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Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein

3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in

the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE),

IRBP is essential for the vision of all vertebrates as it facilitates the transfer of retinoids in

the visual cycle. It also helps to transport lipids between the RPE and photoreceptors. The

thiol-dependent antioxidant activity of IRBP maintains the delicate redox balance in the

normal retina. Thus, its dysfunction is suspected to play a role in many retinal diseases.

We have reviewed here the latest research on IRBP in both retinal health and disease,

including the function and regulation of IRBP under retinal stress in both animal models

and the human retina.We have also explored the therapeutic potential of targeting IRBP in

retinal diseases. Although some technical barriers remain, it is possible that manipulating

the expression of IRBP in the retina will rescue or prevent photoreceptor degeneration in

many retinal diseases.

Keywords: IRBP gene, photoreceptor degeneration, visual cycle, gene therapy, retinoid

INTRODUCTION

A Brief History of IRBP
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3
(RBP3), was first discovered in soluble proteins extracted from the bovine interphotoreceptor
matrix (IPM), which is located between the neural retina and the retinal pigment epithelium (RPE)
(Adler and Severin, 1981). Several unknown proteins were identified, including a 140 kilodalton
(kDa) protein (Liou et al., 1982). Liou et al. suggested that this 140 kDa protein might be a
transporter protein transferring retinol between the outer segments of rod photoreceptors and
the RPE (Liou et al., 1982). They postulated that the molecular weight of IRBP is 260 kDa in its
glycosylated form, while its backbone is 140–145 kDa (Liou et al., 1982).

In the 1990’s, several studies implicated IRBP in retinal development (Gonzalez-Fernandez et al.,
1993; Timmers et al., 1993; Liou et al., 1994; Stenkamp et al., 1998). The messenger RNA (mRNA)
expression of IRBP in the retina of embryonic mice was low. mRNA transcripts in mice were first
detected at embryonic day 11 and continued to increase to its peak expression on postnatal day 4,
after which there was a slow decrease and reached constancy by postnatal day 20 (Liou et al., 1994).
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The protein expression of IRBP increased together with its
mRNA level during photoreceptor development in bovine and
zebrafish embryos (Timmers et al., 1993; Stenkamp et al., 1998).
Protein and mRNA expression were also markedly increased in
Sprague Dawley rats between postnatal day 1 and 9, a period
critical for outer segment formation. Then, IRBP mRNA levels
decreased a little and stabilized by postnatal day 20 when the
outer segments achieved their adult length (Gonzalez-Fernandez
et al., 1993).

IRBP has been shown to be downregulated in animal
models of retinal disease, including Abyssinian cats that carry a
homozygous IRBPmutation that causes pan-retinal degeneration
(Narfstrom et al., 1989). IRBP downregulation has also been
reported in mice with induced Müller cell dysfunction and a
streptozotocin (STZ)-induced diabetic rat model (Zhu et al.,
2015; Malechka et al., 2017). IRBP deficiency also impaired
eye growth and compromised retinal health in mice (Wisard
et al., 2011). These reports suggest a correlation between IRBP
dysregulation and photoreceptor degeneration.

Retinal Location of IRBP
IRBP is secreted by photoreceptors and accumulates in the
IPM to facilitate the transport of material for visual pigment
regeneration (Ishikawa et al., 2015) (Figure 1a). It has only
been found in vertebrates (Kusakabe et al., 2009). In the
eyes of non-vertebrates, an alternative mechanism of pigment
regeneration is confined to photoreceptors (Kusakabe et al.,
2009). Vertebrates acquired IRBP in the evolution of the visual
cycle to accommodate a complicated visual cycle. IRBP can
traffick retinoid, a class of Vitamin A derivatives that includes
retinol and retinal, between photoreceptors and RPE cells
(Kusakabe et al., 2009). IRBP mRNA was detected in both cones
and rods of adult Xenopus retina. However, IRBP in the embryo
is synthesized by the central retina and diffuses through the
matrix, reaching the peripheral retina (Hessler et al., 1996).

Theo and colleagues found IRBP in bovine pineal gland
cells by in situ hybridization using IRBP cDNA probes. They
discovered that IRBP is highly expressed in a population of
pineal cells on mRNA level, but they did not quantify its
protein expression (van Veen et al., 1986). Expression of IRBP
(Rodrigues et al., 1986), cone arrestin (Craft et al., 1994)
and opsins (Blackshaw and Snyder, 1997), all photoreceptors
markers, were also found in the pineal gland of Rhesus monkeys,
rats and catfish. It remains unclear why there is a morphological
and possibly functional analogy between photoreceptors and
pinealocytes. The pineal gland, a small neuroendocrine organ
that synthesizes and secretes melatonin, is also photosensitive in
lower vertebrates (Sapède and Cau, 2013). Some researchers have
hypothesized that mammalian pinealocytes might have evolved
from photoreceptors (Sapède and Cau, 2013).

Molecular Characteristics and Regulation
of IRBP
Mammals have four protein subunits of IRBP (Gonzalez-
Fernandez, 2012), each of which consists of ∼300 amino acids
(Nickerson et al., 2006). Two of the four subunits are similar but
have different affinities to all-trans-retinol. Notably, disrupting

one subunit does not affect the overall function because other
subunits compensate for the dysfunctional subunit (Gonzalez-
Fernandez and Ghosh, 2008).

The IRBP gene is regulated by cone-rod-homeobox
(CRX) and orthodenticle homolog 2 (OTX2), two essential
transcriptional factors in photoreceptors (Fei et al., 1999;
Nishida et al., 2003) (Figure 1b). Studies have suggested that the
“cone-rod-homeobox element” is essential for the photoreceptor-
specific activity of the IRBP promoter in vivo. This element is the
major binding site of the CRX, which can directly regulate IRBP
expression (Fei et al., 1999). OTX2 is an upstream regulator
of CRX. Both OTX2 and CRX mRNAs have been identified in
adult human retinas (Bobola et al., 1999; Nishida et al., 2003;
Li et al., 2015). Overexpressing OTX2 increased irbp promoter-
luciferase activity by 5–7-fold in WERI-Rb1 retinoblastoma cells,
suggesting that OTX2 activates the irbp promoter (Bobola et al.,
1999). Overall, CRX and OTX2 are both specific gene regulators
of IRBP that are critical in photoreceptor development.

IRBP IN THE NORMAL RETINA

Retinoids Transport
Retinoid recycling and metabolism within the eye have been
extensively studied for decades. George Wald was awarded a
Nobel prize in 1967 for discovering the photoreceptive proteins
in the eye, the “chromoproteins” (Wald, 1935). Vision is initiated
and maintained by their photolysis and regeneration in the
visual cycle (Kiser et al., 2014). Photolysis of 11-cis-retinal
is the only reaction that converts light signals into electrical
signals in vertebrate photoreceptors (Molday and Moritz, 2015).
Circulation and regeneration of 11-cis-retinal, which relies on
IRBP for its transport, is critical for the maintenance of light
sensitivity (Liou et al., 1998; Jin et al., 2009). Thus, IRBP is central
to developing and maintaining the visual cycle in humans.

The Canonical Visual Cycle
In the canonical visual cycle (Figure 2A), IRBP is secreted
into the IPM by photoreceptors and rapidly turned over
through endocytosis by photoreceptors and the RPE (Gonzalez-
Fernandez, 2003). It mediates extracellular diffusion of retinoids
during the operation of the retinoid cycle, transporting all-
trans-retinol and 11-cis-retinal between the photoreceptors and
the RPE (Gonzalez-Fernandez, 2003). A recent study suggested
that IRBP may not be the only vehicle and peropsin may also
transport all-trans-retinol from the neural retina to RPE (Cook
et al., 2017). Human organic anion transporting polypeptide 1A2
(OATP1A2) has been recently found to be expressed at the apical
membrane of RPE, where it facilitates the cellular uptake of
all-trans-retinol into the RPE cells (Chan et al., 2015).

IRBP is essential for retinoid exchange in the visual cycle.
Exogenously applying IRBP protein to the culture medium of rod
photoreceptors reduced the level of all-trans-retinal and retinol
in outer segments, preventing the formation of light-induced
lipofuscin precursor (Chen et al., 2017). Supplementation of
IRBP in the culture medium also facilitates the release of 11-
cis-retinal from cultured fetal bovine RPE cells (Carlson and
Bok, 1992). Addition of the free form IRBP to the RPE apical
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FIGURE 1 | IRBP in normal and diseased retina. (a) The expression and functions of IRBP. IRBP is produced and secreted by photoreceptors. The main function of

IRBP is to stabilize IPM, transport lipid between photoreceptors and the RPE and maintain the redox balance in the outer retina. (b) The regulation of IRBP. OTX2/CRX

activates the expression of IRBP by binding to its promoter. (c) IRBP dysregulation and rod/cone degeneration under stress. It is proposed that stress

(Continued)
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FIGURE 1 | activates Müller cells inhibiting the production of IRBP in photoreceptors, leading to the dysfunction of lipid transport, increased oxidative stress, and

accumulation of retinoids (atROL). (IRBP, Interphotoreceptor retinoid-binding protein; CRX, cone-rod-homeobox; OTX2, orthodenticle homolog 2; IPM,

interphotoreceptor matrix; RPE, retinal pigment epithelium; PR, photoreceptor; atROL, all-trans-retinol; 11cRAL, 11-cis-retinal).

membrane resulted in more [3H]-11-cis-retinal release than
adding cellular retinaldehyde-binding protein (CRALBP), serum
retinol-binding protein (RBP), bovine serum albumin (BSA) or
medium devoid of binding proteins (Carlson and Bok, 1992).
Light reduced the levels of 11-cis-retinol when IRBP was absent,
while it had no effect on 11-cis-retinol levels if IRBP was present.
These results indicate IRBP is essential in preserving the isomeric
state of retinol (Parker et al., 2011).

The Cone-Specific Visual Cycle
The cone-specific visual cycle (Figure 2B) refers to the exclusive
ability of cone photoreceptors and Müller cells to convert all-
trans-retinol to 11-cis-retinal (Wang and Kefalov, 2009; Sato and
Kefalov, 2016). In contrast to the canonical visual cycle, all-trans-
retinol is transported to Müller cells, facilitated by IRBP (Mata
et al., 2002). IRBP was implicated by the observation that it
promoted the uptake of all-trans-retinol and release of 11-cis -
retinol in rat Müller cells in vitro (Betts-Obregon et al., 2014).
Cone electroretinogram (ERG) responses in IRBP knockout mice
were reduced compared to that of the control mice, although they
had similar cone densities and opsin levels, indicating IRBP is
essential for normal cone function or at least for the cone-specific
vision cycle (Parker and Crouch, 2010). Müller cells have been
found to isomerise all-trans-retinol directly to 11-cis-retinol,
which then released for cone photoreceptors (Crouch et al., 1992;
Das et al., 1992). Finally, the cone photoreceptor outer segments
have been reported to oxidize 11-cis-retinol to 11-cis-retinal
(Jones et al., 1989). Recently, further evidence has also implicated
IRBP in the retinoid exchange between cones and Müller cells
(Tang et al., 2013). IRBP was found to bind to the cone outer
segment and Müller cell microvilli pericellular matrices (Garlipp
and Gonzalez-Fernandez, 2013). This association can facilitate
the delivery and uptake of its retinol ligands.

Lipid Transport
Apart from retinoid transportation, IRBP assists the transport of
various essential lipids across the IPM (Figure 1a). It has been
established that IRBP contains two similar subunits with different
affinities for all-trans-retinol. Long-chain fatty acids, such as
Docosahexaenoic Acid (DHA), can replace all-trans-retinol from
these subunits with lower affinity (Chen et al., 1993). DHA is
an essential element in photoreceptor membrane biosynthesis
and is thus vital for visual function in photoreceptors (Scott
and Bazan, 1989; Jastrzebska et al., 2011). Post-mortem AMD
retina and RPE/choroid were reported to have significantly lower
levels of polyunsaturated fatty acids, such as DHA, than age-
matched normal donors, suggesting the importance of IRBP to
photoreceptors by transporting DHA or other fatty acids (Liu
et al., 2010) (Figure 1c).

Other studies also demonstrated that other fatty acids could
also compete with all-trans-retinol for binding IRBP, among

which oleic acid had the highest affinity, but it was still
significantly lower than that of all-trans-retinol (Semenova and
Converse, 2003; Ghosh et al., 2015). A fluorometric titration
experiment in which increasing the concentrations of oleic
acid gradually reduced the affinity of all-trans-retinol to IRBP
provided further evidence that IRBP plays a vital role in lipid
transport (Ghosh et al., 2015). Competitive fluorescence and
tryptophan-quenching assays also demonstrated that both oleic
acid and DHA could displace all-trans-retinol from bovine IRBP,
while oleic acid having a relatively higher affinity than DHA. Gas
chromatography revealed that oleic acid is the most abundant
fatty acid in bovine IPM, suggesting it might play an important
role in maintaining the balance and transport of retinoids and
fatty acids in the retina (Semenova and Converse, 2003).

Important Roles of IRBP in IPM Integrity
The IPM, a highly organized structure between photoreceptors
and the RPE, is essential for maintaining outer retinal
homeostasis. Characteristic changes in IPM components occur
in retinal degenerations (Ishikawa et al., 2015). For example,
photoreceptor degeneration in most retinal diseases begins
with the loss of the inner segments/outer segments in the
IPM. However, photoreceptors may still survive under these
circumstances (Goldberg et al., 2016).

IRBP accounts for ∼5% of the total soluble IPM protein
(Adler and Evans, 1983) and maybe crucial for the structural
integrity of the IPM (Figure 1a). Although a large amount
of IRBP can be removed by washout with a saline solution,
other wash-resistant IRBP that co-localizes in the IPM is
concentrated around cone outer segments (cone IPM-associated
IRBP) (Garlipp and Gonzalez-Fernandez, 2013). Furthermore,
the deduced amino acid sequence of human IRBP contains
two receptors for hyaluronan-mediated motility (RHAMM)-
like motifs (K321-R329 and K733-R781), suggesting a possible
interaction of IRBP with the hyaluronan scaffold (Hollyfield,
1999), a component of non-covalently formed complexes with
proteoglycans in the Extracellular Matrix (ECM). Thus, IRBP
dysregulation is likely to affect the structural integrity of IPM,
whichmay independently contribute to the development ofmany
retinal diseases.

Antioxidant Activity of IRBP
IRBP has a thiol-dependent antioxidant activity which may
protect retinol from oxidation (Figure 1a). The thiol-dependent
antioxidative activity of IRBP has been evaluated with an assay
using myoglobin and 2,2-azinobis (3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS). IRBP was found to inhibit the oxidation
of ABTS more actively than other free thiol groups or thiol-
based reducing enzymes such as thioredoxin, vitamin E analog
Trolox, and ovalbumin. Using N-ethylmaleimide (NEM) to
inhibit cysteine peptidases by alkylating the active site-thiol on
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FIGURE 2 | Visual Cycles. (A) The canonical visual cycle. IRBP facilitates the transport of retinoids (atROL and 11cRAL) between photoreceptors and the RPE. (B)

The cone-specific visual cycle between cone photoreceptors and Müller cells. (IRBP, Interphotoreceptor retinoid-binding protein; IPM, interphotoreceptor matrix; RPE,

retinal pigment epithelium; atRAL, all-trans-retinal; atROL, all-trans-retinol; 11cRAL, 11-cis-retinal; 11cROL, 11-cis-retinol; 11cRDH, 11-cis-retinol dehydrogenase;

11cREH, 11-cis-Retinyl ester hydrolase).
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IRBP also suppressed the antioxidant capacity of IRBP. Thus
IRBP contains a thiol-dependent antioxidant site, disruption of
the putative ligand-binding site can lead to reduced antioxidant
effects (Gonzalez-Fernandez et al., 2014) (Figure 1c).

All-trans-retinal causes severe cellular oxidative stress
and leads to reactive oxygen species (ROS) accumulation,
mitochondrial dysfunction and cell death (Maeda et al., 2009;
Chen et al., 2012; Rózanowska et al., 2012). Levels of all-trans-
retinal were significantly higher in the retinal explants of IRBP
knockout mice than that in wild type mice after 40min exposure
to bright light. This phenomenon was significantly mitigated by
adding IRBP in the culture medium (Lee et al., 2016).

IRBP IN RETINAL DISEASES

IRBP in Animal Models of Retinal Disease
Extensive animal studies have shown that IRBP downregulation
occurs in the early stages of many various retinal diseases.
In fact, it may be a precursor to them (Zhu et al., 2015;
Malechka et al., 2017). In 1989, a reduction of IRBP was
reported in the early stages of retinal degeneration in a model of
Abyssinian cats which carry a homozygous mutation for retinal
degeneration (Narfstrom et al., 1989). A mutation in intron
50 of the centrosomal protein 290 (CEP290) gene (IVS50 +

9T > G) induced a stop codon and truncation of the mature
protein in this model (Menotti-Raymond et al., 2007). IRBP-
immunoreactivity was significantly reduced in the affected retina
prior to the development of photoreceptor cell death (Narfstrom
et al., 1989). In the same model, mRNA and protein levels
of IRBP were significantly reduced as early as 4 weeks of age
(Wiggert et al., 1994). Downregulation of IRBP protein was also
found in a retinal degeneration 12 (rd12) mouse model with
a mutation in the RPE65 gene (Zheng et al., 2015). We have
previously described this in a mouse model in which Müller
cell dysfunction can be induced. A 150 kDa protein band was
markedly diminished in the transgenic mice retina just 1 week
after theMüller cells were disrupted, whichwas identified as IRBP
by mass spectrometry. Photoreceptor degeneration was observed
2 weeks after the Müller cell disruption was induced in this
transgenic model, suggesting that photoreceptor degeneration
was secondary to Müller cell disruption (Zhu et al., 2015). It
was also reported that the IRBP protein level was significantly
reduced in the retinas of STZ-induced diabetic rats (Malechka
et al., 2017). It has also been reported that IRBP mRNA was
reduced in a light-induced retinal degeneration model in rats
after animals had been exposed to intense visible light (490–
580 nm green light) with an illuminance of ∼1,200 lux for
24 h to induce photoreceptor degeneration (Wong et al., 2001).
Overall, the early reduction of IRBP in different models of retinal
degeneration suggests that IRBP may be a primary defect or an
early disease marker in the retina.

IRBP dysregulation has been widely observed in different
models of retinal disease. However, the consequences of IRBP
downregulation on retinal or ocular health remains poorly
understood. Studies on IRBP knockout models have identified
an essential role of IRBP in eye growth and retinal health
(Wisard et al., 2011; Markand et al., 2016). Eyes of IRBP

knockout mice increased in size and weight over the wild
type controls even before the mice had opened their eyelids
(Wisard et al., 2011). Mice lacking IRBP display severe early
and progressive photoreceptor degeneration, characterized by a
reduction in both length and numbers of cone sheaths (Sato et al.,
2013). IRBP knockout mice also developed profound myopia
during the early stages of eye development. These eyes had
longer anterior-posterior length, accompanied by a decrease in
hyperopic refractive error (Markand et al., 2016). Progressive
thinning of the outer nuclear layer was evident, with 20%
thinning observed at postnatal day 5, and 38% thinning at day
30. Further studies, using optical coherence tomography (OCT),
confirmed the previously reported retinal thinning of the outer
nuclear layer in the IRBP knockout mice. Thinning of the outer
nuclear layer lasted from postnatal day 15 to at least postnatal
day 80 compared to wild type mice. Additionally, the slit-lamp
and fundus photographs found no difference between the wild
type and knockout mice (Markand et al., 2016). Another study on
IRBP knockout mice revealed a loss of photoreceptor nuclei and
changes in the structural integrity of retinas at postnatal day 11
and a marked loss in photic sensitivity from Electroretinography
(ERG) at postnatal day 30 (Liou et al., 1998).

In summary, IRBP downregulation has been described in
photoreceptors in different retinal diseases, but the precise
mechanism for IRBP downregulation is still not clear. One
possible explanation is that IRBP is a high molecular weight
glycoprotein, the synthesis of which requires the production
of large amounts of molecular building blocks and consumes
a considerable amount of energy. Reduction of photoreceptor
metabolism and the visual cycle may be necessary for the retina to
survive under stress. Downregulation of IRBP may be beneficial
for retina with short-term stress, but it might cause retinal
degeneration if stress is persistent.

IRBP and Human Retinal Diseases
It has been established that mutation, dysfunction or
downregulation of IRBP can be found in several human
eye diseases. For instance, a homozygous missense mutation
(p.Asp1080Asn) of IRBP was observed in a pedigree of
four patients with autosomal recessive retinitis pigmentosa
(RP) (den Hollander et al., 2009). Non-sense mutations
(c.1530T>A;p.Y510∗ and c.3454G>T;p.E1152∗) in IRBP were
identified in four children diagnosed with retinal dystrophy
and myopia (Arno et al., 2015). OCT images of these patients
showed thinning of the central macula and loss of the inner
segment ellipsoid band. ERG also revealed a delay and amplitude
reduction in cone-specific responses (Arno et al., 2015). Li’s
group showed that D1080N mutation in IRBP found in patients
with RP, abolished the secretion of IRBP and resulted in the
formation of insoluble high molecular weight complexes via
disulphide bonds. This hindered the transportation of IRBP to
the Golgi and caused endoplasmic reticulum (ER) stress, which
suggested another mechanism of retinal degeneration caused
by IRBP mutation. A heterozygous T-C transition has been
identified in autosomal recessive retinitis pigmentosa. IRBP
protein was at a significantly lower level in aqueous humor of
primary congenital glaucoma patients (Li et al., 2013). Reduced
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IRBP mRNA and protein expression were observed in the
retinas from diabetic donors when compared with those from
non-diabetic donors (Garcia-Ramirez et al., 2009). Analysis of
vitreous fluid obtained from clinics revealed that IRBP levels
were reduced in the early stages of diabetic retinopathy (Garcia-
Ramirez et al., 2009). Vitreous IRBP concentration declined
gradually with the increasing severity of diabetic retinopathy in
eyes with established retinopathy. IRBP protein levels both in
the retina and vitreous of eyes with non-proliferative diabetic
retinopathy were higher than those with proliferative diabetic
retinopathy (Yokomizo et al., 2019).

Downregulation of IRBP also caused the accumulation of
the retinal ’waste product’ lipofuscin, which may increase the
risk of oxidative damage to the RPE and photoreceptors (Radu
et al., 2003) (Figure 1c). Lipofuscin is also responsible for
retinal autofluorescence in retinal diseases (Birnbach et al.,
1994; Marmorstein et al., 2002; Radu et al., 2003). Studies on
cryosections of human retinas with AMD have revealed that
lipofuscin in the RPE was strongly autofluorescent (Marmorstein
et al., 2002). Stargardt’s disease is characterized by hyper-
autofluorescence and loss of macular photoreceptors which have
been correlated with clinical progression of the disease (Birnbach
et al., 1994).

We have discussed IRBP dysregulation as an early disease
indicator, playing a role in the early stages of retinal
pathology. Further studies are required to elucidate all of the
mechanisms by which IRBP dysfunction may contribute to
retinal disease pathogenesis.

Autoantibodies to IRBP
The retina is an ’immune-privileged’ site, which means it
may tolerate the introduction of antigens without eliciting
an inflammatory immune response (Benhar et al., 2012).
This presumably protects the retina from potentially blinding
processes such as fibrosis that may result from inflammation.
The blood-retinal barrier (BRB) is the interface between systemic
circulation and the retina, which is critical for the maintenance
of this immune-privilege (Benhar et al., 2012). Breakdown
of the BRB, which occurs in many retinal diseases, exposes
retinal antigens to the immune system, eliciting an inflammatory
response leading to tissue damage and vision loss (Chen et al.,
2019).

IRBP peptides can induce experimental autoimmune uveitis,
which is a well-estblished model of uveitis (Caspi et al., 1990),
as well as the effects of the adaptive immune response in
the eye (Agarwal et al., 2012; Kyger et al., 2013). Anti-IRBP
autoantibodies have been found in patients with uveitis, RP,
Coats disease, AMD andMacular Telangiectasia Type 2 (MacTel)
(Solomon et al., 1999; Morohoshi et al., 2012; Kyger et al., 2013;
Zhu et al., 2013; Gibbs et al., 2017). A study investigated the
autoimmune condition of a girl with a rare triad of RP, Coats
disease and uveitis, and found that her peripheral lymphocytes
had a specific anamnestic response to IRBP (Solomon et al.,
1999), indicating that autoimmunity toward IRBP might play
a role in the degeneration of photoreceptors. The IRBP
autoantibody was detected in 28% (5 out of 18) of patients
with non-infectious uveitis (Gibbs et al., 2017), in 33% (6 out

of 18) of patients with AMD and in 24% (11 out of 45) of
those with MacTel (Zhu et al., 2013). The detection of IRBP
autoantibodies in these patients suggested that such diseases
may share some common etiological or pathogenic mechanisms
(Zhu et al., 2013). Significant downregulation of IRBP protein
expression was also detected in the retina of mice with induced
Müller cell dysfunction, which is a model of primary Müller cell
loss that has been implicated in the pathogenesis of MacTel (Zhu
et al., 2015). Whether these autoantibodies actually cause the
reduction of IRBP or whether they are an epiphenomenon is still
uncertain, but it appears certain that loss of IRBP is closely related
to many retinal diseases.

THE POTENTIAL APPLICATIONS OF IRBP
IN TREATMENT FOR RETINAL DISEASES

IRBP could be a potential novel target in treating retinal
diseases, considering its essential role in the maintenance of
the visual cycle and other physiological functions in the IPM
(Gonzalez-Fernandez et al., 2014; Ghosh et al., 2015; Chen
et al., 2017). The upregulation of IRBP prevented photoreceptor
degeneration in diabetic mice and rats through the regulation
of VEGF (Yokomizo et al., 2019). This data indicates that
IRBP may also be beneficial in other diseases characterized by
photoreceptor degeneration and VEGF dysregulation, such as
AMD. Downregulation or dysregulation of IRBP could disrupt
the visual cycle which leads to the accumulation of the all-trans-
retinal, one component of retinal “waste product” lipofuscin. The
effect of IRBP on preventing lipofuscin accumulation could be
central for AMD-like diseases (Radu et al., 2003) (Figure 1c).
Direct upregulation of IRBP through inducing the whole IRBP
gene (9.5 k base pairs) warrants further investigation, but the
difficulty is that the genetic constructs required would exceed
the packing capacity of traditional adenovirus carriers for gene
therapy. The insert size could be even longer after adding
additional cell-specific promoters such as promoter fragments
of cone transducin α (TαC), rhodopsin kinase (GRK1) or cone
arrestin (CAR) gene (Kennedy et al., 2007; McDougald et al.,
2019) for target-specific expression in photoreceptors. Here, we
discuss three alternative ways to upregulate IRBP expression
(small molecules, microRNAs, and CRISPRa technique), which
we anticipate will protect photoreceptors from degeneration.

Small Molecules
Chemical communication mediated by molecular signaling
coordinates cell behavior (Buddingh et al., 2020). Many natural
or synthetic chemical compounds which regulate different
metabolic or signaling pathways have great therapeutic potential.
Small molecules that have the antioxidant, anti-inflammatory
and anti-excitotoxic capacity in the central nervous system
can be administered to protect photoreceptors (Zhang et al.,
2019). For example, simvastatin is a cholesterol-lowering drug
and was recently reported to protect Y79 retinoblastoma cells
which have many characteristics of photoreceptors, through
upregulating IRBP and its transcription factor CRX (Zhang
et al., 2019). Some other small molecules acting on the
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cardiovascular system may also have a neuroprotective effect on
photoreceptors (Zhao et al., 2016). Tetramethylpyrazine, which
has been widely used in treating cardiovascular diseases for
over 40 years, was found to attenuate all-trans-retinal -induced
cytotoxicity in the differentiated Y79 cells via suppressing
oxidative and nitrosative stress, apoptosis and leukostasis (Zhao
et al., 2016). A further study found that the neuroprotective
effect of tetramethylpyrazine against all-trans-retinal toxicity is
also mediated through upregulating IRBP expression (Wang
et al., 2017). Therefore, some small molecules have the
potential to protect photoreceptors from stress by increasing
IRBP expression.

Small molecules, however, have several shortcomings. Firstly,
the downstream signaling cascade reactions and information
encoding may vary broadly with different concentrations of
signaling molecules (Purves and Fitzpatrick, 2001). Thus, the
optimal dosage must be precisely controlled. Also, the enormous
quantity of small molecules makes it difficult to find the desired
molecule accurately. A luciferase reporter system may overcome
this drawback (Xie et al., 2016). The luciferase reporter system
can be specifically designed to screen small molecules that
upregulate IRBP expression. By inserting the promoter region
of human IRBP gene into the luciferase reporter plasmid, small
molecules that specifically bind to this promoter region can be
identified from the luciferase reporter activity (Miraglia et al.,
2011). However, it is difficult to disentangle the downstream
signaling through which the candidate small molecules regulate
the expression of IRBP. Some molecules acting on Müller
cells may also modulate IRBP expression via complex glia-
neuron interactions (Vecino et al., 2016). Low specificity, low
efficiency and the short-acting time of small molecules also
pose a formidable challenge to their successful application
(Maxim et al., 2014). A sustained-release formulation is highly
desirable in this case. Nanoparticles introduced in the vitreous
may sustain the delivery of the encapsulated agents for longer
durations (Kompella et al., 2003; Riley and Vermerris, 2017).
For example, Anti-VEGF aptamer EYE001 (tested in humans
for efficacy) entrapped in Poly lactic-co-glycolic acid (PLGA)
microspheres were found to deliver EYE001 in a sustained
manner with retained activity in vitro and ex vivo (Carrasquillo
et al., 2003). Lipid nanoparticle approaches with specific and
sustained delivery systems are expected to gain more attention
in the future. Several other studies have also demonstrated the
successful application of nanoparticles in the liver with approval
by the US Food and Drug Administration (FDA) (Coelho et al.,
2013; Rizk and Tuzmen, 2017).

Therefore, the successful clinical application of synthetic
and natural compounds may provide advantages but will
present challenges.

MicroRNAs
A microRNA is a small non-coding RNA that can regulate
gene expression of complementary mRNAs by binding to the
3′ untranslated region (3′ UTR) (Ambros, 2004; Bartel, 2018).
More than 60% of protein-encoding genes are controlled by
microRNAs (Friedman et al., 2009). It is recognized that
microRNAs play an important role at the post-transcriptional
level through degradation and translational repression of

their target mRNAs (He and Hannon, 2004). Since the first
study in 1993 discovering these post-transcriptional RNA-RNA
interactions, microRNAs have attracted lots of attention due to
their powerful post-transcriptional role, small size (21 nt), ease
of transfection and ability for a single miRNA to regulate whole
gene pathways (Lee et al., 1993; Wightman et al., 1993; Filipowicz
et al., 2008). 320 and 340 different kinds of microRNAs have been
found in mouse retina and RPE/choroid, respectively (Soundara
Pandi et al., 2013). Despite miRNA being suggested as being
involved in retinal degenerations, no studies have looked at the
role of miRNA regulation on IRBP.

Computational analysis using target scan (http://www.
targetscan.org/vert_72/) (Agarwal et al., 2015), which used to
predict related microRNAs, showed no validated sequences for
IRBP gene, but several predicted sequences. Predicted IRBP-
related microRNAs have been studied in previous retinal studies,
as shown in Table 1. Among which, miR-140-3p, miR-210-
5p and miR-190b-5p may be of interest in manipulating the
expression of IRBP. miR-140-3p participates in RPE cell survival
and apoptosis. Loss of circRNA_0084043 depressed high glucose
(HG)-induced apoptosis in ARPE-19 cells by upregulating miR-
140-3p (Li et al., 2020). Given the essential role inflammation
plays in retinal degenerations, miRNA that simultaneously
maintains normal retinal function and influence inflammatory
processes are of key therapeutic interest.

Once such miRNA miR-146a downregulates various genes
involved in normal retinal function and homeostasis, including
IL-6, IL-8 (Chen et al., 2010; Li et al., 2010) and is also predicted
to regulate IRBP. The exploitation of microRNAs involved in
modulating IRBP may be of clinical significance.

CRISPRa Gene Therapy
Since the development of gene-editing techniques such as zinc-
finger nucleases (ZFNs) and transcription activator-like effector
nucleases (TALENs), the third generation, clustered regularly
interspaced short palindromic repeats (CRISPR) technique
has recently risen (Doudna and Charpentier, 2014). This
technique has made gene therapy easier and more specific for
targeting a gene of interest, like IRBP. The recent development
of CRISPR interference (CRISPRi) and CRISPR activation
(CRISPRa) system that fuses dead nuclease Cas9 (dCas9) to
a transcriptional complex, enables inhibiting or activating the
transcription of target genes rather than cleaving them (Gilbert
et al., 2014). CRISPRa technology also can activate multiple genes
simultaneously (McCarty et al., 2020). Multiplex modulation
through CRISPRa enablesmore precise and efficient gene editing,
as many human diseases result from mutations in multiple genes
(Zlotogora, 2007). Human IRBP is ∼9.5 kb in length, which
exceeds the standard packing capacity of a virus. This is a
significant hurdle to develop gene therapies that target IRBP. We
may benefit from boosting the transcription of IRBP through
specifically designed guide RNA in the CRISPRa system. Gene
therapies using CRISPR technology have already been launched
in clinical trials. A patient with a hereditary blindness disorder
has become the first to receive a CRISPR/Cas9 gene therapy
administered directly into their body recently (Ledford, 2020).
Thus, the success of IRBP upregulation using this advanced
technology has translational applications.
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TABLE 1 | Correlation of predicted microRNA in regulating IRBP and retinal disease.

Predicted miRNA Reported miRNA Regulation Site Disease or model References Others

hsa-miR-152-5p hsa-miR-152 Down Human vitreous AMD vs. Con Ménard et al., 2016

hsa-miR-22-3p hsa-miR-22 Down Human retina AMD vs. Con Lukiw et al., 2012

hsa-miR-146b-3p Same Down Human vitreous Diabetic vs. Con Fulzele et al., 2015

hsa-miR-3121-5p hsa-miR-3121 Up Human serum dry AMD vs. Con Szemraj et al., 2015

hsa-miR-1306-5p Same Up Human plasma Glaucoma & XFS vs. Con Hindle et al., 2019

hsa-miR-3173-5p hsa-miR-3173 Up Human aqueous humor Glaucoma & XFS vs. Con Hindle et al., 2019

hsa-miR-4448 Same Up Human aqueous humor Glaucoma & XFS vs. Con Hindle et al., 2019

hsa-miR-152-5p hsa-miR-152 Down hREC HG condition vs. Con Haque et al., 2015 In vitro

hsa-miR-185-3p Same Down Rabbit retina Newborn vs. Adult Robert et al., 2010 Rabbit

hsa-miR-18a-3p Same Down Human aqueous humor POAG vs. Cataract Liu et al., 2018

hsa-miR-410-3p Same Up Human aqueous humor POAG vs. Cataract Liu et al., 2018

hsa-miR-4433b-3p Same Up Human aqueous humor POAG vs. cataract Liu et al., 2018

hsa-miR-487a-5p Same Up Human aqueous humor POAG vs. Cataract Liu et al., 2018

hsa-miR-501-3p Same Up Human aqueous humor POAG vs. Cataract Liu et al., 2018

hsa-miR-760 Same Up Human aqueous humor POAG vs. Cataract Liu et al., 2018

hsa-miR-874-3p Same Down Human aqueous humor POAG vs. Cataract Liu et al., 2018

hsa-miR-3149 Same Up Human serum POAG vs. Con (cataract included) Liu et al., 2019

hsa-miR-18a-3p hsa-miR-18a Up Human retina RB vs. Con Martin et al., 2013

hsa-miR-22-3p hsa-miR-22 Down Human retina RB vs. Con Martin et al., 2013

hsa-miR-504-3p hsa-miR-504 Down Human retina RB vs. Con Martin et al., 2013

hsa-miR-874-3p hsa-miR-874 Down Human retina RB vs. Con Martin et al., 2013

hsa-miR-214-3p Same Down Human plasma ROP vs. Con Metin et al., 2018

hsa-miR-223-5p Same Up Human vitreous severe PVR vs. mild PVR Toro et al., 2020

hsa-miR-1909-5p Same Up ARPE-19 cell TGFβ2 induced EMT vs. Con Chen et al., 2014 In vitro

hsa-miR-223-5p Same Up ARPE-19 cell TGFβ2 induced EMT vs. Con Chen et al., 2014 In vitro

hsa-miR-146b-3p hsa-miR-146b-5p Down Human plasma wet AMD vs. Con Ertekin et al., 2014

hsa-miR-324-3p Same Up Human plasma wet AMD vs. Con Ertekin et al., 2014 Express only in patient group

hsa-miR-410-3p hsa-miR-410 Down Human plasma wet AMD vs. Con Ertekin et al., 2014

hsa-miR-574-5p hsa-miR-574-3p Down Human plasma wet AMD vs. Con Ertekin et al., 2014

hREC, human retinal endothelial cells; XFS, exfoliation syndrome; Con, control; AMD, age-related macular degeneration; HG, high glucose; RB, retinoblastoma; POAG, primary

open-angle glaucoma; EMT, epithelial-mesenchymal transition; ROP, retinopathy of Prematurity; PVR, proliferative vitreoretinopathy.

CONCLUSION AND FUTURE DIRECTIONS

IRBP is required to maintain the normal functions of the
retina, and its downregulation is a common phenomenon
at the early stages of photoreceptor degeneration. Although
it may be an initial defensive response to retinal stress,
the suppression of IRBP is harmful to the health of the
photoreceptors in the long term (Figure 1c). The close
relationship of IRBP downregulation with early symptoms
and retinal disease severity forms the basis of its clinical
applications as an early diagnostic marker and therapeutic
target for many retinal diseases (Garcia-Ramirez et al., 2009;
Zhu et al., 2015; Yokomizo et al., 2019). It is expected that
restoring the expression of IRBP may slow the degeneration
of photoreceptors. Future research involving techniques like
CRISPRa-based gene therapy will allow for further exploration
of the clinical potential of treating retinal diseases with IRBP-
targeted gene therapy.
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