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Abstract: Background: Mild cognitive impairment (MCI) is a transitional stage between normal
aging and probable Alzheimer’s disease. It is of great value to screen for MCI in the community.
A novel machine learning (ML) model is composed of electroencephalography (EEG), eye tracking
(ET), and neuropsychological assessments. This study has been proposed to identify MCI subjects
from normal controls (NC). Methods: Two cohorts were used in this study. Cohort 1 as the training
and validation group, includes184 MCI patients and 152 NC subjects. Cohort 2 as an independent
test group, includes 44 MCI and 48 NC individuals. EEG, ET, Neuropsychological Tests Battery
(NTB), and clinical variables with age, gender, educational level, MoCA-B, and ACE-R were selected
for all subjects. Receiver operating characteristic (ROC) curves were adopted to evaluate the capa-
bilities of this tool to classify MCI from NC. The clinical model, the EEG and ET model, and the
neuropsychological model were compared. Results: We found that the classification accuracy of
the proposed model achieved 84.5 ± 4.43% and 88.8 ± 3.59% in Cohort 1 and Cohort 2, respectively.
The area under curve (AUC) of the proposed tool achieved 0.941 (0.893–0.982) in Cohort 1 and 0.966
(0.921–0.988) in Cohort 2, respectively. Conclusions: The proposed model incorporation of EEG, ET,
and neuropsychological assessments yielded excellent classification performances, suggesting its
potential for future application in cognitive decline prediction.

Keywords: mild cognitive impairment; neuropsychological tests battery; machine learning; screening
tool

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative brain disease that
affects 50–70% of patients with cognitive impairments over the age of 65 [1]. AD pathology
leads to an irreversible deterioration in cognitive functions such as loss of memory, execu-
tive dysfunction, and attention disorders [2–4]. Mild cognitive impairment (MCI) refers
to the intermediate period between the typical cognitive decline of normal aging and the
more severe decline associated with dementia (e.g., AD) [5–7]. Because of the irreversibility
of AD, it is of great value to screen MCI subjects at the community level [5,8,9].

Currently, biochemical tests (e.g., Cerebrospinal Fluid and Blood) and neuroimaging
tests (e.g., Magnetic Resonance Imaging,) were considered efficient screening tools for
MCI [10–12]. However, these techniques were usually invasive and expensive, restricting
large-scale screening applications in the community [13,14]. Therefore, an effective and
low-cost detectable approach to cognitive decline in MCI is urgently required.

Recently, MCI screening has attracted immersive interests. A Neuropsychological
Tests Battery (NTB) is well recognized in the diagnostic pipelines of preclinical AD [15].
Multiple preclinical neuropsychological measures significantly predicted progression to
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AD from MCI and detected changes in patients in verbal and visual memory, visuospatial
processing, error control, and subjective neuropsychological complaints [16]. Paul et. al.
confirmed that neuropsychological tests quick-MCI to assess cognitive status in 3–5 min
and can discriminate MCI accurately in primary care [17]. Neuropsychological tests were
clearly appropriate for MCI community screening, as are emerging cognitive assessments
such as electroencephalogram (EEG) and eye tracking (ET) to monitor cognitive function.
Murty et al. found that stimulus-induced gamma rhythms from EEG were significantly
lower in MCI/AD subjects compared to their age- and gender-matched controls, suggest-
ing that gamma of EEG could be used as a potential screening tool for MCI or AD in
humans [18]. Oyama et al. developed a brief cognitive assessment utilizing an eye-tracking
technology that can enable quantitative scoring and the sensitive detection of cognitive
impairment in patients with mild cognitive impairment and dementia [19]. Nie et al.
found that eye movement parameters are stable indicators to distinguish patients with
MCI and cognitively normal subjects and are not affected by different testing versions
and numbers [20]. The incorporation of neuropsychological tests and physiological mea-
surements warrants further study as a practical and cost-effective method for wide-scale
screening for identifying older adults who may be at risk for pathological cognitive de-
cline. Neuropsychological tests might be limited in their effectiveness in MCI screening
while acknowledging that neuropsychological tests are inadequate for making a definitive
diagnosis. To increase the precision and sensitivity of MCI screening, several researchers
incorporated NTB into objective physiological measures, such as prefrontal EEG [21] and
ET [22]. For instance, our previous work validated the feasibility of physiological mea-
sures using EEG and ET in distinguishing MCI from HC, with a classification accuracy of
81.5% [23].

In addition, with the development of artificial intelligence techniques, machine learn-
ing (ML) methods have been widely used for the differential diagnosis of MCI [15,23–25].
For example, Lin et al. developed non-invasive clinical variables and ML classifiers, in-
cluding Support Vector Machine (SVM), Logistic Regression (LR), and Random Forest
(RF), to achieve over 75% classification accuracy to classify subjects who converted to
MCI from normal within four years [25]. Yim et al. proposed a ML algorithm to identify
cognitive dysfunction based on neuropsychological tests including the Montreal Cogni-
tive Assessment (MoCA). The results showed a good classification performance between
cognitive impairment and normal subjects [15]. However, there were few models using
neuropsychological tests, physiological tests, and ML algorithms in the previous studies.

This study aims to propose and validate a novel and low-cost screening model consist-
ing of neuropsychological tests, physiological tests, and ML algorithms. Importantly, to
evaluate the robustness of the model, two independent cohorts were used in this study.

2. MCI Prediction Algorithms

Figure 1 shows the flowchart of the proposed model, which was composed of four
steps: data collection, data preprocessing, feature extraction and selection, and classification
based on ML classifiers. These steps were described in detail as the following:
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GLAB toolbox implemented in MATLAB 2018a(Math Works Inc., Sherborn, MA,USA). 

Figure 1. The flowchart of the proposed model.

2.1. Data Collection

EEG, ET, neuropsychological test (Table S1), and demographic data (age, gender, and ed-
ucation) were selected as the inputs of the model. Details of the data collection step were de-
scribed in our previous study [23] and provided in the Figure S1 of Supplementary Material.

2.2. Data Preprocessing

This model included an automatic data preprocessing step for EEG, ET, and NTB.

2.2.1. EEG Preprocessing

Invalid EEG data was first removed according to whether the EEG electrode was
offset. Next, the power frequency noise, electromyogram signal, electrocardiogram signal,
and other external noises were removed using a band stop filter and a band pass filter.
Simple second-order Butterworth filtering was applied with a passband of 0.5–30 Hz.
Finally, we overlapped 60% of the EEG data by applying a 5 s moving window, provid-
ing 15 overlapping segments for each subject. The EEG signal was preprocessing using
EEGLAB toolbox implemented in MATLAB 2018a (Math Works Inc., Sherborn, MA, USA).
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2.2.2. ET Preprocessing

First, excessive noise from ET data was eliminated. Next, the gaze position signal was
normalized to the display coordinates to avoid the interpolation bias. Finally, a low pass
Butterworth filter with a cut-off frequency of 5 Hz was implemented in MATLAB 2018a
(Math Works Inc., Sherborn, MA, USA).

2.2.3. NTB Data Preprocessing

NTB data were cleaned, and all abnormal values were eliminated. Finally, neuropsy-
chological test scores were normalized into 0–1.

2.3. Feature Extraction
2.3.1. EEG Data

Frequency-domain and spectral-domain features of the EEG signal were extracted.
A Fourier transform of the autocorrelation function was employed to transform the EEG
signal from time-domain to frequency-domain to get the power spectral density. Four EEG
frequency bands (delta 0.5–4 Hz, theta 4–8 Hz, alpha 8–13 Hz, and beta 13–30 Hz) were
filtered in this study. The power spectrum of each frequency band and specific spectral
power ratios like the alpha/theta power ratio was computed. The extracted linear features
of the EEG were consistent with our preliminary work [23]. Nonlinear features of the EEG,
including approximate entropy (ApEn) [26], Multiscale entropy (MsEn) [27], and Lempel
Ziv complexity (LZC) were calculated [28]. The calculation formulas of the EEG features
were described in the section of Feature extraction and selection of Supplementary Material.

2.3.2. ET Data

ET data was divided into saccade data and gaze data. The association of gazes and
saccades with specific regions on visual stimuli was examined. Then, visual scan parameters
such as blink frequency, blink time, fixation time, and sustained attention duration were
calculated. The nonlinear features of ET were extracted by LZC.

2.3.3. NTB Data

NTB data, which are numerical, included subtest scores, total test scores, and re-
sponse time. Meaningful numerical features were subsequently converted to z-scores using
Z transformation.

2.4. Feature Selection

The Minimum Redundancy-Maximum Relevance (MRMR) algorithm was used for
feature selection [29]. In the MRMR algorithm, the correlation between different feature
subsets is modeled as:

Θ =
1
|Ω|∑m ∑

fi∈Ω
M( fi, m) (1)

where the feature subset Ω is from the feature set F and F = { f1, . . . , fD}. In this tool,
m = {+1,−1} represents HC and MCI respectively and M is the mutual information
between the feature subset and the target classes which is given by

M(X, Y) = ∑
X

∑
Y

p(X, Y) log2

(
p(X, Y)

p(X)p(Y)

)
(2)

where p(X), p(Y), p(X, Y) are the marginal probability distributions and joint probability
distributions of variable X, Y respectively. Clearly, the mutual information comes to
zero when p(X, Y) = p(X)p(Y), which states that the feature is independent with the
target classes.

The redundancy between the feature fi and other features can be modeled as:



Brain Sci. 2022, 12, 1149 5 of 12

∆Ω, fi
=

1

|Ω|2 ∑
f j⊂Ω, fi 6= f j

M
(

fi, f j
)

(3)

Thus, the feature meeting the minimum redundancy-maximum correlation principle
can be obtained via:

f ∗i = argmax
fi⊂Ω

Θ
∆Ω, fi

(4)

In the above equation, the optimal features can be obtained by maximizing the corre-
lation between the features and the target classification and minimizing the redundancy
between the features. By performing similar operations on different feature subsets, mul-
tiple optimal features can be found to reduce the complexity and improve the algorithm
decision performance.

2.5. Classification

A support vector machine (SVM) was used as the ML classifier with Anaconda
Spyder 3.7 (Anaconda Inc., Austin, TX, USA). As a classic supervised learning method,
SVM has been widely used in statistical classification and regression analysis due to its
ability to map vectors linearly to a higher dimensional space that creates a maximum
margin hyperplane to achieve high classification performance.

wTx + b = 0 (5)

Support vectors maximize the margin of the classifier by changing the position and
orientation of the hyperplane. Kernel functions of SVM or “kernel trick” by SVM were
applied to remedy the issue that the points are not separable linearly due to the position
of the data. Kernel trick involves the transformation of the existing algorithm from a
lower-dimensional data set to a higher one. The amount of information remains the same,
but in this higher dimensional space, it is possible to create a linear classifier. Several K
kernels are assigned to each point which then helps determine the best fit hyperplane
for the newly transformed feature space. With enough K functions, it is possible to get
precise separation.

Linear SVM classifier with hard margin:

W(α) = −
l

∑
i=1

αi +
1
2

l

∑
i=1

l

∑
j=1

yiyjαiαjXiXj (6)

Kernel trick equation minimizing W subject to:

l

∑
i=1

yiαi = 0 0 ≤ αi ≤ C (7)

3. Materials and Methods
3.1. Subjects

We recruited two cohorts for this study. Cohort 1 was composed of 336 subjects
from four communities in Jiading district, Shanghai, China, including 152 MCI patients
and 184 normal controls (NC) subjects. Cohort 2 was composed of 44 MCI patients and
48 NC subjects from one community in Baoshan district, Shanghai, China. All subjects
also underwent a battery of cognitive evaluations, including Addenbrooke’s Cognitive
Examination-revised (ACE-R) and Montreal cognitive assessment-basic (MoCA-B). The per-
mission of MoCA-B in the study was received via https://www.mocatest.org/permission
(accessed on 28 June 2017).

All subjects signed an informed consent before the examinations. This study has
been approved by the ethics committee of Long Hua Hospital in Shanghai University of
Traditional Chinese Medicine (Ethical number: 2017LCSY345) and conducted in accordance
with the principles of the Declaration of Helsinki. In this study, Cohort 1 was used as

https://www.mocatest.org/permission
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the training and validation group to train the SVM classifier. Cohort 2 was used as an
independent test group to verify the robustness of the classification results.

MCI was defined by an actuarial neuropsychological strategy proposed by Jak and
Bondi [30], subjects were considered to have MCI if they met any of the following three
criteria and neglected to meet the criteria for dementia. The inclusion criteria for MCI
were as follows [31,32]: (1) right-handed, and Mandarin-speaking subjects; (2) a subjec-
tive memory complaint; (3) memory impairment relative to age and education-matched
healthy elderly individuals confirmed by performance on neuropsychological assessments
(below 1.5 standard deviations); (4) intact general cognitive function confirmed by MoCA-B
scores ≥ 26; (5) intact activities of daily living; and (6) without dementia confirmed by
a physician.

Exclusion criteria of MCI were as follows: (1) other neurological diseases including
cerebrovascular disease, brain trauma, Parkinson’s syndrome, brain tumor, and epilepsy;
(2) current major psychiatric disease such as severe depression and anxiety; (3) other neuro-
logical conditions that could cause cognitive decline (e.g., brain tumors, Parkinson’s disease,
encephalitis, or epilepsy) rather than AD spectrum disorders; (4) systemic diseases that
may lead to cognitive decline (thyroid dysfunction, severe anemia, syphilis, or HIV, etc.);
(5) other conditions such as a history of CO poisoning and general anesthesia; (6) severe
visual or hearing impairment; (7) contraindication for MRI.

The inclusion criteria for NC included the following: (1) no subjective or informant-
reported memory decline; (2) non-clinical depression (Geriatric Depression Scale scores < 6);
(3) normal age-adjusted, gender-adjusted, and education-adjusted performance on stan-
dardized cognitive tests.

3.2. Data Acquisition

All data were selected from 1 September 2017 to 31 August 2018 in the communities,
Shanghai, China. The data selection protocol has been introduced in the Supplementary Material.

3.3. Validation Experiments for Optimal Parameters of the Classifier

We adjusted the hyper-parameters for the SVM classifier such as kernel function,
penalty factor C, and coefficient of kernel function gamma with good classification perfor-
mance by 5-fold cross-validation. Different kernels, including linear, polynomial, and RBF
were compared in this study. Cohort 1 was used to train these parameters.

3.4. Discriminative Analysis

The classification results from four models were compared by using the SVM classifier,
including (1) the clinical model (clinical variables including age, gender, educational level,
MoCA-B, ACE-R), (2) the single neuropsychological test model (20 subtests of NTB showed
in the Supplementary Material), (3) the single physiological test model (EEG and ET), and
(4) the proposed tool model. We used the 5-fold cross-validation method to calculate the
classification results.

3.5. Statistical Analysis

Differences in demographic and cognitive performance between the NC group and
the MCI group were evaluated by two sample t-tests or chi-square (χ2) tests of Statistical
Package V24 for Social Sciences (SPSS Inc., Chicago, IL, USA). The significance level was
set as p < 0.05. Receiver operating characteristic (ROC) curves were used to evaluate the
capabilities of the tool in distinguishing MCI from NC. The areas under the curves (AUCs)
with 95% confidence intervals (CIs) were calculated.

4. Results
4.1. Demographic and Clinical Characteristics

The detailed demographic and clinical characteristics were reported in Table 1. The
results showed that the scores of MoCA-B and ACE-R from MCI patients were significantly
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lower than NC’s scores (p < 0.001, two-sample t-test). There were no significant differences
in age (p = 0.875; two-sample t-test), gender (p = 0.541; chi-square test) or years of education
(p = 0.071; Wilcoxon rank-sum test) of cohort 1. There were no significant differences in
age (p = 0.783; two-sample t-test), gender (p = 0.492; chi-square test) or years of education
(p = 0.068; Wilcoxon rank-sum test) of cohort 2 either.

Table 1. Demographic and clinical characteristics of subjects.

Cohort 1 Cohort 2

NC (184) MCI (152) p Value NC (48) MCI (44) p Value

Age (years) 71.7 ± 4.66 71.6 ± 4.15 0.875 b 69.3 ± 17.0 76.5 ± 11.3 0.783 b

Education (years) 9.36 ± 3.47 8.16 ± 3.74 0.541 a 13.0 ± 3.87 10.8 ± 5.66 0.492 a

Gender (male/female) 101/83 78/74 0.071 c 18/30 16/28 0.068 c

MoCA-B 28.3 ± 0.95 23.2 ± 3.40 <0.001 b * 23.8 ± 3.28 16.4 ± 3.84 <0.001 b *
ACE-R 72.1 ± 7.79 63.7 ± 8.53 <0.001 b * 71.0 ± 24.9 64.2 ± 8.28 <0.001 b *

Note: Data are presented as mean ± standard deviation. * Indicates a statistical difference between groups,
p < 0.05; a: the p value was obtained by χ2 test, b: the p value was obtained by two-sample t tests, c: the p value
was obtained by Wilcoxon rank-sum test. Abbreviations: NC, normal control; MCI, Mild Cognitive Impairment;
MoCA-B, Montreal cognitive assessment-basic; ACE-R, Addenbrooke’s Cognitive Examination Revised.

4.2. Validation Experiments for Optimal Parameters of Classifier

The best classification performance was obtained under the specific parameters
(C = 1.1, GAMMA = 0.001) while the kernel function was set to RBF. Table 2 shows the
detailed performance of different kernel functions and corresponding parameters.

Table 2. The optimized hyper-parameters of SVM in test dataset.

Kernel Function C GAMMA Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

Linear 4.0 / 84.3 ± 4.05 83.1 ± 7.70 85.5 ± 4.97 0.906 (0.841–0.969)
Poly 20.0 0.02 78.1 ± 9.90 83.6 ± 10.6 71.3 ± 13.6 0.851 (0.747–0.954)
RBF 1.1 0.001 84.5 ± 4.34 82.4 ± 7.36 86.5 ± 6.51 0.934 (0.878–0.977)

Sigmoid 17.0 0.01 82.1 ± 6.08 90.9 ± 8.13 71.3 ± 11.7 0.851 (0.838–0.964)

C represents the regularization coefficient, gamma represents the kernel function coefficient, AUC represents the
area under the ROC curve, the bold part in the table is the optimal value of each column, and the values in the
table are the mean and standard deviation after five cross-validations.

4.3. Discriminative Analysis

Tables 3 and 4 showed comparison results of four models in Cohort 1 and 2, re-
spectively. Classification results showed that the performance of the proposed tool was
better than other models (Accuracy: 84.5 ± 4.43%; Sensitivity: 81.9 ± 7.88%; Specificity:
86.8 ± 6.19%; AUC: 0.942 (0.893–0.982)) in Cohort 1. Classification results also showed that
the performance of the proposed tool was better than other models (Accuracy: 88.8 ± 3.59%;
Sensitivity: 86.2 ± 6.46%; Specificity: 91.0 ± 5.39%; AUC: 0.966 (0.921–0.988)) in Cohort 2.
Figures 2 and 3 showed the ROC results of the four models in both cohorts.

Table 3. The classification results of four models in cohort 1.

Comparative Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

The clinical model 62.6 ± 5.19 54.7 ± 6.81 71.4 ± 5.56 0.653 (0.541–0.783)

Single neuropsychological test model 75.6 ± 4.60 55.7 ± 8.15 71.2 ± 4.72 0.8014 (0.700–0.885)

Single physiological test model 81.4 ± 4.66 72.1 ± 8.25 89.2 ± 5.42 0.9045 (0.819–0.961)

The proposed tool model 84.5 ± 4.43 81.9± 7.88 86.8 ± 6.19 0.9415 (0.893–0.982)
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Table 4. The classification results of four models in cohort 2.

Comparative Model Accuracy (%) Sensitivity (%) Specificity (%) AUC (95% CI)

The clinical model 65.7 ± 4.93 43.3 ± 10.6 90.1 ± 7.94 0.660 (0.543–0.789)
Single neuropsychological test model 75.0 ± 5.22 54.1 ± 8.63 91.5 ± 4.73 0.803 (0.681–0.889)

Single physiological test model 87.0 ± 4.27 82.4 ± 7.94 90.6 ± 5.05 0.937 (0.867–0.985)
The proposed tool model 88.8 ± 3.59 86.2 ± 6.46 91.0 ± 5.39 0.966 (0.921–0.988)
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5. Discussion

Cognitive decline remains highly underdiagnosed in the community despite extensive
efforts to find novel approaches to detect MCI and find objective screening methods for
cognitive decline could improve early MCI diagnosis. MCI screening in the community
has become a hot topic nowadays. In light of their excellent performance in detecting a
cognitive decline in MCI patients, multimodal detection approaches have been commonly
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used in computer-aided disease diagnostic fields of community screening. In this study,
we proposed a ML model based on EEG, eye movement, and neuropsychological tests for
MCI screening at the community level. In contrast to other traditional models, such as the
EEG-based model, ET-based model, and NTB-based model, the classification results of our
model outperformed other traditional models.

So far, a lot of studies have focused on the classification of NC and MCI by using
machine learning models for screening in primary care. For instance, Siuly et al. performed
a Piecewise Aggregate Approximation (PAA) technique for compressing massive volumes
of EEG data for reliable analysis and developed a model based on Extreme Learning
Machine (ELM) with permutation entropy (PE) and auto-regressive (AR) model features to
achieve the highest MCI classification accuracy (98.8%) [33]; Lagun et al. applied a SVM
based machine learning model to reach the accuracy of 87% to detect MCI by modeling
eye movement characteristics such as fixations, saccades, and refixations during the Visual
Paired Comparison (VPC) task [34]; Yim et al. developed a screening model based on a
gradient boosting (GB) algorithm to identify MCI by neuropsychological test results and
reached the classification accuracy of 93.5% [15]; and, Wang et al. developed a Random
Forest (RF)-based model to optimize the content of cognitive evaluation and achieved an
accuracy of 68% in the classification of MCI and NC [35].

Notably, our classification results were similar to previous studies, indicating the
reliability of our results. As shown in Table 5, although previous studies based on EEG
analysis performed powerful discrimination for MCI detection (ACC = 98.8% in Siuly’s
model), it is worth noting that these studies based on expensive and long-term physiological
signal collection devices are seldom used in primary care. By contrast, the wearable EEG
device used in our approach was more suitable for large-scale MCI screening. In contrast
to earlier studies based on ET and NTB, our method achieved better accuracy. Additionally,
the advantages of our method were also summarized as follows:

Table 5. The performance of analogous MCI detection methods in the literature.

Detection Tools Modality Subject Method Classifier Accuracy

EEG based Siuly, 2020 [33]
EEG (19 Electrodes) 27 EEG features ELM 98.8%

ET based Lagun, 2011 [34]
ET Test 174 ET features SVM 87%

Neuropsychological
test based Yim, 2020 [15] 614 The mean total scores of

neuropsychological test GB 93.5%

NTB based Wang, 2022 [35]
Neuropsychological tests battery 241 NTB scores RF 68%

Proposed Method
NTB, EEG and
Eye tracking

EEG (1 electrode) & ET &
Neuropsychological test battery 336 EEG & ET features &

NTB scores SVM 88.8%

(1) In terms of feature extraction, the linear and nonlinear feature analysis has been
successfully used to identify the powerful biomarkers of neurophysiological diseases,
such as Alzheimer’s disease (AD). In this study, we applied both linear and nonlinear
methods to extract EEG and eye movement features. For EEG, complexity analysis
as a nonlinear dynamic method can represent the rate of new patterns appearing
in a time series, and to a certain extent, details of the signal can be presented in the
binarized sequence.

(2) In terms of feature selection and classification, the SVM model was selected. As a ML
model, the SVM is suitable for classifying the features obtained from neuropsycholog-
ical assessments.

(3) In terms of the clinical setting, we depicted a machine learning framework for auto-
mated cognitive assessment data analysis for the precise classification of healthy and
mild cognitive impairment individuals. Our work opens the possibility for automated
assessment of cognitive function in community screening.
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Although our proposed method achieved a good classification of screening MCI and
NC, several limitations still exist. First, the whole experiment is time-consuming and
thus leads to a decrease in the degree of completion and cooperation of patients. Second,
the de-noising algorithm may influence the results of feature extraction and classification.
Third, the sample size of NC and MCI individuals was limited, and increasing the sample
size in future studies should be taken into consideration. Longitudinal imaging studies
are still absent. In the subsequent research, ongoing follow-up observational studies of
individuals will facilitate the investigation and validation of our results. Finally, SVM was
only used as the classifier in this study. If alternative classifiers such as using extreme
learning machines or deep learning models were developed, better classification results
will be obtained.

6. Conclusions

In this study, an automatic and non-invasive MCI detection model was proposed,
which integrated EEG, Eye movement techniques, and a neuropsychological test battery.
The results indicated the potential application for MCI detection and guided referral for a
more comprehensive evaluation to ultimately facilitate early intervention in primary care.
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