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A B S T R A C T   

The development of therapeutic targets for COVID-19 relies on understanding the molecular mechanism of 
pathogenesis. Identifying genes or proteins involved in the infection mechanism is the key to shedding light on 
the complex molecular mechanisms. The combined effort of many laboratories distributed throughout the world 
has produced protein and genetic interactions. We integrated available results and obtained a host protein- 
protein interaction network composed of 1432 human proteins. Next, we performed network centrality anal
ysis to identify critical proteins in the derived network. Finally, we performed a functional enrichment analysis of 
central proteins. We observed that the identified proteins are primarily associated with several crucial pathways, 
including cellular process, signaling transduction, neurodegenerative diseases. We focused on the proteins that 
are involved in human respiratory tract diseases. We highlighted many potential therapeutic targets, including 
RBX1, HSPA5, ITCH, RAB7A, RAB5A, RAB8A, PSMC5, CAPZB, CANX, IGF2R, and HSPA1A, which are central and 
also associated with multiple diseases.   

1. Introduction 

The world is experiencing an unprecedented pandemic due to a 
massive outbreak of Severe Acute Respiratory Syndrome Corona Virus 2 
(SARS-CoV-2) infected viral disease, COVID-19. SARS-CoV-2 is a large 
enveloped coronavirus (family-Coronaviridae, subfamily-Coronavirinae) 
with non-segmented, single-stranded, and positive-sense RNA genomes 
(Wrapp et al., 2020), transmits rapidly through human to human con
tacts. Although SARS-CoV-2 is similar to other known coronaviruses, i. 
e., SARS-CoV or MERS-CoV (Perlman and Netland, 2009; De Groot et al., 
2013; Weber et al., 2021), however it shows high rate of infection (Liu 
et al., 2020; Surveillances, 2020; Milano and Cannataro, 2020). Hence, 
there is a need to understand the disease pathogenesis of SARS-CoV-2 to 
develop effective therapies and vaccines. 

The SARS-CoV-2 virus causes damage in multiple organs as the dis
ease progresses from an asymptomatic phase to a life-threatening dis
ease (Servick, 2020; Cho et al., 2013). Therefore, accurate molecular 
diagnosis of COVID-19 disease is essential by collecting the proper res
piratory tract specimen (Whetton et al., 2020; Ortuso et al., 2021). In 
this context, the integrated analysis (Antonelli et al., 2019) of various 
data-sets, including clinical and imaging data, may explain, and 

hopefully predict, the longitudinal effects of SARS-CoV-2 infection 
(Tang et al., 2020; Kumar Das et al., 2021). In particular, many inde
pendent projects, throughout the world have studied in genomics and 
proteomics levels (Kumar Das et al., 2021), and then they integrated 
these outcomes with clinical case studies. These works have produced 
data about the effect of the infection at a molecular scale, evidencing 
genes and proteins’ role, such as the interactions among viral and 
human proteins. Interactions between a host and its pathogen are pri
marily driven by interactions among the host proteins and pathogen 
proteins, referred to as host-pathogen protein-protein interaction (PPI) 
network. The SARS-CoV-2 virus-host interactome have been studied 
computationally, focusing various virulence factors that are influencing 
SARS-CoV-2 pathogenesis and interacting mechanism (Guzzi et al., 
2020; Hoffmann et al., 2021; Messina et al., 2020; Li et al., 2021). 
Further, many recent works also used host-viral protein-protein inter
action network as an input to elucidate potential drug targets or 
repurposed drug molecules (Beck et al., 2020; Das et al., 2021; Gordon 
et al., 2020; Zhou et al., 2020). Host-pathogen protein interactions 
provide important insights into the molecular mechanisms of pathoge
necity (Memǐsević et al., 2015) and for understanding virulence factors 
influencing SARS-CoV-2 pathogenesis (Li et al., 2021; Thiel et al., 2003). 

* Corresponding authors. 
E-mail addresses: sroy01@cus.ac.in (S. Roy), hguzzi@unicz.it (P.H. Guzzi).  

Contents lists available at ScienceDirect 

Infection, Genetics and Evolution 

journal homepage: www.elsevier.com/locate/meegid 

https://doi.org/10.1016/j.meegid.2021.104921 
Received 7 February 2021; Received in revised form 4 May 2021; Accepted 7 May 2021   

mailto:sroy01@cus.ac.in
mailto:hguzzi@unicz.it
www.sciencedirect.com/science/journal/15671348
https://www.elsevier.com/locate/meegid
https://doi.org/10.1016/j.meegid.2021.104921
https://doi.org/10.1016/j.meegid.2021.104921
https://doi.org/10.1016/j.meegid.2021.104921
http://crossmark.crossref.org/dialog/?doi=10.1016/j.meegid.2021.104921&domain=pdf


Infection, Genetics and Evolution 93 (2021) 104921

2

Protein-Protein Interactions (PPI) are usually modeled and analyzed 
with graph theory (Guzzi and Roy, 2020; Roy et al., 2019). In this 
formalism, the interactions are modeled as a graph whose nodes are 
proteins (or genes), and the edges are the interaction among them. 
Several studies have found that specific candidate proteins might play a 
crucial role (Li et al., 2013; Ferrari et al., 2018; Galicia et al., 2020; Lim 
et al., 2011). Protein-protein interaction networks are an essential 
ingredient for any systems-level understanding of cellular processes and 
modeling, and even drug discovery (Tucker et al., 2001; Thakur et al., 
2015; Athanasios et al., 2017; Chautard et al., 2009; Nietzsche et al., 
2016). The key genes/proteins involved in the different biological 
pathways can give valuable insight for in-depth characterization of 
disease progression (Lan et al., 2015; Safari-Alighiarloo et al., 2014; 
Wang et al., 2018; Jha et al., 2020). It is well accepted that all the viruses 

have evolved to target proteins that are central and have strong control 
over the human interactome (Jeong et al., 2001; Bösl et al., 2019; Albert 
et al., 2000; Navratil et al., 2011; Halehalli and Nagarajaram, 2015). 
Exploring the predicted interaction networks can suggest new directions 
for future experimental research and provide cross-species predictions 
for efficient interaction mapping (Xu and Li, 2006; Safari-Alighiarloo 
et al., 2014).  

This study aimed to identify essential human host proteins based on 
topology analysis of the PPI of the host proteins targeted by SARS-CoV-2 
proteins. We integrated available experimentally validated host-viral 
PPIs and obtained a set of host proteins that were participated in the 
integrated network. Network centrality analysis of those candidate host 
proteins were performed based on their interactions within host-host 
PPI. We performed enrichment analysis of the central host proteins to 

Fig. 1. The complete work-flow design of the current study.  

Fig. 2. The quantitative information of host-viral interactions. (a) The abundance (percentage) of collected interacting human host protein for different SARS-CoV-2 
viral proteins; (b) A host-viral interaction network pattern, where few host proteins interactions can be seen associated with multiple viral proteins although most of 
interactions are virus protein specific unique (more details can be seen from Supplementary-A). 
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shed light on their significance in cellular, signaling, and disease path
ways. The enriched host proteins, derived from above step were further 
analysized for their possible roles in any disease pathogenesis. Finally, a 
set of host proteins that having role in COVID-19 related diseases were 
reported as vulnerable proteins. The complete workflow of the current 
study is illustrated in Fig. 1. 

2. Materials and method 

2.1. SARS-CoV-2 interacting (human) host proteins 

We used recently reported host proteins that were physically verified 
using Affinity purification mass spectrometry (AP-MS) for their in
teractions with SARS-CoV-2 proteins (Gordon et al., 2020; Li et al., 
2021; Stukalov et al., 2020; Cannataro and Harrison, 2021). The used 
host-viral protein interactions are also available in BioGRID1 (Stark 
et al., 2006). A total of 2489 host-viral interactions (consisting of 1432 
unique host proteins interacting with 30 SARS-CoV-2 viral proteins) 
were obtained. In Fig. 2(a), we provided the number of interacting host 
proteins for each viral protein. It is to be noted that the majority of the 
host proteins are targeted by any specific viral protein (Fig. 2(b)). 

2.2. Reconstruction of host PPI network 

Starting with the host proteins that are interacting with the virus 
proteins, we reconstructed the host PPI sub-network by querying the 
Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, 
Version 10.02) (Szklarczyk et al., 2010). 

The host PPI sub-network is then visualized using Cytoscape,3 a 
general platform for complex network analysis and visualization 
(Shannon et al., 2003). We also used Cytoscape to obtain giant com
ponents of the host PPI network and calculated various network cen
trality scores. 

2.3. Centrality analysis of host PPI sub-network 

In network analysis, indicators of centrality identify the most critical 
nodes in the network (Bonacich, 1987). The centrality measure are used 
to characterize each node and edge in the PPI network. The degree 
measure is the most intuitive for topology analysis of the PPI network. 
Several other crucial factors that can influence network links are 
betweenness centrality, closeness centrality, clustering coefficient, to
pological coefficient, and neighborhood connectivity.  

(i) Degree centrality(Dc): The degree centrality (simply degree) of a 
node n in a network is the number of direct neighbours of n. The 
densely connected nodes in a PPI network are considered as hub 
nodes (Han et al., 2004).  

(ii) Betweenness centrality(Bc): Betweenness centrality quantifies the 
number of times a node acts as a bridge along the shortest path 
between two other nodes (Yoon et al., 2006). The betweenness 
centrality of a node n is defined as: 

Bc(n) =
∑

s∕=n∕=t

(
σst(n)

/
σst

)
(1)  

where σst is the total number of shortest paths from node s to node t and 
σst(n) is the number of those paths that pass through n.  

(iii) Closeness centrality(Cc): Closeness centrality is a way of detecting 
nodes that are able to spread information very efficiently through 
the network (Newman, 2005). It can be calculated as: 

Cc(n) = 1/avg(L(m, n) ) (2)  

where L(m,n) is the length of shortest path between node n and m, and m 
denotes any other nodes that are reachable to node n.  

(iv) Average shortest-path length(Sp): The shortest-path length between 
two nodes (say n and m) is defined as the number of minimum 
steps required reach node n from m!(Mao and Zhang, 2013). The 
average shortest path length of node n is the average value of all 
pair of nodes shortest path from the node n.  

(v) Clustering coefficient(Ccoef): Clustering coefficient is a measure of 
the degree to which nodes in a graph tend to cluster together 
(Barabasi and Oltvai, 2004). In undirected networks, the clus
tering coefficient of a node n is defined as: 

Ccoef = 2en
/
(kn(kn − 1) ) (3)  

where kn is the number of neighbors of n and en is the number of con
nected pairs between all neighbors of n.  

(vi) Topological coefficient(Tc): Topological coefficient is a relative 
measure for the extent to which a node shares neighbors with 
other nodes (Goldberg and Roth, 2003). The topological coeffi
cient Tc of a node n with kn neighbors is computed as follows: 

Tc = avg(J(nm) )/kn (4)  

where J(n,m) is defined for all nodes m that share at least one neighbor 
with n, and the value J(n,m) is the number of neighbors shared between 
the nodes n and m, plus one if there is a direct link between n and m.  

(vii) Neighborhood connectivity(Nc): Neighborhood connectivity of a 
node n is defined as the average connectivity of all neighbors of n 
(Maslov and Sneppen, 2002). The neighborhood connectivity 
distribution gives the average of the neighborhood connectivities 
of all nodes n with k neighbors for k = 0, 1, ⋯n-1. 

We used NetworkAnalyzer (Shannon et al., 2003) to calculate the 
above centrality scores. NetworkAnalyzer calculates Cc (Closeness cen
trality) as the reciprocal of the average shortest path length. So, high Cc 
means highly central, and thus low Sp. 

2.4. Gene ontology and pathway enrichment analysis 

We performed enrichment analysis to determine the set of significant 
genes/proteins in different functional and biological pathways. We used 
KEGG (Kyoto Encyclopedia of Genes and Genomes) (Kanehisa and Goto, 
2000) for elucidating pathway enrichment of a host protein and Gene 
Ontology (GO) for the assessment of protein functions (Ashburner et al., 
2000). In this study, we performed GO and KEGG analysis using Enrichr 
software,4 a web-based suite of gene list enrichment analysis tools 
(Kuleshov et al., 2016). 

2.5. Gene-disease association network 

Complex diseases are caused by a group of genes known as disease 
genes. More often, a gene can participate in various disease conditions 
(Goh et al., 2007; W. T. C. C. Consortium, 2007). It helps unravel the 
disease pathogenesis, which helps in disease diagnosis, treatment, and 
disease prevention. We obtained gene-disease association network from 

1 
https://thebiogrid.org/  

2 http://string-db.org/  
3 http://apps.cytoscape.org 4 https://maayanlab.cloud/Enrichr/ 

J.K. Das et al.                                                                                                                                                                                                                                   

https://thebiogrid.org/
http://string-db.org/
http://apps.cytoscape.org
https://maayanlab.cloud/Enrichr/


Infection, Genetics and Evolution 93 (2021) 104921

4

DisGeNET (v7.0) database,5 which contains 1,134,942 gene-disease as
sociations (GDAs), between 21,671 genes and 30,170 disease (Piñero 
et al., 2020). From this database, we considered curated gene-disease 
associations only. 

3. Results and discussion 

Here, we report the outcomes of intermediate steps to reach our 
objective of isolating key host proteins followed by their significance 
analysis. 

3.1. Deriving PPI network for candidate host proteins 

Our list of host proteins consists of 1432 distinct proteins that are 
targeted by SARS-CoV-2 during COVID-19. We rebuilt the PPI network 
centered around our candidate proteins using STRING DB. There are 
7076 edges in the derived PPI network. We derived PPI by keeping only 
the interactions whose confidence scores were at least 0.7 (high confi
dence). The derived PPI network was then analyzed using Cytoscape. We 
identified the big connected component (also called gain/main 
component) of the PPI network. After discarding all disconnected 
components in the PPI network, we considered the giant component of 
the PPI network with 1111 nodes (approximately 78% of total candidate 
proteins) and 7043 edges (Fig. 3). 

Fig. 3. The gain (connected) component of PPI network obtained from whole PPI network. The network is consisting of 1111 unique nodes (proteins) and 7043 
interactions edges (more details can be seen from Supplementary-A). 

5 https://www.disgenet.org/ 
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3.2. Network topology analysis of gain component 

We performed the topological analysis of the gain component using 
NetworkAnalyzer (Shannon et al., 2003). The degree distribution of all 
the candidate proteins in the gain component showed that the majority 
of the proteins in the gain component exhibit a higher degree of con
nectivity (Fig. 4). Few proteins with degree (shown within parentheses) 
more than 50 are CDK1(73), PPP2R1A(65), NOP56(60), POLR2B(60), 
RAB1A(59), RBX1(58), SKIV2L2(57), NAPA(57), RPS14(56), STX5(54), 
TGOLN2(54), TCEB1(53), DCTN2(53), TCEB2(52), HSPA9(51), and 
GNB2L1(50). 

The histogram analysis of all the centrality measures (discussed in 
Section 2.3) showing non-random distribution (Supplementary-B). Out of 
seven centrality mesures we considered only those measures which were 
aligning in their decissions. To select the candidate centrality measures, 
we computed Pearson’s correlation among all centrality scores 
(Table 1). The correlation between degree centrality (Dc) and closeness 
centrality (Cc) observed to be the highest (r = 0.759) in comparison to 
other measures. Although, we observed correlation between DC and 
neighbourhood centrality (Nc) is the third-highest (r = 0.557), but Nc 
and Bc showed less correlative (r = 0.1101). Overall, we observed that 
the correlation scores among the three centrality measures (DC, Bc, Cc) 
are quite similar. Therefore, we selected them in subsequent analysis. 
We identified 373 proteins in these criteria, which are considered highly 
central proteins (above the median score for all three selected parame
ters). When we considered all measures, we found only six common 
proteins (GEMIN4, DDX20, GOLGA3, FKBP15, PMPCA, and AK4) above 
the median score in each category of centrality measurement, which was 
the reason for selecting three centrality measures for our downstream 
analysis. 

Fig. 4. The degree distribution of all 1111 nodes (proteins) in the gain 
component of PPI network. The X-axis indicates degree distribution, whereas Y- 
axis shows relative frequency distributions. 

Table 1 
Correlation analysis among all centrality parameters computed for 1111 pro
teins. The correlation score (>0.5) among the three centrality measures (Dc,Bc, 
Cc) are similar (highlighted in bold).   

Dc Bc Ccoef Tc Nc 

Bc 0.603 1    
Ccoef 0.209 − 0.168 1   
Tc − 0.32 − 0.283 0.451 1  
Nc 0.557 0.1101 0.346 − 0.139 1 
Cc 0.759 0.5146 0.213 − 0.329 0.684  

Fig. 5. The top 7 enriched pathways from each category of KEGG pathways. In each category, pathways are shown ordered by − log 10(p) value.  
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Infection, Genetics and Evolution 93 (2021) 104921

6

3.3. Pathway and gene ontology enrichment analysis of highly central 
proteins 

We performed KEGG pathway analysis of selected 373 highly central 
proteins. We obtained a total of 84 enriched KEGG pathways within the 
significant level (adj − p < .05). The enriched pathways are involved in 
Cellular Processes (9), Environmental Information Processing (9), Ge
netic Information Processing (13), Human Disease (31), Organismal 
Systems (15), and Metabolism (7). The top seven pathways in each 
category were shown in Fig. 5. 

Our current study mainly focused on the proteins that are involved in 
cellular process, signaling transduction, and human disease (viral and 

neurodegenerative) pathways. The most affected thirty-one (31) path
ways were considered in the context of COVID-19 disease (Seif et al., 
2020; Ganesan et al., 2019; Luo et al., 2020; Grimes and Grimes, 2020). 
There are nine enriched pathways in cellular process (Endocytosis, 
Phagosome, Adherens junction, Tight junction, Cell cycle, Cellular 
senescence, Focal adhesion, Regulation of actin cytoskeleton, Lyso
some), nine enriched pathways in Environmental Information Processing- 
signaling transduction (Ras signaling pathway, HIF-1 signaling 
pathway, Hippo signaling pathway, Apelin signaling pathway, MAPK 
signaling pathway, TGF-beta signaling pathway, AMPK signaling 
pathway, NF-kappa B signaling pathway), nine enriched pathways from 
human viral disease sub-category (Human immunodeficiency virus-1 

Fig. 6. The top 10 enriched terms in each category of gene ontology (BP-Biological process, MF-Molecular function, CC-Cellular component). In each category, terms 
are shown ordered by log10(combined score) value. 

Fig. 7. Comparison of three groups of disease categories (Cardiovascular, Respiratory, Immune system) using venn-diagram. (a) based on number of proteins count 
in each category; (b) based on number of disease associated proteins (curated from database) among the observed proteins in each category. 
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Table 2 
The shortlisted 64 host proteins with their degree in host-host PPI , disease count (out of 204), disease type count (out of 3), and pathway count (out of 31). Some of the 
proteins that are known to be targeted by other viruses were also highlighted.  

Gene/ 
Protein 

Degree in PPI 
network 

Pathway 
count 

Disease category Disease 
count 

Known target virus 

ADAM17 10 2 Immune 1  
ALDOA 26 1 Cardiovascular 1  
AP3B1 17 1 Respiratory 2  
AREG 20 2 Respiratory, Cardiovascular, 

Immune 
10  

ATM 29 6 Cardiovascular, Immune 8  
ATP2A2 10 1 Cardiovascular 11  
ATP6 19 5 Cardiovascular 1 Human SARS coronavirus, Bovine papillomavirus type 1, Human 

papillomavirus type 16 
ATR 17 5 Respiratory 2 Human adenovirus 5 
B2M 25 4 Cardiovascular, Immune 4 Hepatitis C virus genotype 1b (isolate Con1) 
CANX 31 2 Cardiovascular 1  
CAPZB 34 1 Cardiovascular 1  
CAV1 22 2 Respiratory, Cardiovascular, 

Immune 
17 Poliovirus type 1 (strain Sabin) 

CD44 19 1 Immune 1  
COX2 9 3 Cardiovascular 1  
CRKL 11 5 Cardiovascular 4  
DDX58 10 6 Respiratory, Cardiovascular 2  
ENO1 13 1 Cardiovascular, Immune 2  
EPHA2 9 2 Cardiovascular 5  
FASN 9 1 Cardiovascular 10  
GAPDH 23 2 Cardiovascular 1 Hepatitis C virus genotype 1b (isolate Con1), Epstein-Barr virus (strain 

GD1) 
GLA 16 1 Cardiovascular 5  
GNAQ 14 5 Cardiovascular 1  
GUSB 16 1 Immune 1  
HDAC2 12 5 Respiratory 2 Human herpesvirus 1 (strain 17), Human papillomavirus type 16, Human 

papillomavirus type 31 
HLA-A 15 8 Immune 5 Epstein-Barr virus (strain GD1), Human papillomavirus type 16 
HLA-C 14 8 Immune 7  
HMGCR 11 1 Immune 4  
HSPA1A 30 5 Cardiovascular 1 Epstein-Barr virus (strain GD1) 
HSPA5 46 1 Respiratory, Cardiovascular 3 Epstein-Barr virus (strain GD1) 
IFIH1 10 3 Respiratory, Cardiovascular, 

Immune 
10 Sendai virus (strain Fushimi) 

IGF2R 31 2 Respiratory 1  
ITCH 46 1 Immune 1 Epstein-Barr virus (strain B95-8) 
ITGA6 10 3 Immune 1  
ITGB1 29 5 Cardiovascular 10 Hepatitis C virus genotype 1b (isolate Con1) 
JAK2 22 2 Cardiovascular 6  
LDHA 14 1 Cardiovascular 4  
LDLR 20 2 Cardiovascular 4  
MET 18 4 Respiratory 1  
NDUFS2 20 3 Cardiovascular 3  
NF1 16 2 Cardiovascular 3  
NOTCH1 23 3 Cardiovascular 4 Hepatitis C virus genotype 1b (isolate Con1) 
NOTCH2 11 2 Cardiovascular 1  
NOTCH3 15 3 Cardiovascular 2  
PARP1 14 1 Respiratory, Cardiovascular, 

Immune 
17 Human herpesvirus 1 (strain 17) 

PCNA 25 3 Immune 1 Human herpesvirus 1 (strain 17) 
PDIA3 14 3 Cardiovascular 1  
PLAU 24 1 Respiratory, Cardiovascular, 

Immune 
59  

PPP1CB 14 4 Cardiovascular 2  
PRKDC 15 1 Respiratory, Immune 3 Human herpesvirus 1 (strain 17) 
PSMC5 34 1 Immune 7 Human adenovirus 5, Human adenovirus 12, Simian virus 40 
PSMD6 24 1 Immune 2  
PTPN11 22 1 Cardiovascular 6  
RAB5A 40 3 Cardiovascular 1  
RAB7A 41 2 Cardiovascular 1  
RAB8A 40 3 Immune 1  
RBX1 58 4 Immune 5  
SERPINE1 16 4 Cardiovascular 8  
SLC9A1 12 2 Cardiovascular 7  
SORT1 14 1 Cardiovascular 3  
STAT6 11 1 Respiratory, Immune 4  
TGFB1 29 7 Respiratory, Cardiovascular, 

Immune 
29 Hepatitis C virus genotype 1b (isolate Con1) 

TGFBR1 17 9 Respiratory, Cardiovascular 6  
TGFBR2 16 8 Respiratory, Cardiovascular 13  
XPO1 25 2 Cardiovascular 2   
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infection, Human papillomavirus infection, Human cytomegalovirus 
infection, Hepatitis B, Human T-cell leukemia virus-1 infection, Influ
enza A, Hepatitis C, Measles) and four enriched pathways from neuro
degenerative disease with sub-category (Huntington disease, Parkinson’s 
disease, Alzheimer’s disease, Prion diseases). A total of 141 distinct 
proteins (out of 373) were obtained from these pathways, which were 
then ranked based on their presence in selected enriched pathways. We 
found that 79 proteins were associated with our candidate pathways. All 
these proteins were then further studied for disease-gene association in 
the next. 

We also performed gene set enrichment analysis (Gene ontology). It 
is observed that the selected genes are primarily involved in Biological 
processes (Supplementary-C). The top ten terms in each category of gene 
ontology (Biological processes (BF), Molecular Function (MF), and 
Cellular Component (CC)) were shown in Fig. 6 that includes neutrophil- 
mediated immunity (GO:0002446), neutrophil activation involved in 
immune response (GO:0002283) and viral process (GO:0016032) from 
BP category; dolichyl-diphosphooligosaccharide-protein glycotransfer
ase activity (GO:0004579), GDP binding (GO:0019003), cadherin 
binding (GO:0045296) and ATPase activity (GO:0016887) from MF 
category; and focal adhesion (GO:0005925) from CC category. 

3.4. Analysis of disease-gene associations 

The shortlisted 141 proteins involved in four significant pathways 
(cellular process, signaling transduction, viral and neurodegenerative) 
were further screened by looking into their association with COVID-19 
related diseases. We particularly focused on three highly influential 
diseases during COVID-19, namely cardiovascular, respiratory tract (Wu 
et al., 2020; Clerkin et al., 2020; Konturek et al., 2020; Cannataro et al., 
2005) and immune system disease (Melenotte et al., 2020; Chowdhury 
et al., 2020). To obtain disease-gene association, we used DisGeNET 
database (Piñero et al., 2020) and selected CURETED source only. We 
found a total of 64 proteins (out of 141) playing roles in various COVID- 
19 related diseases such as Asthma, Pneumonitis, Pneumonia, Influenza, 
Lung diseases, Cardiomyopathies, Coronary, Arteriosclerosis, Coronary Ar
tery Disease, Heart failure, HIV Infections, and others.(Supplementary-D). 
We compared proteins involved in all three disease categories and in
dividual diseases in each category (Fig. 7). A total of 119, 37, and 48 
unique diseases (total count-204) and 44, 17, and 24 distinct proteins 
are associated with the Cardiovascular, Respiratory, and Immune system 
disease category. Interestingly, we found few proteins that are associ
ated with all three disease categories (AREG, CAV1, IFIH1, PARP1, 

Fig. 8. The interaction network represents the most influential host protein and viral protein. The network is consisting of sixty-four (64) host proteins interacting 
with twenty-five (25) SARS-CoV-2 viral proteins. The yellow colour node represents the viral proteins in the network, whereas the green one represents the 
host proteins. 
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PLAU, TGFB1, ATM, B2M, DDX58, ENO1, HSPA5, PRKDC, STAT6, 
TGFBR1, and TGFBR2). The top few proteins which are associated with 
ten or more diseases are PLAU(59), TGFB1(29), CAV1(17), PARP1(17), 
TGFBR2(13), ATP2A2(11), AREG(10), FASN(10), IFIH1(10), and ITGB1 
(10). Finally, we listed a total of 64 unique genes/proteins and their 
various quantitative scores (degree, disease count (out of 204), disease 
type count (out of 3), and pathway count (out of 31)) in Table 2. 

3.5. Viral proteins targeting key host proteins 

We next looked into the source viral-host PPI network (refer Fig. 2) to 
identify the viral proteins that were targeting shortlisted 64 disease- 
associated proteins. We found 25 SARS-CoV-2 proteins were interact
ing 64 key host proteins (Fig. 8).Among 25 SARS-CoV-2 viral proteins, 
eight are accessory proteins (Orf3a, Orf7b, Orf6, Orf7a, Orf7b, Orf8, 
Orf9b, Orf10), four structural proteins (E,M,N,S) and thirteen non- 
structural poly-proteins (nsp1, nsp10, nsp12, nsp13, nsp14, nsp2, nsp3, 
nsp4, nsp5, nsp6, nsp7, nsp8, nsp9). It was observed that several host 
proteins were interacting with a single viral protein. Very few host 
proteins were interacting with more than one viral protein. The viral 
protein, Orf7b interacts with a maximum number of target host proteins, 
followed by Orf3a and M protein. Further, five host proteins were found 
to interact with both Orf3a and Orf7b. 

We looked further for any other viruses that are targeting our 64 host 
proteins. We mined VirusMINT (Chatr-Aryamontri et al., 2009), a virus- 
host association database, to find the other related viral diseases. We 
found that the majority of the highlighted host proteins were also tar
geted by Hepatitis C virus genotype 1b, Poliovirus Type 1, Human herpes
virus 1, Human papillomavirus type 16 & 31, Simian virus 40, Sendai virus, 
Human adenovirus 5 & 12, Epstein-Barr virus, Human SARS coronavirus. 
Bovine papillomavirus type 1, and Epstein-Barr virus (Table 2). Further, a 
few genes (AREG, PLAU, MET, NF1, JAK2, SERPINE1) were observed to 
be improtant drug targets and associated with various signaling path
ways as reported in recent research (Das et al., 2021). These proteins 
might be highly essential and need to put utmost importance on devel
oping host-directed antiviral therapies for COVID-19. 

4. Conclusion 

In this study, we analyzed the human (host) protein-protein inter
action network targeted by SARS-CoV-2 . Using topology and pathway 
enrichment analysis of important host PPI network , we reported 64 
potential key SARS-CoV-2 interacting host proteins associated with 
disease pathways, like respiratory, cardiovascular, and immune system 
diseases. Among them, we highlighted a set of highly central host pro
teins, such as RBX1, HSPA5, ITCH, RAB7A, RAB5A, RAB8A, PSMC5, 
CAPZB, CANX, IGF2R, and HSPA1A, which might influence the whole 
PPI network. Some of the key host proteins are known to target different 
viruses and may be highly important for therapeutic solution for con
trolling COVID-19 severeness. We strongly believe that the highlighted 
key proteins are promising drug targets, which might play a crucial role 
in inhibiting COVID-19 progression. 
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covid-19 is higher compared to sars coronavirus. J. Travel Med. 27 (2) https://doi. 
org/10.1093/jtm/taaa021. 

Luo, W., Li, Y.-X., Jiang, L.-J., Chen, Q., Wang, T., Ye, D.-W., 2020. Targeting jak-stat 
signaling to control cytokine release syndrome in covid-19. Trends Pharmacol. Sci. 
41 (8), 531–543. 

Mao, G., Zhang, N., 2013. Analysis of average shortest-path length of scale-free network. 
J. Appl. Math. 2013. 

Maslov, S., Sneppen, K., 2002. Specificity and stability in topology of protein networks. 
Science 296, 910–913. 

Melenotte, C., Silvin, A., Goubet, A.-G., Lahmar, I., Dubuisson, A., Zumla, A., Raoult, D., 
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