. In searching the minimum energy of a
Hamiltonian, the target function can be expressed as a qua-
dratic optimization problem in the form f ðXÞ =XTHX. At
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point X, the gradient operator of the objective function can
be expressed as

∇f Xð Þ = 2HX: ð6Þ

Then, the gradient descent iteration can be regarded as
an evolution of X under operator H,

X t+1ð Þ
��� E

= X tð Þ
��� E

− γH X tð Þ
��� E

, ð7Þ

where γ0 is redefined as γ = 2γ0. In the quantum gradient
descent, vector X is replaced by quantum state jXi =∑ jxj
jji/kXk, where xj is the jth elements of the vector, jji is
the N-dimensional computational basis, and kXk is the
modulus of vector X. Denote Hg = I − γH and it can be
expressed as

Hg = 〠
M

i=1
βiH

g
i , ð8Þ

where M is the number of Pauli product terms in Hg.
Then, the gradient descent process can be rewritten as
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where Hg is a linear combination of unitary operators
(LCU) which was proposed in [45] in designing quantum
algorithms and studied extensively [46–52]. This nonuni-
tary evolution can be implemented in a unitary quantum
circuit by adding ancillary qubits that transform it into
unitary evolution in a larger space [53]. The realization of
LCU can be viewed as a quantum computer wave function
passing through M-slits and operated by a unitary operation
in each slit, and then, the wave functions are combined and
the result of the calculation is read out by a measurement
[49]. As shown in Figure 1, we perform the evolution
described by Equation (9) with the following four steps.

Wave division: the register is a composite system which
contains a work system and an ancillary register. Firstly, the
initial point X = ðx1,⋯, xNÞT is efficiently mapped as an ini-
tial state jXðtÞi of the work system. In quantum chemistry,
Hartree-Fock (HF) product state is usually used as an initial
state. And the ancillary register is initialized from j0im, where
m = log2M, to a specific superposition state jψsi,

ψsj i = 1
ℂ

〠
M−1

i=0
βi ij i, ð10Þ

where ℂ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M−1

i=0 β2
i

q
is a normalization constant and jii is

the computational basis. This is equivalent to let the state
jxðtÞi pass throughM-slits. βi is a factor describing the prop-
erties of the slit, which is determined by the forms of the
Hamiltonian in Equation (8). This can be done by the initial-
ization algorithm in [54]. Moreover, the quantum random

access memory (qRAM) approach can be used to prepare
jxðtÞi and jψsi, which consume Oðlog NÞ and Oðlog MÞ
basic steps or gates, respectively, after qRAM cell is estab-
lished. We denote the whole state of the composite system
as jΦi = jψsijxðtÞi.

Entanglement: then, a series of ancillary system-
controlled operations ∑M−1

i=0 jiihij ⊗Hg
i are implemented on

the work qubits. The work qubits and the ancilla register
are now entangled, and the state is transformed into

Φj i⟶ 1
ℂ

〠
M−1

i=0
βi ij iHg

i x tð Þ
��� E !

: ð11Þ

The corresponding physical picture is that different uni-
tary operations are implemented simultaneously in different
subspaces, corresponding to different slits.

Wave combination: we perform m Hadamad gates on
ancillary register to combine all the wave functions from
the M different subspaces. We merely focus on the compo-
nent in a subspace where the ancillary system is in state j0i.
The state of the whole system in this subspace is

Φ0j i⟶ 1
ℂ
ffiffiffiffiffiffi
2m

p 0j i 〠
M−1

i=0
βiH

g
i x tð Þ
��� E !

: ð12Þ

Measurement: then, we measure the ancillary register. If
we obtain j0i, our algorithm succeeds and we obtain the state
ð1/ℂ ffiffiffiffiffiffi

2m
p Þðj0i∑M−1

i=0 βiH
g
i jxðtÞiÞ, where the work system is in

jxðt+1Þi =HgjxðtÞi. And then, this will be used as input for
the next iteration in the quantum gradient descent process.
The probability of obtaining j0i for the state is

Ps = Hg x tð Þ
��� E��� ���2/ℂ2M: ð13Þ

The successful probability after n measurements is 1 −
ð1 − kHgjxðtÞik2/ℂ2MÞn, which is an exponential function

of n. The number of measurements is ℂ2M/kHgjxðtÞik2.
The measurement complexity will grow exponentially with
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Figure 1: Quantum circuit for gradient descent. jxi and jψsi denote
the initial state of the work system and ancilla syetem, respectively.
The controlled operations that acted on the work system are ∑M−1

i=0
jiihij ⊗Hg

i . H
M denotes m = log2M number Hadamard gates. At

the end of the circuit, we measure the final state of the ancilla
registers. If all ancilla qubits are j0i, the work systerm collapses
into state jxðt+1Þi.
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respect to the number of iteration steps [55]. Alternatively,
one can use the oblivious amplitude amplification [51] to
amplify the amplitude of the desired term (ancillary qubits
in state j0i) up to a deterministic order with Oð ffiffiffiffiffi

M
p Þ repeti-

tions before the measurement. Then, the measurement com-
plexity will be the product of iteration depth k and Oð ffiffiffiffiffi

M
p Þ,

linearly dependent on the number of iteration steps. After
obtaining j0i, we can continue the gradient descent process
by repeating the above four steps, with jxðtÞi replaced by j
xðt+1Þi in a wave-division step. We can preset a threshold
defined as ε = jhxt ∣H ∣ xti − hxt+1 ∣H ∣ xt+1ij/hxt ∣H ∣ xti as
criterion for stopping the iteration. Thus, we judge if the
iterated state satisfies the criterion by measuring the expec-
tation value of Hamiltonian around the expected number of
iteration, which is easier than constructing the tomography.
If the next iterative state jxðt+1Þi does not hit our preset
threshold, this output jxðt+1Þi will be regarded as the new
input state jxðtÞi and run the next iteration. Otherwise, the
iteration can be terminated and the state jxðt+1Þi is the final
result jx f i, as one good approximation of the ground state.
The ground-state energy can be calculated by hx f ∣H ∣ x f i.

Measuring the expectation values during the iteration pro-
cedure will destroy the state of the work system, stopping the
quantum gradient descent process. So, determining the itera-
tion depth k in advance is essential. After k times iterations,
the approximation error is limited to (ignoring constants)

ε ≤O
1 − γλ2
1 − γλ1

� �k

N

 !
, ð14Þ

where λ1 and λ2 are the two largest absolute values of the
eigenvalues of Hamiltonian H (see Supplemental Material
(available here) for proof). The iteration depth

k =O log N
ε

� �
ð15Þ

is logarithmically dependent on the system size and the
inverse of precision. The algorithm may be terminated at a
point with a preset precision ε. It can be seen that the choise
of γ has little impact on converge rate when γ is large. This
makes this algorithm very robust to this parameter. The rate
of convergence primarily depends upon the ratio of λ1 and λ2
. The gap between the iterative result and the ground state
depends on the choice of initial point. If we choose an ansatz
state with a large overlap with the exact ground state, the iter-
ative process will converge to the ground state in fewer itera-
tions. Usually, the mean-field state which represents a good
classical approximation to the ground state of Hamiltonian
H, such as a Hartree-Fock (HF) product state, is chosen as
an initial state. Compared to the VQE, the FQE does not need
to make measurements of the expectation values of Hamilto-
nian during each iteration procedure and this substantially
reduces the computation resources.

2.3. Perturbation Theory. The FQE involves multitime itera-
tions to obtain an accurate result, which is difficult to imple-
ment in the present-day quantum computer hardware. Here,
we present an approximate method to find the ground state
and its energy by using the gradient descent algorithm and
perturbation theory. The perturbation theory is widely used
and plays an important role in describing real quantum sys-
tems, because it is impossible to find exact solutions to the
Schrodinger equation for Hamiltonians even with moderate
complexity. The Hamiltonian described by Equation (4)
can be divided into two classes, H0 and H′. H0 consists of a
set of Pauli terms containing only σiα=z and the identity
matrices, and Pauli terms σi

α=x,y belong to H′. H0 is a diag-
onal matrix with exact solutions that can be regarded as a sim-
ple system. H′ usually is smaller compared to H0 and is
treated as a “perturbing” Hamiltonian. The energy levels and
eigenstates associated with the perturbed system can be
expressed as “corrections” to those of the unperturbed system.
We begin with the time-independent Schrodinger equation:

H ψnj i = H0 +H′
� �

ψnj i = En ψnj i, ð16Þ

where En and jψni are the nth energy and eigenstate, respec-
tively. Unperturbed Hamiltonian H0 satisfies the time-
independent Schrodinger equation: H0jni = Eð0Þ

n jni. Our goal
is to express En and jψni in terms of E0

n and jni. Denote the
expectation value of H′ as H′nn = hn ∣H′ ∣ ni, and it is easy
to see that hn ∣H′ ∣ ni is zero because H′ only contains Pauli
terms σi

α=x,y. In the first-order approximation, the energies
and eigenstates are expressed as

En = E 0ð Þ
n ,

ψnj i = nj i − 〠
m≠n

Hmn′
E 0ð Þ
m − E 0ð Þ

n

mj i:
ð17Þ

In the second-order approximation, they are
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� �
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� �
2
4

3
5 mj i:
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The matrix elements in the first- and second-order
approximations can be obtained by one iteration of the quan-
tum circuit in Figure 1. Here, we letH′ be equal toHg. Explic-
itly, the first-order approximation only involvesH′mn, a series
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of transition probabilities of the state afterH′ implemented on
state jni, and they can be obtained by performing the quantum
circuit of Figure 1 directly. For the second-order approxima-

tion, matrix elements such as value jH′mnj
2
and H′mnH′kn

can be calculated by H′mn. Then, the approximate ground
energy and ground state up to the second order are obtained.
We will show the performance of the FQE and perturbation
theory in the next section.

3. Results

3.1. Calculations of Four Molecules. To demonstrate the feasi-
bility of this FQE with gradient descent iteration, we carried
out calculations on the ground-state energy of H2, LiH
diatomic molecules, and two relatively complex molecules
H2O and NH3. We used a common molecular basis set, the
minimal STO-3G basis. Via the Jordan-Wigner transforma-
tion, the qubit Hamiltonians of these molecules are obtained.
The Hamiltonians of H2, LiH, H2O, and NH3 contain 15,
118, 252, and 3382 Pauli matrix product terms, respectively.
The dimensions of the Hamiltonians of H2, LiH, H2O, and
NH3 are 16, 64, 4096, and 16384, respectively, which corre-
spond to 4, 6, 12, and 14 numbers of qubits, respectively. In
all four simulations, the work system was initialized to the

HF state jxhi and the learning rate is chosen as γ = 1. As
shown in Figure 2, after about 120 iterations, the molecular
energy of H2O converges to -74.94 a.u., only 0.0013346% dis-
crepancy with respect to the exact value of -74.93 a.u.
obtained via Hamiltonian diagonalization. The NH3 calcula-
tion yields (-55.525 a.u.) after 80 iterations matched very well
with the diagonalization (-55.526 a.u.). For the study of atomic
molecular structures and chemical reactions, these results are
sufficiently accurate. For more complex basis set STO-6G,
the results are about the same (see Figure 3), and the details
are given in Supplemental Material. The converge rates of
the four molecules depend on the system size and the ratio
of the two largest absolute eigenvalues of the Hamiltonian H,
which are consistent with the theoretical analysis above.

We also studied the influence of noises which is also
shown in Figure 2. The noise term is chosen in the form of
∑N

i=1δαiσz added to the Hamiltonian to simulate decoher-

ence. Then, we add a term jδx!i on the iterative state jxki to
simulate measurement error and renormalize the iterative state

as jxðkÞi⟶ ðjxðkÞi + jδx!iÞ/kjxðkÞi + jδx!ik. We set a random
noise (amplitude 0.01) and a Gaussian noise (μ = 0, σ = 0:01/3)
for H2 and LiH. For H2O and NH3, we choose a random noise
(amplitude 0.02) and a Gaussian noise (μ = 0, σ = 0:02/3). The
results still converge to the exact values in chemical precision
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Figure 2: (a), (b), (c), and (d) show the convergence to ground-state energies by the FQE for H2, LiH, H2O, and NH3 molecules, respectively.
The numerical simulations are carried out with fixed interatomic distance. The exact value corresponding to Hamiltonian diagonalization
energy (red line). The initial state is chosen as the Hartree-Fock product state in all four cases. The final values of the lines for exact
ground-state energy (red line) and for the three iteration results, noiseless case (blue line), random noisy case (green line), and Gaussian
noisy case (orange line).
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(1:6 × 10 − 3 a:u). This indicates that ourmethod is robust to a
certain type of noise, which is important in the implementa-
tion of quantum simulation on near-term quantum devices.
For more noisy situations, see Supplemental Material for
details, where the parameters of noise are 10 times the above
values (see Figure 4). The convergence deteriorates and some
oscillations occur as the number of iterations increases.

In Figure 5, a comparison with the VQE is shown for
H2O and NH3. In VQE calculation, the initial state jx0i is
mapped to an ansatz state by a parameterized unitary opera-

tion jxð θ!Þi =Uð θ!Þjx0i. The VQE solves for the parameter

vector θ
!

with a classical optimization routine. Here, we
adopt the standard gradient descent method as the classical

optimizer in the VQE. The parameter is updated by θ
!

⟶

θ
!

− γðð f ð θ!+ Δ θ
!Þ − f ð θ!ÞÞ/Δ θ

!Þ. We performed numeri-
cal simulations of the VQE for the two molecules. When the
learning rate γ ≥ 10−3, the VQE does not converge to the
ground state. So, in order to compare with each other, we
choose the proper learning rates in two methods separately.
In both cases, the initial ansatz state is prepared as the HF prod-
uct state. In H2O and NH3, the VQE converges the fastest with
the learning rate γ = 10−3. The FQE converges faster with larger

and larger learning rate until a fixed speed is reached. As shown
in Figure 5, the FQE generally converges faster than the VQE
and the advantage will be more obvious in complex molecules.

The above examples are calculated in fixed interatomic
distance of the molecules. If we want to calculate the inter-
atomic distance corresponding to the most stable structure,
the variation of interatomic distances is necessary. In
Figure 6, four examples are given to illustrate the performance
of the perturbation theory. To obtain the potential-energy sur-
faces for H2, LiH, H2O, and NH3 molecules, we studied the
dependence of ground-state energy of their molecules on the
variating interatomic distances, between the two atoms in H2
and LiH, the distance between the oxygen atom and one
hydrogen atom (the two hydrogen atoms are symmetric with
respect to the oxygen atom) in H2O, and the distance between
the nitrogen atom and the plane formed by the three hydrogen
atoms in NH3. The lowest energy in potential-energy surfaces
corresponds to the most stable structure of the molecules. As
shown in the picture, the ground-state energy of eachmolecule
calculated under the second-order approximation is already
quite close to its exact value, which is obtained from Hamilto-
nian diagonalizations. The energy values up to the second-
order correction are compared with their exact values at the
most stable interatomic distance corresponding to the lowest
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Figure 3: (a), (b), (c), and (d) show the gradient descent iteration process for convergence of ground-state energy of H2, LiH, H2O, and NH3,
respectively. The qubit Hamiltonians of the four molecules are obtained by STO-6G basis, which is more accurate than STO-3G basis.
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energy in Table 1. It can be seen that the second-order approx-
imation has already given results in chemical precision.

3.2. Analysis of Computational Complexity. Here, we analyze
the complexity of our algorithm. Usually, a quantum algo-
rithm complexity involves two aspects: qubit resources and
gate complexity. For qubit resources, the number of ancilla
qubits is logM, where M is the number of Pauli terms in
qubit from the Hamiltonian. For gate complexity, the “Wave
division” part needs Oðlog N + log MÞ basic steps for state
preparation. The dominant factor is the number of con-
trolled operations in the “Entanglement” part in Figure 1.
Controlled Hg

i can be decomposed into OðM logM log NÞ
basic gates [56, 57]. The “Wave combination” part just com-
prises log M Hadamard gates. Totally, the FQE requires in
each iteration about OðM logM log NÞ basic gates for
implementation. If the wave function is expressed by OðNÞ

Gaussian orbitals, fermion Hamiltonians contain OðN4Þ
second-quantized terms; consequently, the qubit Hamilto-
nians have M =OðN4Þ Pauli terms. The qubit resource and
gate complexity can be reduced to OðNÞ and OðN4Þ,
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Table 1: Energy values calculated by a perturbation method and the
exact values in the most stable distance corresponding to the lowest
ground energy.

Energy
value (au)

Exact
value

Zero-order
value

First-order
value

Second-order
value

Distance (Å)

H2 (0.7314) -1.1373 -1.1171 -1.1372 -1.1372

LiH (1.5065) -7.8637 -7.8634 -7.8637 -7.8637

H2O (1.0812) -75.0038 -74.9622 75.0013 75.0032

NH3 (0.4033) -55.5247 -55.4530 -55.5193 -55.5237
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respectively. In some applications, the perturbation theory
only requires one iteration, and an approximate result in
chemical precision can be obtained.

4. Summary

An efficient quantum algorithm, full quantum eigensolver
(FQE), for calculating the ground-state wave function and
the ground energy using gradient descent (FQE) was pro-
posed, and numerical simulations are performed for four
molecules. In the FQE, the complexity of basic gate opera-
tions is polylogarithmical to the number of single-electron
atomic orbitals. It achieves an exponential speedup com-
pared with its classical counterparts. It has been shown that
the FQE is robust against noises of reasonable strengths. For
very noisy situations that do not allow many iterations, the
FQE can be combined with the perturbation theory that gives
the ground state and its energy in chemical precision with one-
time iteration. The FQE is exceptionally useful in quantum
chemistry simulation, especially for the near-term NISQ
applications. The FQE is a full quantum algorithm, not only
applicable for NISQ computers but also directly applicable
for future large-scale fault-tolerant quantum computers.
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