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Abstract

Hypertension is the leading risk factor of cardiovascular disease and has profound effects

on both the structure and function of the microvasculature. Abnormalities of the retinal vas-

culature may reflect the degree of microvascular damage due to hypertension, and these

changes can be detected with fundus photographs. This study aimed to use deep learning

technique that can detect subclinical features appearing below the threshold of a human

observer to explore the effect of hypertension on morphological features of retinal microvas-

culature. We collected 2012 retinal photographs which included 1007 from patients with a

diagnosis of hypertension and 1005 from normotensive control. By method of vessel seg-

mentation, we removed interference information other than retinal vasculature and con-

tained only morphological information about blood vessels. Using these segmented images,

we trained a small convolutional neural networks (CNN) classification model and used a

deep learning technique called Gradient-weighted Class Activation Mapping (Grad-CAM) to

generate heat maps for the class “hypertension”. Our model achieved an accuracy of

60.94%, a specificity of 51.54%, a precision of 59.27%, and a recall of 70.48%. The AUC

was 0.6506. In the heat maps for the class “hypertension”, red patchy areas were mainly dis-

tributed on or around arterial/venous bifurcations. This indicated that the model has identi-

fied these regions as being the most important for predicting hypertension. Our study

suggested that the effect of hypertension on retinal microvascular morphology mainly

occurred at branching of vessels. The change of the branching pattern of retinal vessels

was probably the most significant in response to elevated blood pressure.

Introduction

Cardiovascular diseases are the world’s biggest killers and these diseases have remained the

leading causes of death globally in the last 15 years [1]. Hypertension is the leading modifiable

risk-factor, which affects 23.2% (estimated 244.5 million) of Chinese adult population aged
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�18 years [2]. There is evidence that elevated blood pressure has a substantial impact on the

microvasculature in end-organs, such as the brain, heart, kidney, eye and so on [3–7]. In par-

ticular, retinal vasculature, measuring 100 to 300 μm in size, has attracted a lot of non-ophthal-

mological attention. Retinal microvascular abnormalities represent a manifestation of ongoing

systemic microvascular damage and can be viewed directly and noninvasively, offering a

unique and easily accessible “window” to study the human microcirculation in vivo. Advances

in digital retinal photography and computer image analysis have now enabled more objective

quantitative assessment of retinal microvascular structure and function, and may offer a

potential noninvasive research tool to assess the pathophysiology of hypertension.

Extensive researches on retinal microvascular phenotypes in fundus images have shown

that hypertension can lead to abnormal signs on retina [8–28]. These abnormal signs can be

broadly divided into four groups: classic hypertensive retinopathy, isolated retinopathy (e.g.,

retinal hemorrhage, microaneurysm, or cotton wool spot), changes from retinal vascular cali-

ber (e.g., generalized retinal arteriolar narrowing, focal arteriolar narrowing, arteriovenous

nicking), and changes from retinal vascular architecture (e.g., retinal tortuosity, fractal dimen-

sion, branching angle). These signs probably reflect systemic microvascular damage and may

be an early indicator of cardiovascular diseases. In addition, some prospective studies suggest

that retinal microvascular abnormal signs are predictive of the subsequent risk of hypertension

independently of other known risk factors [29–35]. Although a large number of studies have

reflected the association between abnormal retinal microvascular signs and hypertension,

some results were inconsistent with three reasons. Firstly, qualitative assessment of hyperten-

sive retinopathy is mainly based on the experiences of the individual and the evaluation results

lacks objectivity. Secondly, there is a variety of methods of computer-assisted quantification of

retinal vasculature, such as retinal vessel caliber, and thus measurements given for the same

fundus image often vary. Last but not least, variations in image brightness, focus, and contrast

can significantly affect the measurement of retinal vasculature.

Thus this study was designed to analyze retinal image using convolutional neural networks

(CNN), also known as convnets, a type of deep-learning model almost universally used in

computer vision applications. One fundamental characteristic of convnets that is composed of

multiple processing layers is that it can find interesting features in training data on its own,

without any need for manual feature engineering [36]. This is especially useful in problems

where the input samples are very high-dimensional, like retinal fundus images. It can detect

subclinical and discrete features appearing below the threshold of a human observer and quan-

tify minimal differences in feature expression. Recently, a CNN was trained on fundus images

to screen DR [37–42] or age-related macular degeneration [43]. Moreover, a more sophisti-

cated CNN (Google Inceptionv3) has been trained on datasets from the UK Biobank [44] and

EyePACS [45] cohorts to detect cardiovascular risk factors from retinal images such as age,

gender, hypertension, and smoking status [46]. In this paper, we have constructed an auto-

mated segmentation model to delineate retinal vascular structure of fundus photographs and

introduced visualization technique to further explore pathophysiological changes of retinal

microvasculature in hypertensive patients.

Materials and methods

Data collection

The research followed the tenets of the Declaration of Helsinki and was reviewed by the Com-

mittee on Medical Ethics of Shenyang He Eye Hospital. We collected 735 patients (1007 eyes)

with a diagnosis of hypertension and 684 normotensive control subjects (1005 eyes), who were

admitted between May 2017 and December 2018 to Shenyang He Eye Hospital with eye
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disease. The case group included 274 males and 461 females, mean age 66.47 ± 9.06 years

(from 29 to 92 years), whereas the control group was composed of 326 males and 358 females,

mean age 61.27 ± 10.48 years (from 31 to 88 years). Age of hypertension group was higher

than control group (P< 0.001), and the proportion of women is higher (P< 0.001). Individual

written informed consent could not be obtained, because all the subjects were admitted to

Shenyang He Eye Hospital in 2017–2018 and most of them could not be contacted. In addi-

tion, our dataset did not contain any patient identification information. We applied to the

Committee on Medical Ethics for exemption from informed consent and obtained

permission.

Each patient underwent ophthalmological examination and standard assessments of car-

diovascular risk factors. Retinal photographs that were centered on the macula and docu-

mented the optic disc, the macula, substantial portions of the temporal vascular arcades were

taken with 45˚non-mydriatic digital camera (TRC-NW300, Topcon, Tokyo, Japan) after dila-

tion of the pupils with tropicamide phenylephrine eye drops. Hypertension was defined as sys-

tolic blood pressure greater than 140 mm Hg, diastolic blood pressure above 90 mmHg, or use

of antihypertensive medication during the previous 2 weeks. Exclusion criteria were: diabetes

mellitus that was defined as a fasting blood glucose concentration above 7.0 mmol/L, a non-

fasting value of more than 11.1 mmol/L, or a self-reported history of treatment for diabetes;

poor dilation or ocular media opacities so that part of or the entire retinal vessel is almost

indiscernible (e.g., cataracts with high-severity opacity of lens, vitreous hemorrhage); any

other previous or coexisting ocular disease that could affect the retinal vasculature (e.g., glau-

coma, central or branch retinal artery occlusion, central or branch retinal vein occlusion).

Image preprocessing

The JPEG content was decoded to RGB grids of pixels at a size of 2048×1536. For pre-process-

ing, auto-cutting was employed to minimize black borders around the field of view and yields

square images, of dimension1496×1496, in order to scale the images without distortion. And

then all images were resized to 565×565. To highlight the retinal vasculature, two image

enhancement methods, gamma correction and contrast limited adaptive histogram equaliza-

tion (CLAHE), were conducted to enhance the image contrast, and “enhanced dataset” was

obtained (Figs 1 and 2).

CLAHE is a computer image processing technique used to improve the image contrast

[47]. Briefly, it computes several histograms corresponding to distinct sections of the image

and limits the amplification by clipping the histograms at a predefined value, and uses them to

redistribute the lightness values of the image. It is therefore suitable for improving the local

contrast of an image and bringing out more detail.

Gamma correction is a nonlinear mapping of the gray value of the input image and can be

expressed by the equation [48].

Ig ¼ pIg

I is the input intensity, Iγ is the output intensity, and p is a normalization factor which is

determined by the value ofγ. In this study, the setting of γ is equal to 1/1.2, and the overall

brightness of the image is improved, while the contrast at the low gray level is increased, which

is more conducive to the image details at the low gray level.

Retinal vessel segmentation

The vessel segmentation task was based on an open source hosted at GitHub [49]. Briefly, the

automated vessel segmentation model is derived from the U-Net architecture [50] and was
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trained on DRIVE (digital retinal images for vessel extraction) dataset. The DRIVE is a pub-

licly available database, containing a total of 40 colored fundus photographs obtained from a

diabetic retinopathy (DR) screening program in the Netherlands [51]. There are 20 images

used for training and the rest 20 for testing by default. The performance of this segmentation

model is tested on the DRIVE database, and it achieves 0.9790 of area under the ROC curve.

On STARE database, it achieves 0.9805 of area under the ROC curve. We used the automated

segmentation model to extract retinal vessels of every fundus image of “enhanced dataset”, and

“segmented dataset” was obtained (Figs 1 and 2).

Classification model development

A small CNN architecture that was used for training and classification in our project is pre-

sented below Fig 3. In short, five convolution layers, five pooling layers and two fully-con-

nected layers composed the main body of CNN. To prevent overfitting, the size of the model,

namely learnable parameters in the model, was reduced as much as possible. The number of

filters in the convolution layers and the number of units in the densely-connected layers was

Fig 1. Examples of fundus photographs from normotensive subjects. Top row: Raw retinal images. Middle row:

enhanced images. Bottom row: segmented blood vessel images.

https://doi.org/10.1371/journal.pone.0230111.g001

Fig 2. Examples of fundus photographs from hypertension patients. Top row: Raw retinal images. Middle row:

enhanced images. Bottom row: segmented blood vessel images.

https://doi.org/10.1371/journal.pone.0230111.g002
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set to a smaller value and global max pooling layer was used after the last convolution layer.

Batchnormalization layers were used for accelerating converge, and dropout layers were added

to combat overfitting.

For either of the two datasets (“enhanced dataset” and “segmented dataset”), all fundus

images with one target label: hypertension-status (Yes/No) were randomly partitioned into

five equal sized subsamples. Of the five subsamples, a single subsample was retained as the

“test set” which was not used during the training process to test the model, and the remaining

four subsamples are used as the “development set” to develop our model. The training process

was then repeated five times.

During the training process, the “development set” was divided into a training set (75%)

and a validation set (25%) which was a random subset of the “development set” and was not

used to train the model parameters, but was used as a small evaluation dataset for tuning the

model. The training set was resized to 256×256, and via a number of random transformations,

which include adjusting the brightness of images by random factor, flipping images horizon-

tally or vertically, randomly cropping images to 224×224, yielded a number of believable-look-

ing images. Thus, at each iteration, the model never saw the exact same picture twice. This

helps expose the model to more aspects of the data and generalize better. The validation set

were resized to 224×224, and data augmentation techniques was not applied during the valida-

tion process.

All codes employed in our study were executed in the tensorflow2.0 framework with Win-

dows10 + CUDA (Compute Unified Device Architecture) 10.0. Experiments were run in an

Intel Core i9-9900K CPU @ 3.60 GHz with 32.0 GB of RAM memory and a NVIDIA GeForce

RTX 2080.

Fig 3. CNN architecture. f: number of filters; k: kernel size; s: strides; p: pool size; u: number of units; r: fraction of the

input units to drop.

https://doi.org/10.1371/journal.pone.0230111.g003
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Evaluating the model

Due to the small sample size of the dataset, five-fold cross-validation was adopted. The cross-

validation process was repeated five times, and the five results were averaged to produce a sin-

gle estimation. In order to keep the image size consistent with cropped pictures during the

training process, all testing images were resized to 224×224. To evaluate performances of the

learned model, we adopted several evaluation parameters, including accuracy, specificity, pre-

cision, recall, and the area under the receiver operating characteristic curve (AUC).

Accuracy ¼
TP þ TN

TP þ TN þ FPþ FN

Specificity ¼
TN

TN þ FP

Precision ¼
TP

TP þ FP

Recall ¼
TP

TPþ FN

TP represents correctly classified hypertension images and TN represents correctly classified

non-hypertension images. FP represents false positive values, where non-hypertension images

are wrongly classified as hypertension and FN represents false negative values where hyperten-

sion images are wrongly classified as non-hypertension.

Visualizing heat maps of class activation

To better understand which parts of a given retinal photograph led a CNN to its final classifica-

tion decision, we used a deep learning technique called Gradient-weighted Class Activation

Mapping (Grad-CAM) [52]. This approach uses the gradients of target concept, flowing into

the final convolutional layer to produce a coarse localization map highlighting the important

regions in the image for predicting the concept. Heat maps for the class“hypertension” or

“non-hypertension” were generated from the “segmented dataset” as images from this dataset

contained only morphological attributes of retinal blood vessels, such as length, width, tortuos-

ity and branching pattern. After removing interference information other than blood vessels,

we can accurately find the effect of hypertension on retinal blood vessels.

Results and discussion

Results

Both “enhanced dataset” and “segmented dataset” were used independently, to train and test a

CNN model. Although methods, such as reducing the size of the model, using dropout layers,

and data augmentation techniques were used, these couldn’t entirely eliminate overfitting. For

“enhanced dataset”, with the decreasing of the training loss (cross-entropy loss between true

labels and predict labels), the drop in validation loss is quite small. The three hundred epochs

training-stop criterion was chosen as it was observed that the model validation loss started

stalling (or increasing) after 300 epochs of training. For “segmented dataset”, the model started

overfitting, and its performance degrades more slowly once it starts overfitting. The five hun-

dred epochs training-stop criterion was chosen as it started stalling (or increasing) after 500

epochs of training.
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For “enhanced dataset”, averaged the results of the five cross-validation and our model

achieved an accuracy of 56.76%, a specificity of 63.80%, a precision of 58.97%, and a recall of

49.93%. The AUC was 0.6069. For “segmented dataset”, our model produced an improved

accuracy 60.94% and recall 70.48%, a similar precision 59.27%, but its specificity dropped to

51.54%. Finally, the AUC was 0.6506 (Table 1).

Using the “segmented dataset”, the learned model had the highest prediction precision for

hypertension at the last time of repeated cross-validation. So we used the model trained from

the last cross-validation and corresponding “test set” to produce heat maps for the class

“hypertension” and “non-hypertension”. There are two hundred and fifty heat maps of class

activation, one hundred and thirty-six from correctly classified hypertension images and one

hundred and fourteen from correctly classified non-hypertension images, and representative

examples are shown in Figs 4 and 5. For heat maps for the class “hypertension”, red patchy

areas that were strongly activated showed discrete distribution, and most of them were on or

around arterial/venous bifurcations. This is how the network can tell the difference of retinal

microvascular morphology between hypertension and non-hypertension. But, for heat maps

for the class “non-hypertension”, red areas showed a continuous distribution along the blood

vessels.

Discussion

In our study, the dataset size was small for deep learning. Although we use some strategies for

mitigating overfitting and maximizing generalization, such as reducing the size of the model,

using dropout layers, and data augmentation, the model eventually started over-fitting after a

certain number of iterations. Because these techniques couldn’t produce new information and

could only remix existing information—the inputs the model sees are still heavily inter-corre-

lated. So we interrupted the training process when the validation loss was no longer improv-

ing. Using “segmented dataset”, the accuracy and the precision of the model on the “test set” is

slightly higher than using “enhanced dataset”, and the recall and the AUC is apparently higher.

However, it had a lower specificity. The possible reason was that the information of leading the

model to hypertension decision mainly came from retinal microvasculature, while the infor-

mation about non-hypertension also came from other parts of the images other than the blood

vessels. Images from “segmented dataset” that contained only retinal blood vessels more likely

to be identified as high blood pressure, therefore the recall is higher and the specificity is

lower.

To better understand the effect of hypertension on phenotypic traits of retinal microvascu-

lature, we used the images that contained only retinal blood vessels to produce heat maps. As

Table 1. The performance of the model on two different dataset.

enhanced dataset segmented dataset

Accuracy 53.35% 56.47% 57.21% 59.31% 57.46% 58.31% 60.20% 63.68% 59.31% 63.18%

Average 56.76% Average 60.94%

Specificity 51.04% 56.48% 76.44% 80.32% 54.73% 52.60% 48.61% 54.81% 49.47% 52.23%

Average 63.80% Average 51.54%

Precision 55.45% 52.76% 59.17% 70.40% 57.08% 59.56% 55.24% 60.17% 60.58% 60.82%

Average 58.97% Average 59.27%

Recall 55.45% 56.45% 36.60% 40.93% 60.20% 63.51% 73.66% 73.20% 67.91% 74.13%

Average 49.93% Average 70.48%

AUC 0.5572 0.6144 0.6083 0.6532 0.6014 0.5893 0.6634 0.6655 0.6558 0.6789

Average 0.6069 Average 0.6506

https://doi.org/10.1371/journal.pone.0230111.t001

PLOS ONE Deep learning to explore the effect of hypertension on retinal microvasculature

PLOS ONE | https://doi.org/10.1371/journal.pone.0230111 March 5, 2020 7 / 13

https://doi.org/10.1371/journal.pone.0230111.t001
https://doi.org/10.1371/journal.pone.0230111


shown in Fig 4, red patchy areas in the heat maps for the class “hypertension” were mainly dis-

tributed on or around arterial/venous bifurcations. This indicated that the model identified

these regions as being the most important for predicting hypertension. The change of the

branching pattern of retinal vessels was probably the most significant among a series of retinal

vascular geometric characteristics changes (e.g., caliber, tortuosity, fractal dimension, branch-

ing angle) in response to elevated blood pressure. It has been assumed that the branching

geometry of blood vessels is governed by definite rules and principles, including principles of

Fig 4. Heat maps for the class “hypertension”. Arterial/venous bifurcations were within the black ring.

https://doi.org/10.1371/journal.pone.0230111.g004
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minimum surface, minimum volume, minimum power, and minimum drag, which related to

the physiological function of the cardiovascular system [53]. Based on these optimality princi-

ples, measurements of branching angles and the relative diameters of the vessels in arterial

bifurcation mainly distributed in the optimum regions. A similar research that measured arte-

rial bifurcations in the retina of a normal human eye and derived quantitative information

supported these theoretical studies above [54]. Under different pathological conditions, such

as diabetes [55, 56], branching pattern of retinal vessel should change.

Fig 5. Heat maps for the class “non-hypertension”.

https://doi.org/10.1371/journal.pone.0230111.g005
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One previous study used a semi-automated computer-assisted program to analyze digitized

retinal photographs from a total of 1913 hypertensive patients without diabetes, and quantita-

tively measure the some retinal vascular parameters, including retinal vascular branching

angle and retinal vascular branching asymmetry ratio [8]. The results showed that after con-

trolling for other confounding factors, retinal arteriolar branching asymmetry ratios (the ratio

of the square of the two branching vessel widths) were independently associated with mean

arterial blood pressure, while arteriolar/venular branching angle and venular branching asym-

metry ratio were not related to blood pressure. However, in our heat maps, the red areas that

had the strongest association with hypertension covered not only the bifurcation of the arter-

ies, but also the veins. That’s probably because the segmented images lost color information,

and thus unable to classify arteries and veins. For the same reason, some vessel crossings were

found to be activated in heat maps. In future work, we will use images that contain only retinal

arteriole or venule to construct CNN models to classify hypertension.

Recently, Poplin’s research group analyzed datasets from the UK Biobank and EyePACS

cohorts using deep learning methods [46]. They trained neural networks to predict known car-

diovascular risk factors such as smoking status, systolic blood pressure (SBP). The results

showed that the predicted SBP increased linearly with actual SBP until approximately 150

mmHg, but leveled off above that value. They used soft attention to identify the anatomical

regions that the model might have been using to make its predictions, and blood vessels were

highlighted in the models trained to predict SBP. Our study provided further evidence that the

effect of hypertension on retinal microvascular morphology mainly occurred at branching of

arterioles. The geometry of retinal arterioles at or near arterial branching may clearly be a fac-

tor in the incidence of certain arterial lesions at such junctions.

Conclusions

The results of this study suggested that the change of the branching pattern of retinal vessel

was probably the most significant in response to elevated blood pressure.
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