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Abstract: Clarifying the impact mechanisms of landscape patterns on ecosystem services is
highly important for effective ecosystem protection, policymaking, and landscape planning.
However, previous literature lacks knowledge about the impact mechanisms of landscape patterns on
ecosystem services from a spatial perspective. Thus, this study measured landscape patterns and the
ecosystem services value (ESV) using a series of landscape pattern metrics and an improved benefit
transfer method based on land-use data from 2015. It explores the impact mechanisms of the landscape
pattern metrics on the ESV using the ordinary least-squares method and spatial regression models
in the middle reaches of the Yangtze River Urban Agglomerations (MRYRUA), China. We found
that forestland was the main landscape type in the MRYRUA, followed by cultivated land, and the
fragmentation degree of cultivated land was significantly higher than that of forestland. The findings
demonstrate that landscape pattern metrics had a significant impact on ecosystem services, but could
vary greatly. Moreover, ecosystem services in the MRYRUA exhibited significant spatial spillover
effects and cross-regional collaborative governance was an effective means of landscape planning.
This paper acts as a scientific reference and effective guidance for landscape planning and regional
ecosystem conservation in MRYRUA and other similarly fast-growing urban agglomerations.

Keywords: ecosystem services value; landscape pattern metrics; spatial regression analysis; middle
reaches of the Yangtze River Urban Agglomerations; China

1. Introduction

Land-use/land-cover change (LULCC), an important component and determinant of global
environmental change, is the main manifestation of landscape pattern changes in the earth’s surface
system [1,2]. The worldwide population explosion and rapid advancement of urbanization and
industrialization have exacerbated the evolution of landscape patterns and are causing severe
interference to the global ecosystem [3–5]. Identifying the impact of landscape patterns on ecosystem
services is highly significant for ecosystem protection policy-making and landscape planning, especially
in fast-growing urban agglomerations in developing countries. At present, the development of new
urbanization in China is entering an important stage, with urban agglomerations as the main form [6].
The rapid urbanization in the urban agglomerations has accelerated the evolution of landscape patterns,
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which has caused a series of severe socioeconomic and ecological issues, such as water shortages [7],
food security problems [8], biodiversity degradation, and ecosystem deterioration [9,10], and has
seriously threatened the sustainable development of urban agglomerations [11]. However, because of
the previous lack of research on the transmission and feedback mechanism of the impact of landscape
patterns on ecosystem services from spatial aspects, and the spatial associations and impact mechanism
existing between landscape patterns and ecosystem services, these topics need further exploration and
analysis. In this context, clarifying the impact mechanism of landscape patterns on ecosystem services
has become a focus of decision-makers and scholars.

Landscapes are mosaics of different land-use patterns or heterogeneous regions composed of
multiple ecosystems [12]. Essentially, these different ecosystems can often be represented by different
land-use or land-cover types. Therefore, a landscape pattern mainly refers to the shape, proportion,
and spatial arrangement that constitute ecosystems or land-use or land-cover types [13]. Changes in
landscape patterns impact the supply capacity of ecosystem services by causing changes in ecosystem
components, structures, ecological processes, and biodiversity [14]. For example, ecosystem services
provided by agricultural landscapes generally have a stronger capacity to provide supply services,
but have a weaker capacity for regulation services, cultural services, and support services; in contrast,
the regulation and support services of forest landscapes are higher, but the capacity for supply services
is lower. Different landscape patterns correspond to corresponding ecological processes and have
different impacts on ecosystem services [10,15]. Specifically, changes in landscape patterns influence
the structure and function of the ecosystem by affecting the types, areas, and spatial distribution of
various ecosystems, resulting in the change in material, energy, and ecological flows in the landscape,
and ultimately affecting the supply and maintenance of ecosystem services [13,15].

The process of landscape pattern change is the process of a material cycle, energy flow,
and ecological flow between human systems and environmental systems. During this process,
there is a significant interference of soil, climate, hydrology, and other geochemical cycles, as well
as natural factors, such as biodiversity, thus changing the structure, composition, and function of
ecosystems [16]. In addition, ecological processes, such as nutrient cycling, soil erosion, and microbial
degradation, are spatially and temporally different, which has a huge impact on the supply and
maintenance of ecosystem services. Generally speaking, in natural ecosystems with fewer human
activities, there are relatively low levels of supply services, but there are relatively high levels of
regulation services and support services. In the case of moderate human development, the level of
supply services tends to rise rapidly, while the level of regulation services and support services declines.
Excessive human disturbances to the ecosystem will cause the degradation of various ecosystem
services. In areas with strong human activities, the natural landscape is greatly transformed and the
landscape pattern index can reflect the impact of human activities on the landscape structure to a
certain extent [17]. Studies on the ecological process of regional landscape change can better explain
landscape pattern changes and ecological effects.

The concept of ecosystem services, which link the ecosystem with human development systems,
provides a new perspective for studying the interaction between ecosystems and human systems.
The measurement of ecosystem services mainly includes the monetary value, material, and energy
methods [10,18]. The benefit transfer method realizes the monetization of ecosystem services based on
LULCC data, which can reflect the scarcity and importance of ecosystem services [19], and has been
widely used in previous studies because of its feasibility and and the availability of data. The benefit
transfer method uses existing valuation studies to infer monetary values from one or more existing
study sites for application to target study sites that lack original valuation data [20]. In previous
studies, extensive research has been conducted on evaluations, trade-offs, supply and demand, scenario
prediction, influence factors, and the optimal regulation of ecosystem services, but there are still
inadequacies [9,21–23]. The spatialization of the ESV has always been controversial. Previous studies
have corrected ESV assessments based on the assumption that ecosystem services’ intensity is linearly
associated with biomass [24,25]; however, biomass is not entirely positively correlated with the
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ESV. For example, aquatic ecosystems contain very little biomass but it plays an important role
in hydrological regulation and waste treatment. The relationship between landscape patterns and
ecological processes is very complex, often including non-linear and complex coupling with feedback;
however, previous literature included analyses of the impact of landscape changes on ecosystem
services, the relevant research on the impact of landscape pattern changes on ecosystem services is still
insufficient [26,27]. For example, the impact of landscape patterns on various functions provided by
ecosystems (e.g., supply services, regulation services, support services, and cultural services) is still
unclear [27,28].

In addition, previous studies on how landscape pattern changes drive the ESV have neglected
ecosystem services as public services that exhibit a strong spatial spillover effect [9]. That is, ecosystem
services in a local unit are affected not only by the individual ecosystem services supply capacity but
also by the ecosystem services supply capacity of the adjacent unit [29]. In addition, previous research
has failed to sufficiently consider the spatial autocorrelation between the ESV and landscape pattern
metrics. There is always a strong spatial autocorrelation between the ESV and landscape pattern metrics,
such that ignoring the comprehensive consideration of the spatial dependence effect will reduce the
ability to explain their relationship [30,31]. Finally, previous research on ESV tends to focus on single
units without studying urban agglomerations, whereas examining urban agglomerations can help to
promote cross-regional joint governance [32,33]. Therefore, studying the impact of landscape patterns
on the ESV from a spatial perspective can adequately grasp the spatial interaction between landscape
patterns and ecosystem services and promote the sustainable development of urban agglomerations.

This study took landscape patterns, which are considered to be an important bridge between the
landscape and ecosystem, as the breakthrough point and analyzed the impact of landscape patterns
on ecosystem services. The findings help to promote the understanding and interpretation of the
relationship between landscape patterns and ecosystem services and provide a scientific reference
for sustainable development opinions and technical solutions. Consequently, this study selected the
MRYRUA as a study case to explore the spatial relationship between landscape patterns and the ESV in
the MRYRUA. As a new economic development and a pilot zone for a new type of urbanization in the
central and western regions of China, the landscape patterns and the supply capacity of the ecosystem
in the MRYRUA have changed significantly. Exploring the impact mechanisms of landscape patterns
on the ESV plays an important role in providing effective ecosystem protection policies and relevant
landscape planning suggestions. The main parts of this study are as follows: (1) the spatial distribution
features of the ESV in the MRYRUA were evaluated with a revised, improved benefit transfer method
based on LULCC data from 2015; (2) the spatial distribution features of a series of landscape pattern
indexes of the MRYRUA were measured using Fragstats v4.2.1 software (Oregon State University,
Corvallis, OR, USA); and (3) the mechanisms of the landscape pattern that drives the ESV were
analyzed for the MRYRUA using the least-squares method and spatial regression models, providing
scientific support for ecosystem protection and sustainable land use in the MRYRUA. We organized
the remainder of this paper as follows. The study area, data sources, and methods are introduced in
Section 2; Section 3 introduces the findings of this study; Section 4 presents the discussion and policy
implications; and Section 5 presents the conclusions.

2. Materials and Methods

2.1. Study Area

The MRYRUA includes the Hunan, Hubei, and Jiangxi Provinces (108◦21′–118◦28′ E, 24◦29′–33◦20′N),
and covering 325 counties, and is an important component of national strategies, such as the Yangtze
River Economic Belt and the Rise of Central China (as illustrated in Figure 1). The terrain conditions
are very complex because the MRYRUA is located in the transition zone from the second to the third
step. The MRYRUA is surrounded by Wuling Mountain, Wushan Mountain, Xuefeng Mountain,
Nanling Mountain, and Dabie Mountain. The Luoxiao mountain range is located at the junction of
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Hunan Province and Jiangxi Province, with Jianghan Plain, Dongting Lake Plain, and Poyang Lake Plain
distributed along the Yangtze River. The Yangtze River system crosses the study area. The MRYRUA
has excellent natural geographical conditions, linking the east with the west and connecting southern
China with northern China with convenient transportation. Many major railways in China run through
the MRYRUA (e.g., Beijing–Guangzhou Railway and Beijing–Kowloon Railway) and several air routes
constitute a comprehensive three-dimensional traffic corridor. The super large urban agglomerations
formed by Wuhan Metropolis, Changsha–Zhuzhou–Xiangtan urban agglomerations, and Poyang
Lake urban agglomerations have strongly supported the economic development of the MRYRUA and
formed a new growth area for China’s economic development. The proportion of forestland in the
MRYRUA is very high and has a strong hydrologic regulatory function. In addition, the complex
geological structures and rich geomorphic types in the MRYRUA lay a foundation for breeding
various organisms. Therefore, the MRYRUA has rich biodiversity resources, plays an important role in
maintaining biodiversity, and has several biodiversity regions with international significance, such as
the Jianghan Plain wetlands and Dongting Lake Plain wetlands. Therefore, the MRYRUA was selected
as the study area to examine the driving mechanisms of the ecosystem services to provide scientific
guidance for land-use management and the formulation of reasonable ecological management policies.
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Figure 1. Location of the middle reaches of the Yangtze River Urban Agglomerations (MRYRUA) in China.

2.2. Data Sources

The 30 m resolution land-use data and normalized difference vegetation index (NDVI) data with
a 1 km resolution from 2015 used in the study were sourced from the Data Center for Resources
and Environmental Sciences of the Chinese Academy of Sciences (http://www.resdc.cn) [34,35].
Liu et al. [34] reconstructed China’s LULCC datasets with 5-year intervals from the late 1970s to 2018
using Landsat TM/ETM remote sensing images as the main data source, which has a spatial resolution
of 30 × 30 m [34]. Land-use data from 2015 were generated through the human–computer interactive
interpretation method based on Landsat 8 remote sensing images (e.g., Landsat 8 operational land
imager and GF-2), with reference to 2010 LULCC data. In line with the existing research related
to ecosystem services, the land-use data were divided into seven first-class land-use types, namely,
cultivated land, forestland, grassland, water area, wetland, construction land, and unused land.
Based on field trips, the comprehensive evaluation accuracy of the first-class land-use data was higher

http://www.resdc.cn
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than 93% [34]. The grain output data involved in this study were from the Hubei Statistical Yearbook,
Hunan Statistical Yearbook, and Jiangxi Statistical Yearbook in 2016, and the grain price data were sourced
from the 2016 China Yearbook of Agricultural Price Survey.

2.3. Methodology

2.3.1. Ecosystem Services Value Measurement

The theoretical framework of ESV measurement put forward by Costanza et al. provided a new
path for quantifying ecosystem services, and subsequently, extensive research on the ESV has been
carried out worldwide using their method [22,36–38]. According to Costanza et al. and the expert
knowledge of ≥700 ecologists, Xie et al. reclassified ecosystem services and the revised equivalent
table for the ESV in China [22,39]. Specifically, the classification of ecosystem services was revised into
four primary categories (supply services, regulation services, support services, and cultural services)
and nine secondary categories from 17 ecosystem services proposed by Costanza et al. [22,39]. Xie et al.
put forward the concept of equivalent value per unit area as a modification of the equivalent table of
the ESV [39]. The equivalent value per unit area was defined as the relative importance of various
ecosystem services to the grain production of cultivated land, where the equivalent value per unit
area of grain production of cultivated land was set to 1. Therefore, we could obtain the equivalent
value per unit area of other ecosystem services by comparing their relative importance to the grain
production of cultivated land [10,21]. The equivalent value per unit area proposed by Xie et al. was
revised using expert knowledge and with reference to the actual situation of China’s ecosystem,
but it cannot be used in MRYRUA directly because of the spatial heterogeneity of the ESV. Xie et al.
asserted that the ESV has a significant linear relationship with biomass and can be spatialized based on
biomass [23,24,39]. However, ecosystem services and biomass do not necessarily have a completely
linear relationship. For example, there is a small amount of biomass but a large number of ecosystem
services in water areas and wetlands. In the models in previous research, deviations may occur in
the revision of the ESV based on the regional biomass. As the equivalent table proposed by Xie et al.
uses the economic value of cultivated land per unit area as a reference, Chen et al. thought that it was
more reasonable to make a spatial correction of ecosystem services based on the biomass provided by
cultivated land [10]. Chen et al. measured the ESV of the MRYRUA based on the grain output and
grain price [40]. Using Chen et al.’s research, this study corrects the ESV of the MRYRUA based on the
biomass provided by cultivated land [10,40]. The specific equations are as follows:

ESVk =
VCIk

VCI
×

m∑
j=1

n∑
i=1

(LAi ×VCi) (1)

AESVk =
ESVk
n∑

i=1
LAi

(2)

where ESVk refers to the corrected ESV of the kth county (RMB), LAi represents the area of land-use
type i (hm2), VCi is the equivalent coefficient of the ESV (RMB/(hm2

·a)), VICk is the biomass on the
cultivated land of the ith county unit, and VCI is the average of the biomass on the cultivated land in
the MRYRUA. AESVk is the average ecosystem services value of the kth county (RMB/hm2), which is
calculated by dividing the corrected ESV of the kth county by the corresponding county unit area.

2.3.2. Landscape Pattern Index

The landscape pattern index can effectively reflect the spatial allocation and structural
characteristics of landscape patterns [17]. To reveal the landscape pattern features in the MRYRUA,
based on previous studies [26,41,42], this study selected a series of landscape pattern metrics from
patch level and landscape level, including the number of patches (NP), patch density (PD), patch edge
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density (ED), percentage of landscape (PLAND), landscape shape index (LSI), Shannon diversity index
(SHDI), Simpson diversity index (SIDI), interspersion juxtaposition index (IJI), landscape division index
(DIVISION), patch cohesion index (COHESION), splitting index (SPLIT), area-weighted mean patch area
(AREA_AM), area-weighted mean patch shape index (SHAPE_AM), area-weighted mean patch fractal
index (FRAC_AM), aggregation index (AI), and contagion index (CONTAG). Moreover, the landscape
pattern features in the MRYRUA were measured at the level of class level and the landscape level,
where the specific equation was taken from McGarigal et al. [17]. In this study, the software of Fragstats
v4.2.1 software was used to calculate the landscape pattern index.

2.3.3. Spatial Autocorrelation Test

To explore the spatial agglomeration and dispersion characteristics between the average ESV and
landscape pattern indexes, this study adopted the bivariate global spatial autocorrelation method
to measure the spatial relationship between them to determine the model selection [43]. The global
bivariate Moran’s I can be used to study whether there is a spatial correlation between the average ESV
and landscape pattern indexes of the MRYRUA [44]. The equation is as follows:

I =

N
N∑
i

N∑
j,i

Wi jze
i z

u
j

(N − 1)
N∑
i

N∑
j,i

Wi j

(3)

where I is the global bivariate spatial autocorrelation index, N is the number of research units, Wij is
the adjacent spatial weight matrix, zi

e is the ESV of the ith unit, and zj
u is the landscape pattern index

of the jth unit. The global Moran’s I value is generally between –1 and 1. If the value is greater than
zero, it indicates that there is a positive autocorrelation; if the value is less than zero, it indicates that
there is a negative autocorrelation; and if the value is close to zero, it indicates that there is a random
distribution. Additionally, the p-value is often used as a significance test.

2.3.4. Spatial Regression Analysis

Four regression models were used in this study to verify the impact of the landscape pattern index
on ecosystem services, including the ordinary least-squares method, spatial lag model, spatial error
model, and spatial error model with lag dependence. The specific methods are as follows.

Ordinary least-squares method (OLS): The standard linear regression model assumes that the
random error term of the model is independent with a normal distribution and confirming whether
the model hypothesis is satisfied can be determined through a model diagnosis. The OLS model
comprehensively considers the importance of independent variables to dependent variables without
regard to the influence of the neighborhood [27]. The equation is as follows:

AESVt = Xtβ+ ε (4)

Spatial lag model (SLM): The SLM model assumes that spatial autocorrelation occurs with the
dependent variables, emphasizes the neighborhood effect, and considers the spatial diffusion (spillover
effect) of the dependent variables among geographic units [27]. The equation is as follows:

AESVt = Xtβ+ ρW1AESVt + ε (5)

Spatial error model (SEM): The spatial dependence of SEM exists in the disturbance error term.
The model measures the impact of the error shock of the dependent variables of adjacent geographical
units on the observed values in this area [27]. The equation is as follows:

AESVt = Xtβ+ ε, ε = λW2ε+ ξ (6)
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Spatial error model with lag dependence (SEMLD). The spatial lag model and spatial error model
are an oversimplification, which may exclude other possible spatial autocorrelation mechanisms, such
as the simultaneous existence of a spatial lag and error autocorrelation [27,45,46]. The SEMLD model
includes the spatial lag model and the spatial error model, which is a spatial autoregressive model
enhanced by adding spatial lag dependent variables. The equation can be expressed as a combination
of Equations (5) and (6), as follows:

AESVt = Xtβ+ ρW1AESVt + ε, ε = λW2ε+ ξ (7)

where AESVt is the matrix of the average ESV in year t; Xt is the n × k independent variable matrix
in year t, where n is the number of research units and k is the number of explanatory variables; β is
the coefficient vector of Xt, which indicates the influence of independent variables on the dependent
variables; ρ is the spatial lag parameter, λ is the spatial error parameter, ε is the vector of the random
error term, and W1 and W2 are the spatial weight matrixes of the lag terms and error terms, respectively.

3. Results and Analysis

3.1. Ecosystem Services Value in the MRYRUA

Using Equations (1) and (2), the ESV supply capacity of the MRYRUA was measured for
2015; the ESV provided by the ecosystems in the MRYRUA in 2015 was RMB 2770.351 billion.
Compared with the research results of Chen et al. (2019; RMB 2611.560 billion) and Yang et al. (2017;
RMB 2758.851 billion), our result was greater but the difference is not significant [40,47]. Compared with
the research results of Liu et al., the ESV of the MRYRUA in 2010 was only RMB 877.09 billion [48].
Specifically, supply services, regulation services, support services, and cultural services values of the
MRYRUA in 2015 were RMB 308.754 billion, RMB 1485.153 billion, RMB 781.831 billion, and RMB
194.612 million, respectively. Regulation services were significantly higher than the other types of
services and the value of cultural services was the lowest.

The spatial distribution patterns of the average ESV, average supply services, average regulation
services, average support services, and average cultural services are provided in Figure 2. The counties
with a low average ESV of the MRYRUA were mainly distributed in Jianghan Plain, Poyang Lake
Plain, and Dongting Lake Plain, especially in large cities and surrounding counties and districts,
as well as counties and districts along important traffic routes. The areas with a high average
ESV were mainly distributed in Wu Mountain in the west of the MRYRUA and Dabie Mountain
north of Hubei Province, Xuefeng Mountain in the west and central Hunan Province, the Nanling
Mountains in the south, Wuyi Mountain in east Jiangxi Province, and Luoxiao Mountain between
Jiangxi Province and Hunan Province. Comparing the different ecosystem service types, the spatial
distribution patterns of supply services, regulation services, support services, and cultural services
were similar. Moreover, the regulating capacity of ecosystems in Dongting Lake and Poyang Lake
areas was significantly higher than those in other areas, which was mainly due to the strong waste
treatment capacity of the water body. In addition, the supply capacity of ecosystem services in counties
along the Yangtze River was significantly higher than those in other regions. Because of the large
differences in natural conditions and the socioeconomic development levels of mountain and plain
areas, the ESV provided by the ecosystems also exhibited great differences.
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3.2. Landscape Pattern Indexes in the MRYRUA

Forestland and cultivated land were the main landscape types in the MRYRUA, accounting for
58.06% and 30.14% of the total coverage, respectively (as illustrated in Table 1). However, the number
of patches of cultivated land was significantly higher than those of forestland, indicating that the
fragmentation of cultivated land was more serious. Construction land accounted for only 3.09% but
the number of patches was second only to that of cultivated land, indicating that the fragmentation of
construction land was also severe. The patch density of cultivated land and construction land was 0.31
and 0.18, respectively, which was significantly higher than those of other landscape types. In terms
of edge density, the edge density of cultivated land and forestland was 21.80 and 20.17, respectively,
which were significantly higher than those of other landscape types. We can find similar features for
the area-weighted mean patch area, the area-weighted mean patch fractal index, the area-weighted
mean patch shape index, and the percentage of landscape in all landscapes. These landscape pattern
indexes were the largest for forestland, and those of unused land were the lowest among all the
landscapes. The interspersion juxtaposition index of the wetland landscape was the largest (67.50),
followed by that of water area (65.89), while that of forestland was the smallest (39.21). The cohesion
degree of construction land was the lowest (92.98), and that of forestland was the highest (99.96) among
all the landscapes. The landscape splitting index of unused land was the highest, followed by that
of construction land, while that of forestland was the lowest. In contrast, the aggregation index of
forestland was the highest (92.15), while that of unused land was the lowest (70.19). In terms of the
spatial distribution of various landscape pattern indexes, the patch density in the central areas of
key cities was relatively large and similar distribution characteristics were found in the interspersion
juxtaposition index. The landscape shape index in the central areas of core cities was significantly lower
than that found in other counties. Similar distribution characteristics were found in the patch cohesion
index and aggregation index. The Shannon diversity index, landscape division index, and splitting
index in the plain areas were higher than those in the surrounding mountain areas.
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Table 1. The different landscape indexes of each landscape type in the MRYRUA in 2015.

Land Type PLAND NP PD ED LSI AREA_AM SHAPE_AM FRAC_AM IJI COHESION DIVISION SPLIT AI

Forestland 58.06 59,679.00 0.11 20.17 500.22 5,559,136.18 145.50 1.38 39.21 99.96 0.94 17.50 92.15
Grassland 3.65 28,955.00 0.05 3.22 318.38 933.42 3.86 1.15 44.59 94.89 1.00 1,659,361.44 80.08
Cultivated land 30.14 176,274.00 0.31 21.80 746.59 472,195.68 50.34 1.32 48.04 99.69 1.00 396.78 83.73
Construction land 3.09 101,248.00 0.18 3.83 408.82 2,522.83 3.91 1.14 45.03 92.98 1.00 723,842.77 72.20
Water area 3.95 34,555.00 0.06 3.00 283.69 266,930.25 33.21 1.26 65.89 99.50 1.00 5,354.71 82.95
Unused land 0.02 586.00 0 0.02 33.49 893.42 5.00 1.14 64.72 93.99 1.00 362,468,475.71 70.19
Wetland 1.10 8,769.00 0.02 0.70 126.46 30,141.46 5.79 1.17 67.50 97.53 1.00 170,671.10 85.64

Notes: PLAND represents percentage of landscape; NP represents number of patches; PD represents patch density; ED represents patch edge density; LSI represents landscape shape
index; AREA_AM represents area-weighted mean patch area; SHAPE_AM represents area-weighted mean patch shape index; FRAC_AM represents area-weighted mean patch fractal
index; IJI represents interspersion juxtaposition index; COHESION represents patch cohesion index; DIVISION represents landscape division index; SPLIT represents splitting index; AI
represents aggregation index.
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3.3. Spatial Regression Analysis

3.3.1. Specification of Variables

In this study, several factors were included in the models as the dependent variables for the
325 county units of the MRYRUA in 2015, such as the average ESV, average supply services, average
regulation services, average support services, and average cultural services. The independent variables
of the models were the landscape pattern indexes calculated in Section 2.3.2. Multiple landscape
pattern indexes may lead to the existence of multicollinearity, where the multicollinearity diagnosis
for landscape pattern indexes was conducted using Stata 15.0 SE version software (StataCorp,
College Station, TX, USA). It is generally believed that the larger the value of the variance inflation
factor (VIF), the stronger the collinearity. In this study, nine factors with a VIF less than eight were
selected as independent variables of the models (Table 2). To further prove the rationality of the
selected landscape pattern metrics, the correlation matrixes of all the landscape pattern metrics and the
selected landscape pattern metrics were provided in this study (Figure 3). The correlation between the
selected landscape pattern indexes was demonstrated as being significantly reduced.
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Table 2. The multi-collinearity diagnostics of the regression equation.

Model 1 PD ED LSI ARE
A_AM

SHAP
E_AM

FRA
C_AM

CONTAG PLADJ IJI COHE
SION

DIVI
SION

SPLIT SHDI SIDI AI

VIF 4.86 758.36 11.89 8.90 19.55 24.04 30.38 474.51 8.71 21.00 13.02 5.20 42.40 48.50 986.40

Model 2 PD LSI ARE
A_AM

IJI COHE
SION

DIVI
SION

SPLIT SHDI AI

VIF 4.35 6.37 3.95 4.02 6.65 6.86 3.09 5.53 6.78
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Int. J. Environ. Res. Public Health 2020, 17, 5063 13 of 21

3.3.2. Bivariate Spatial Correlation Test between the Ecosystem Services Value and Landscape Pattern
Metrics in the MRYRUA

The bivariate spatial autocorrelation of the average ESV, as well as the average supply services,
average regulation services, average support services, and average cultural services and the landscape
pattern index were tested with the help of Geoda095i software (University of Chicago, Chicago, IL,
USA) by using the first-order queen continuity spatial matrix of MRYRUA from 2015 (as illustrated in
Table 3). The bivariate spatial autocorrelation index between the ESV and the aggregation index was
negative and significant at the level of 0.05 level. The bivariate spatial autocorrelation index between
the average regulation services and average cultural services and the aggregation index was positive
and also significant at the level of 0.05 level. The bivariate spatial autocorrelation index between the
average support services and aggregation index was positive but not significant. The bivariate spatial
autocorrelation indexes between other types of ecosystem services and landscape pattern indexes
were all significant at the level of 0.0001 level. Specifically, the bivariate spatial autocorrelation index
between the average ESV, as well as average supply services, average regulation services, average
support services, and average cultural services and the PD, IJI, DIVISION, SPLIT, and SHDI were
negative, while the bivariate spatial autocorrelation index between the average ESV, as well as the
average supply services, average regulation services, average support services, and average cultural
services and the LSI, AREA_AM, and COHESION were positive. Based on the results of the bivariate
spatial autocorrelation analysis between the ESV and landscape pattern index, there was a significant
spatial dependence between the ecosystem services and the landscape pattern index. Therefore, it was
necessary to fully consider the spatial dependence in the analysis of the impact of the landscape pattern
index on ecosystem services in the MRYRUA.

Table 3. Bivariate Moran’s I between the average ESV and the landscape pattern metrics for the
MRYRUA in 2015.

Ecosystem
Services Type

PD LSI ARE
A_AM

IJI COHES
ION

DIVIS
ION

SPLIT SHDI AI

Ecosystem services –0.185 *** 0.328 *** 0.387 *** –0.369 *** 0.373 *** –0.161 *** –0.168 *** –0.293 *** –0.035 *
Supply services –0.176 *** 0.370 *** 0.424 *** –0.505 *** 0.368 *** –0.194 *** –0.189 *** –0.438 *** –0.003
Regulation services –0.159 *** 0.236 *** 0.273 *** –0.184 *** 0.310 *** –0.090 *** –0.110 *** –0.112 *** 0.056 *
Support services –0.176 *** 0.363 *** 0.433 *** –0.488 *** 0.368 *** –0.205 *** –0.198 *** –0.424 *** 0.006
Cultural services –0.177 *** 0.286 *** 0.368 *** –0.320 *** 0.340 *** –0.165 *** –0.166 *** –0.253 *** 0.049 *

Note: *** p ≤ 0.001 and * p ≤ 0.05.

3.3.3. Impact of the Landscape Pattern on Ecosystem Services in the MRYRUA

The results of the bivariate spatial autocorrelation analysis demonstrated that there was a significant
spatial dependence between the ESV and the landscape pattern index for the MRYRUA. According to
the OLS regression results, the residual test results passed the significance test at the level of 0.0001 level,
which demonstrated that there was significant spatial autocorrelation in the residuals. If the traditional
regression model was adopted, the model hypothesis was violated. Therefore, based on the results of
the residual test and spatial autocorrelation test, the spatial regression model needed to be considered
in the exploration of the relationship between the ESV and the landscape pattern index (as illustrated
in Table 4). The spatial regression model considered the spatial effect, which could overcome the
problem of setting the deviation of a traditional econometric model to a certain extent. In this study,
a set of regression models for cross-section data were adopted, including the spatial lag model (SLM),
spatial error model (SEM), and spatial error model with lag dependence (SEMLD), to explore the
impact mechanism of the landscape pattern index on the ecosystem services. The items of the robust
LM (lag), robust LM (error), and LM (lag and error) were significant at the level of 0.0001 level in all the
models, indicating that the SEM, SLM, and SEMLD models could be employed in this study. To select
the model with the best performance, this study listed the regression results of three spatial regression
models (as illustrated in Table 5) and compared the log-likelihood (LogL), Akaike information criterion
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(AIC), and Schwartz’s Bayesian information criterion (SC) of these three spatial models to determine the
suitability of the models. The larger the LogL, and the smaller the AIC and the SC, the better the fitting
degree. The fitting degree of the spatial regression models was better than those of the OLS model,
while the LogL value of the SEMLD model was the largest of the four models, and its AIC and SC were
the smallest of the four models. Therefore, the SEMLD model was the most appropriate choice in this
study. In all of the models, the statistical values of the Breusch–Pagan test and Koenker–Bassett test
passed the significance test at the level of 0.0001 level, indicating that there was no heteroscedasticity
in the independent variables.

Table 4. Regression results of the ordinary least-squares (OLS) method.

Variables Ecosystem
Services

Supply
Services

Regulation
Services

Support
Services

Cultural
Services

PD
−0.343 *** −0.367 *** −0.199 *** −0.408 *** −0.392 ***
(0.088) (0.090) (0.071) (0.093) (0.096)

LSI
−0.252 ** −0.200 * −0.237 *** −0.137 −0.177
(0.084) (0.085) (0.067) (0.089) (0.091)

AREA_AM
0.756 *** 0.765 *** 0.527 *** 0.746 *** 0.691 ***
(0.086) (0.088) (0.069) (0.091) (0.094)

IJI −0.212 −0.210 ** −0.149 ** −0.203 ** −0.215 **
(0.068) (0.070) (0.055) (0.073) (0.075)

COHESION
0.463 *** 0.331 *** 0.443 *** 0.251 ** 0.318 **
(0.088) (0.090) (0.071) (0.094) (0.097)

DIVISION
0.294 *** 0.386 *** 0.196 ** 0.300 *** 0.179 *
(0.083) (0.085) (0.067) (0.088) (0.090)

SPLIT
0.080 0.038 0.099 0.003 0.035
(0.068) (0.069 (0.055) (0.072) (0.074)

SHDI
0.089 −0.551 *** 0.364 *** −0.421 *** 0.223 *
(0.090) (0.092) (0.072) (0.096) (0.098)

AI
−0.448 *** −0.747 *** −0.167 * −0.689 *** −0.355 **
(0.105) (0.108) (0.085) (0.112) (0.115)

Constant
0.441 *** 0.916 *** 0.024 0.914 *** 0.452 ***
(0.124) (0.127) (0.100) (0.132) (0.136)

Moran’s I (error) 0.349 *** 0.421 *** 0.311 *** 0.438 *** 0.371 ***
LM (lag) 165.066 *** 216.568 *** 120.282 *** 227.081 *** 163.825 ***
Robust LM (lag) 64.488 *** 79.676 *** 40.185 *** 76.445 *** 49.755 ***
LM (error) 100.916 *** 147.320 *** 80.170 *** 159.537 *** 114.453 ***
Robust LM (error) 0.338 10.428 *** 0.073 8.902 ** 0.384
Lagrange multiplier (SARMA) 165.404 *** 226.996 *** 120.355 *** 235.983 *** 164.208 ***
Heteroscedasticity test
Breusch−Pagan test 87.919 *** 90.855 *** 89.060 *** 80.464 *** 75.053 ***
Koenker−Bassett test 64.657 *** 51.939 *** 49.313 *** 49.842 *** 56.861 ***
Measures of fit
Log likelihood 233.542 226.648 303.811 213.697 204.816
AIC −447.083 −433.296 −587.622 −407.395 −389.631
SC −409.245 −395.458 −549.784 −369.557 −351.793
R2 0.606 0.720 0.502 0.680 0.510
N 325 325 325 325 325

Note: *** p ≤ 0.001, ** p ≤ 0.01, and * p ≤ 0.05. The standard deviations are in parentheses. LM—Lagrange multiplier,
AIC—Akaike information criterion, and SC—Schwartz’s criterion.
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Table 5. Regression results of the spatial lag model (SLM), spatial error model (SEM), and spatial error model with lag dependence (SEMLD).

Explanatory
Variables

Ecosystem Services Supply Services Regulation Services Support Services Cultural Services

SLM SEM SEMLD SLM SEM SEMLD SLM SEM SEMLD SLM SEM SEMLD SLM SEM SEMLD

PD
−0.206 ** −0.404 *** −0.138 * −0.178 ** −0.362 *** −0.195 *** −0.140 * −0.260 *** −0.093 * −0.207 *** −0.409 *** −0.201 *** −0.249 *** −0.436 *** −0.157 **
(0.063) (0.077) (0.056) (0.056) (0.065) (0.058) (0.055) (0.067) (0.049) (0.057) (0.067) (0.058) (0.070) (0.085) (0.060)

LSI
−0.112 −0.162 ** −0.077 −0.096 −0.120 * −0.090 −0.117 * −0.146 ** −0.075 −0.052 −0.093 −0.044 −0.070 −0.120 −0.036
(0.059) (0.063) (0.056) (0.052) (0.052) (0.053) (0.053) (0.056) (0.049) (0.054) (0.054) (0.054) (0.066) (0.069) (0.060)

AREA_AM
0.353 *** 0.412 *** 0.233 *** 0.284 *** 0.291 *** 0.241 *** 0.296 *** 0.332 *** 0.193 *** 0.266 *** 0.289 *** 0.209 *** 0.334 *** 0.384 *** 0.194 **
(0.064) (0.068) (0.062) (0.057) (0.057) (0.059) (0.056) (0.059) (0.054) (0.058) (0.059) (0.060) (0.070) (0.075) (0.066)

IJI −0.172 *** −0.086 −0.178 *** −0.165 *** −0.085 −0.143 *** −0.125 ** −0.062 −0.129 ** −0.159 *** −0.076 −0.144 *** −0.173 ** −0.085 −0.179 ***
(0.048) (0.053) (0.045) (0.043) (0.044) (0.043) (0.043) (0.047) (0.040) (0.044) (0.045) (0.044) (0.054) (0.059) (0.049)

COHESION
0.247 *** 0.273 *** 0.191 *** 0.210 *** 0.182 ** 0.195 *** 0.244 *** 0.277 *** 0.167 ** 0.141 * 0.123 0.125 * 0.145 * 0.172 * 0.094
(0.063) (0.076) (0.058) (0.056) (0.063) (0.058) (0.057) (0.066) (0.053) (0.057) (0.066) (0.058) (0.070) (0.083) (0.062)

DIVISION
0.086 0.138 * 0.029 0.105 * 0.111 * 0.080 0.079 0.114 * 0.035 0.051 0.077 0.022 0.031 0.084 −0.019
(0.059) (0.062) (0.056) (0.053) (0.051) (0.053) (0.052) (0.055) (0.049) (0.054) (0.053) (0.054) (0.066) (0.069) (0.060)

SPLIT
0.099 * 0.083 0.108 * 0.113 ** 0.079 0.113 ** 0.078 0.074 0.071 0.088 * 0.057 0.095 ** 0.060 0.050 0.076
(0.048) (0.051) (0.045) (0.043) (0.042) (0.043) (0.042) (0.045) (0.040) (0.043) (0.043) (0.043) (0.053) (0.056) (0.049)

SHDI
0.155 * 0.058 0.194 *** −0.186 ** −0.340 *** −0.206 *** 0.277 *** 0.246 *** 0.242 *** −0.098 −0.252 *** −0.085 0.229 ** 0.141 0.248 ***
(0.064) (0.075) (0.058) (0.060) (0.062) (0.060) (0.056) (0.066) (0.052) (0.061) (0.064) (0.060) (0.071) (0.083) (0.063)

AI
−0.127 *** −0.293 *** −0.021 −0.230 *** −0.401 *** −0.221 ** −0.045 −0.128 0.006 −0.183 ** −0.367 *** −0.140 −0.085 −0.225 * 0.026
(0.077) (0.088) (0.071) (0.070) (0.074) (0.072) (0.067) (0.077) (0.061) (0.071) (0.076) (0.072) (0.085) (0.097) (0.075)

Constant
0.046 0.619 *** −0.094 0.262 ** 0.719 *** 0.268 ** −0.107 0.240 * −0.169 * 0.258 ** 0.772 *** 0.209 * 0.090 0.595 *** −0.071
(0.091) (0.115) (0.081) (0.084) (0.112) (0.089) (0.079) (0.099) (0.069) (0.085) (0.112) (0.088) (0.100) (0.125) (0.085)

Spatial lag term 0.693 *** 0.894 *** 0.710 *** 0.762 *** 0.639 *** 0.909 *** 0.740 *** 0.825 *** 0.697 *** 0.948 ***
(0.037) (0.041) (0.029) (0.039) (0.044) (0.049) (0.029) (0.038) (0.039) (0.041)

Spatial error term 0.812 *** −0.255 *** 0.960 *** 0.239 ** 0.718 *** −0.284 ** 0.947 *** 0.127 *** 0.788 *** −0.346 ***
(0.036) (0.094) (0.013) (0.080) (0.046) (0.094) (0.016) (0.084) (0.038) (0.094)

Measures of fit
Log likelihood 322.999 299.697 349.978 360.402 339.2448 386.346 365.005 350.530 389.438 350.695 330.045 378.271 287.152 271.201 317.570
AIC −623.999 −579.393 −677.955 −698.804 −658.49 −750.692 −708.011 −681.061 −756.877 −679.39 −640.091 −734.542 −552.304 −522.402 −613.141
SC −582.377 −541.555 −636.333 −657.182 −620.651 −709.07 −666.389 −643.222 −715.255 −637.768 −602.253 −692.920 −510.682 −484.563 −571.518
R2 0.798 0.781 0.810 0.892 0.898 0.896 0.689 0.671 0.710 0.880 0.884 0.884 0.738 0.724 0.760
N 325 325 325 325 325 325 325 325 325 325 325 325 325 325 325

Note: *** p ≤ 0.001, ** p ≤ 0.01, and * p ≤ 0.05.
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The regression results demonstrated that the spatial relationship between the patch density
(PD) and the average ESV, average supply services, average regulation services, average support
services, and average cultural services were negative, indicating that the patch density had a negative
impact on ecosystem services. In the SEMLD model, a 1% increase in patch density would lead to a
decrease of 0.138%, 0.195%, 0.093%, 0.201%, and 0.157% in the average ESV, average supply services,
average regulation services, average support services, and average cultural services, respectively.
The aggravation of landscape fragmentation would affect the composition, structure, ecological process,
and biodiversity of the ecosystem, and reduce the supply capacity of ecosystem services. The same
results were found by Su et al. and Yushanjiang et al. [41,42]. The regression coefficient of the
landscape shape index (LSI) was negative but was significant only in a few models. The impact
of the area-weighted mean patch area (AREA_AM) on the ecosystem services was positive and
significant in all models. The interspersion juxtaposition index (IJI) was not significant in the spatial
lag model but had a significant negative association with the ecosystem services in other models.
The results demonstrated that the larger the adjacent edge length between the different patches,
the weaker the ecosystem services’ supply capacity. There was a significant positive relationship
between the patch cohesion index (COHESION) and ecosystem services, indicating that the stronger
the landscape connectivity, the stronger the ecosystem services’ supply capacity. The regression
coefficients of the landscape division index (DIVISION) were all positive but only significant in only
a few models. The regression coefficient of the splitting index (SPLIT) was also positive and not
significant in all models. The Shannon diversity index (SHDI) had different impacts on the average ESV,
average supply services, average regulation services, average support services, and average cultural
services. Specifically, the increase of the Shannon diversity index could promote the improvement of
the average ESV, average regulation services, and average cultural services. In contrast, the increase of
the Shannon diversity index could lead to the degradation of the average supply services and average
support services. The spatial relationship between the aggregation index (AI) and the average ESV,
average supply services, average support services, and average cultural services were negative and
significant, while the impact of the AI on the average regulation services was not significant. The spatial
lag terms in all the spatial regression models were significant at the level of 0.0001 level, and the
coefficient was positive, indicating that the improvement of ecosystem services in the surrounding
units would lead to the improvement of ecosystem services in the local unit. In addition, the spatial
error term in the spatial model was significant in all models, indicating that other factors affected the
ecosystem services besides the landscape pattern index.

4. Discussion and Policy Implications

4.1. Impact of the Landscape Pattern on the Ecosystem Services Value

Based on relevant theories and methods of landscape ecology and ecosystem services, this research
explored the spatial relationship between the landscape pattern and ecosystem services value in
the MRYRUA. The change in landscape pattern had an important impact on the structure, function,
and the process of the regional ecosystem. There was a significant negative association between
ecosystem services and PD, LSI, IJI, and AI, while there was a significant positive association between
AREA_AM, COHESION, DIVISION, SPLIT, and the ecosystem services. The increase in the Shannon
diversity index could promote the improvement of the average ESV, average regulation services,
and average cultural services, while the increase of the Shannon diversity index could lead to the
degradation of the supply and support services in the MRYRUA. The results demonstrated that the
landscape pattern had an important impact on the components, structure, function, and biochemical
process of regional ecosystem, and eventually led to a change in the ecosystem services [15,28,29].
The landscape pattern index could demonstrate the changes in the intensity of human activities more
effectively. Although the study mainly explored the impact of landscape patterns on the ecosystem
services value without considering other driving factors in the MRYRUA, studying the impact of
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landscape patterns on the ecosystem services is the basis for a deep understanding of the relationship
between human activities and landscape pattern evolution [15,28,29]. The evolution of a landscape
pattern is not only related to natural factors but is also closely related to human factors [49]. With the
rapid development of urbanization and the economy, as well as improvements in the transportation
infrastructure, human activities in urban agglomerations have become the main reason for the evolution
of landscape patterns, and have changed the original composition and structure of the ecosystem,
as well as the sustainable supply of ecosystem services.

Land use will cause landscape diversity changes in terms of its spatial structure,
functional mechanism, and temporal dynamics, which will transmit to the ecosystem through
ecological processes, which will have an impact on the biodiversity of the ecosystem, which is
composed of heredity, species, and ecosystem diversity. However, biodiversity is positively correlated
with ecosystem stability [50], and the stability of ecosystem services is therefore affected. Landscape
patterns can drive changes in ecosystem services, and ecosystem services, in turn, will provide feedback
to the land-use system. Specifically, different land-use patterns correspond to different landscape
structures and landscape spatial configurations, which leads to changes in characteristics of ecosystem
services, such as their heterogeneity, stability, and diversity, resulting in changes in the value of
ecosystem services in the region. Conversely, ecosystems impact land-use patterns by providing
biodiversity and ecosystem services and result in negative environmental, economic, and social
implications. Subsequently, the corresponding measures and means, such as land-use engineering,
land-use landscape planning, and land-use-related policies, can be developed, leading to positive
changes in the land-use system.

4.2. Policy Implications

The results of this study demonstrated that the spatial regression model could better explain the
spatial relationship between the landscape pattern index and ecosystem services. The quantitative
analysis of the relationship between the landscape pattern index and ecosystem services can help
to better understand how changes in landscape patterns affect ecosystem services [41]. In addition,
the analysis of the relationship between the landscape pattern index and ecosystem services can guide
land-use planning and improve ecosystem protection policymaking. The MRYRUA is an important part
of the Yangtze River Economic Belt and Rise of Central China strategies. Based on the analysis results,
this study puts forward the following suggestions. Land-use change was the main cause of landscape
pattern changes, and rapid urbanization had a severe impact on the landscape patterns and ecosystem
services. In the process of ecosystem protection, it is necessary to consider the landscape pattern
changes caused by land use, improve landscape connectivity, and reduce patch fragmentation [41].
In terms of creating policy, the goal of environmental protection should be taken as the constraint
condition of socioeconomic development and be incorporated into the performance appraisal system
of administrative agencies at all levels to alleviate the overall deterioration trend of the ecosystem from
the aspects of technology, intensive land use, land-use planning, environmental protection investment,
and relevant policies and systems [51,52]. The ecosystem services in the MRYRUA had a strong spatial
spillover effect. The difference in land-use policies and environmental regulations among different
counties was the main reason for the spatial spillover of ecological deterioration. The land-use policies
and environmental regulations in underdeveloped areas were always weaker than those in more
developed areas, which drove high-polluting enterprises to move toward areas with less-restrictive
land-use policies and fewer environmental regulations, and led to the spatial spillover of environmental
deterioration. The ecosystem deterioration of a county was affected not only by the local economic
and social activities but also by neighboring counties or further areas. Therefore, the formulation of
environmental protection policies cannot be limited to a single county and cross-regional collaborative
governance should be realized [27].



Int. J. Environ. Res. Public Health 2020, 17, 5063 18 of 21

4.3. Limitations and Future Directions

Based on the improved benefit transfer method, this study evaluated the ESV, supply services,
regulation services, support services, and cultural services in the MRYRUA. However, there were still
some limitations in the method and the subjective assumption of the equivalent factor table in the
construction was inevitable. In future studies, other models can be adopted to evaluate ecosystem
services, such as the Integrated Valuation of Ecosystem Services and Trade-offs model to measure
capacities, such as soil and water conservation, water yield, carbon storage, and water purification [53].
Future studies can be aimed to further measure the specific impact of the landscape pattern index on
various ecosystem functions (e.g., soil and water conservation capacity, water yield capacity, carbon
storage capacity, and water purification) [54]. In addition, this study only explored the impact of
landscape patterns on ecosystem services and lacked the comprehensive consideration of other factors.
In future studies, we need to comprehensively consider the influencing factors of ecosystem services.

5. Conclusions

Based on the LULCC data of the MRYRUA from 2015, this study measured the spatial features of
landscape patterns in the MRYRUA and measured the spatial distribution characteristics of the ESV
based on the improved benefit transfer method. Spatial regression models were used to analyze the
impact mechanism of the landscape pattern index on ecosystem services in the MRYRUA. The findings
were as follows:

(1) Forestland and cultivated land were the main landscape types in the MRYRUA but the
fragmentation degree of the cultivated land landscape was significantly higher than that of forestland.
The edge density of cultivated land and forestland was significantly higher than that of other landscape
types. The interspersion juxtaposition index of wetlands and water areas was the highest, while that of
forestland was the smallest. The cohesion degree of construction land was the lowest, while that of
forestland was the highest. The landscape splitting index of unused land was the highest, while that
of the forestland was the lowest. In contrast, the aggregation index of forestland was the highest,
while that of unused land was the lowest.

(2) In 2015, the ESV of the MRYRUA was RMB 2770.351 billion, where the value of regulation
services was significantly higher than other service types and the supply capacity of cultural services
was the lowest. The supply capacity of ecosystem services in the mountainous areas around the
MRYRUA was significantly higher than that in the plain areas, especially in the surrounding areas of
big cities, as well as counties along the main traffic routes.

(3) Except for the aggregation index, the bivariate spatial autocorrelation indexes between the
landscape pattern indexes and the ecosystem services were all significant at the level of 0.0001 level.
The bivariate spatial autocorrelation indexes between the ecosystem services and PD, IJI, DIVISION,
SPLIT, and SHDI were negative, while the bivariate spatial autocorrelation indexes between ecosystem
services and LSI, AREA_AM, and COHESION were positive.

(4) The regression results demonstrated that there was a significant negative relationship between
the ecosystem services and PD, LSI, IJI, and AI, while there was a significant positive association
between the ecosystem services and AREA_AM, COHESION, DIVISION, and SPLIT. The increase in
the Shannon diversity index could promote the improvement of the average ESV, average regulation
services, and average cultural services, while the increase in the Shannon diversity index could lead to
the degradation of supply and support services.

Author Contributions: Conceptualization, W.C. and X.Y.; methodology, W.C.; software, W.C. and L.L.;
validation, W.C., L.L., and X.C.; formal analysis, W.C.; investigation, L.L.; resources, W.C.; data curation,
W.C.; writing—original draft preparation, W.C. and L.L.; writing—review and editing, X.Y.; visualization, X.Y.;
supervision, X.C.; project administration, W.C. All authors have read and agreed to the published version of
the manuscript.



Int. J. Environ. Res. Public Health 2020, 17, 5063 19 of 21

Funding: The research is sponsored in part by the Natural Science Foundation of China (Grant No. 41701629) and
support from the Open Topic of Hunan Key Laboratory of Land Resources Evaluation and Utilization (Grant
No. SYS-MT-201903).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.;
Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths.
Global Environ. Chang. 2001, 11, 261–269. [CrossRef]

2. Chen, W.X.; Li, J.F.; Zeng, J.; Ran, D.; Yang, B. Spatial heterogeneity and formation mechanism of
eco-environmental effect of land use change in China. Geogr. Res. 2019, 38, 2173–2187.

3. Chi, G.; Ho, H.C. Population stress: A spatiotemporal analysis of population change and land development
at the county level in the contiguous United States, 2001–2011. Land Use Policy 2018, 70, 128–137. [CrossRef]
[PubMed]

4. Gerland, P.; Raftery, A.E.; Sevcikova, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.;
Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [CrossRef]

5. Millennium Ecosystem Assessment. Ecosystems and Human Well-being; Island Press: Washington, DC,
USA, 2005.

6. Fang, C.; Cui, X.; Li, G.; Bao, C.; Wang, Z.; Ma, H.; Sun, S.; Liu, H.; Luo, K.; Ren, Y. Modeling regional
sustainable development scenarios using the urbanization and eco-environment Coupler: Case study of
Beijing-Tianjin-Hebei urban agglomeration, China. Sci. Total Environ. 2019, 689, 820–830. [CrossRef]

7. Falkenmark, M. Growing water scarcity in agriculture: Future challenge to global water security. Philos. T. R.
Soc. A. 2013, 371, 20120410. [CrossRef]

8. Olivia, F.; Richard, W. Livestock and food security: Vulnerability to population growth and climate change.
Global Change Biol. 2014, 20, 3092–3102.

9. Chen, W.; Chi, G.; Li, J. The spatial aspect of ecosystem services balance and its determinants. Land Use Policy
2020, 90, 104263. [CrossRef]

10. Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts
on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the
geo-informatic Tupu method. Sci. Total Environ. 2020, 701, 134690. [CrossRef]

11. Lubchenco, J. Entering the century of the environment: A new social contract for science. Science 1998, 279,
491–497. [CrossRef]

12. Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197.
[CrossRef]

13. Hu, W.; Wang, G.; Deng, W. Advance in research of the relationship between landscape patterns and
ecological processes. Prog. Geog. 2008, 27, 18–24.

14. Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.;
Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services.
Trends Ecol. Evol. 2015, 30, 190–198. [CrossRef]

15. Hao, R.F.; Yu, D.Y.; Liu, Y.P.; Liu, Y.; Qiao, J.; Wang, X.; Du, J. Impacts of changes in climate and landscape
pattern on ecosystem services. Sci. Total Environ. 2017, 579, 718–728. [CrossRef] [PubMed]

16. Kertész, Á.; Nagy, L.A.; Balázs, B. Effect of land use change on ecosystem services in Lake Balaton Catchment.
Land Use Policy 2019, 80, 430–438. [CrossRef]

17. McGarigal, K.S.C.A. Fragstats: Spatial Pattern Analysis Program for Categorical and Continuous Maps.
Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. Available
online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 10 July 2020).

18. Zhao, W.; Liu, Y.; Feng, Q.; Wang, Y.; Yang, S. Ecosystem services for coupled human and environment
systems. Prog. Geog. 2018, 37, 139–151.

19. Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services.
Ecosyst. Serv. 2017, 26, 146–154. [CrossRef]

20. Liu, S.; Costanza, R.; Troy, A.; DAagostino, J.; Mates, W. Valuing New Jersey’s ecosystem services and natural
capital: A spatially explicit benefit transfer approach. Environ. Manag. 2010, 45, 1271–1285. [CrossRef]

http://dx.doi.org/10.1016/S0959-3780(01)00007-3
http://dx.doi.org/10.1016/j.landusepol.2017.10.008
http://www.ncbi.nlm.nih.gov/pubmed/29097829
http://dx.doi.org/10.1126/science.1257469
http://dx.doi.org/10.1016/j.scitotenv.2019.06.430
http://dx.doi.org/10.1098/rsta.2012.0410
http://dx.doi.org/10.1016/j.landusepol.2019.104263
http://dx.doi.org/10.1016/j.scitotenv.2019.134690
http://dx.doi.org/10.1126/science.279.5350.491
http://dx.doi.org/10.1146/annurev.es.20.110189.001131
http://dx.doi.org/10.1016/j.tree.2015.01.011
http://dx.doi.org/10.1016/j.scitotenv.2016.11.036
http://www.ncbi.nlm.nih.gov/pubmed/27884526
http://dx.doi.org/10.1016/j.landusepol.2018.04.005
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://dx.doi.org/10.1016/j.ecoser.2017.06.010
http://dx.doi.org/10.1007/s00267-010-9483-5


Int. J. Environ. Res. Public Health 2020, 17, 5063 20 of 21

21. Chen, W.; Chi, G.; Li, J. Ecosystem services and their driving forces in the Middle Reaches of the Yangtze
River Urban Agglomerations, China. Int. J. Environ. Res. Public Health 2020, 17, 3717. [CrossRef]

22. Costanza, R.; D’Arge, R.; DeGroot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; ONeill, R.V.;
Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260.
[CrossRef]

23. Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the
Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [CrossRef]

24. Li, F.; Zhang, S.; Yang, J.; Chang, L.; Yang, H.; Bu, K. Effects of land use change on ecosystem services value
in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20.

25. Xu, D.; Ding, X. Assessing the impact of desertification dynamics on regional ecosystem service value in
North China from 1981 to 2010. Ecosyst. Serv. 2018, 30, 172–180. [CrossRef]

26. Zhang, J.; Liu, D.; Gong, J.; Ma, X.C.; Cao, E. Study on the effect of landscape fragmentation in the basin
on soil conservation service—A case study in Bailong River Basin in Gansu Province. Resour. Sci. 2018, 40,
1866–1877.

27. Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at
the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [CrossRef] [PubMed]

28. Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem
services value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [CrossRef]

29. Zang, Z.; Zou, X.; Zuo, P.; Song, Q.; Wang, C.; Wang, J. Impact of landscape patterns on ecological vulnerability
and ecosystem service values: An empirical analysis of Yancheng Nature Reserve in China. Ecol. Indic. 2017,
72, 142–152. [CrossRef]

30. Anselin, L. A test for spatial autocorrelation in seemingly unrelated regressions. Econ. Lett. 1988, 28, 335–341.
[CrossRef]

31. Anselin, L. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geogr. Anal.
1988, 20, 1–17. [CrossRef]

32. Bodin, Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems.
Science 2017, 357, 659. [CrossRef] [PubMed]

33. Chen, W.; Ye, X.; Li, J.; Fan, X.; Liu, Q.; Dong, W. Analyzing requisition–compensation balance of
farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River
Urban Agglomerations. Land Use Policy 2019, 83, 134–146. [CrossRef]

34. Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal
patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562.
[CrossRef]

35. Xu, X. The Annually Normalized Difference Vegetation Index (NDVI) Spatial Distribution Datasets for China; Data
Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences: Beijing, China, 2018.

36. Yi, H.; Güneralp, B.; Filippi, A.M.; Kreuter, U.P.; Güneralp, İ. Impacts of land change on ecosystem services
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