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With prevalence of electrophysiological data collected outside of the laboratory from

portable, non-invasive modalities growing at a rapid rate, the quality of these recorded

data, if not adequate, could affect the effectiveness of medical devices that depend of

them. In this work, we propose novel methods to evaluate electrophysiological signal

quality to determine howmuch of the data represents the physiological source of interest.

Data driven models are investigated through Bayesian decision and deep learning-based

methods to score unimodal (signal and noise recorded on same device) and multimodal

(signal and noise each recorded from different devices) data, respectively. We validate

these methods and models on three electroencephalography (EEG) data sets (N = 60

subjects) to score EEG quality based on the presence of ocular artifacts with our unimodal

method andmotion artifacts with our multimodal method. Further, we apply our unimodal

source method to compare the performance of two different artifact removal algorithms.

Our results show we are able to effectively score EEG data using both methods and

apply our method to evaluate the performance of other artifact removal algorithms that

target ocular artifacts. Methods developed and validated here can be used to assess

data quality and evaluate the effectiveness of certain noise-reduction algorithms.

Keywords: signal quality, artifact detection, electroencephalography, quantitative EEG, machine learning

1. INTRODUCTION

Advancements in and availability of wearable technologies that can readily collect
electrophysiological data from individuals in both controlled laboratory and real-world settings
have been growing rapidly. As such, both the volume of available biometric data and its potential
utility, if properly understood, are also increasing. If these data are to be effectively applied and
correctly interpreted, it is important to understand the quality of data being recorded. In this
context, quality is defined by how much of the acquired signal is from the source of interest and
not noise from external or internal (i.e., other physiological) sources. Unlike in clinical or research
settings, electrophysiological data collected in the real world is often contaminated with noise that
does not represent the physiological signal of interest.

In the case of electrocardiography (ECG), an example of an electrophysiological signal,
recordings often include electromyography (EMG), and movement, among other noise sources.
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For ECG, there have been several efforts in developing methods
to assess signal quality (Satija et al., 2018). However, for another
type of electrophysiological signal, electroencephalography
(EEG), there has been little research on developing signal quality
metrics. EEG, which measures brain electrical signals from the
scalp, is a common neuro-monitoring technique used in both
clinical and research settings. Depending on the application, it
would be beneficial to evaluate the quality of data and know
how clean electrophysiological recordings are before attempting
to analyze it or use it as input to a model (Lai et al., 2018).
For clinical applications where we need these data to be reliable,
consistent, and informative, the presence of noise that corrupt
the signal of interest can degrade the effectiveness of diagnostic
tools and brain-machine interfaces. With EEG, ocular activity
[measurable by electrooculography (EOG)], muscle activity
(measurable by EMG), cardiac pulses (measurable by ECG), and
movement [measurable by inertial measurement units (IMU)]
are examples of such noise that can often corrupt the purity
of neural activity targeted by EEG recordings (Islam et al.,
2016). Creating metrics to determine the quality of non-invasive
electrophysiological recordings would inform those using the
data how representative it is of the desired physiological source
and not riddled with noise from sources not of interest.

There have been a few approaches to scoring EEG signal
quality. With the ability to directly acquire signals from noise
sources, there have been greater successes in applying artifact
removal algorithms when the noise signal is known (Kilicarslan
et al., 2016; Kilicarslan and Vidal, 2019). In many situations,
however, it may not be possible to directly measure the source
of artifacts, making the process by which those artifacts are
removed arduous and more error-prone. To better assess data
quality where noise sources are not available, we can leverage
data from studies with the appropriate data to generate models
that characterize and score electrophysiological recordings. One
previousmethod calculated 11 different features of EEG that were
used to identify clean EEG recording segments by thresholding
these signal parameters (Daly et al., 2012). Data across four data
sets were used to determine these thresholds with n = 58. Based
on these thresholds, features values from new EEG signals were
categorized as either clean or not clean. In another study, three
quantitative EEG features were used to assess signal quality to
obtain three scores which were combined into one score (Hu
et al., 2013). The data used was from the OPTIMI data set with
n = 90, but the method may need modification to be generalized
to other headsets. Recently, machine learning was applied to this
problem using 114 features from the EEG (Grosselin et al., 2019).
The EEGs were classified using several classification approaches,
along with feature selection and a five-fold cross validation into
three quality levels: low, medium, and high. This study used
EEG across five data sets with n = 43. These prior works have
generally used a limited number of quantitative features, have
not used noise sources directly, and/or have characterized signal
quality into no more than three discrete categories.

Based on these gaps, the aims of this work are to (1)
develop a continuous scoring method for data from a unimodal
source when the noise can be measured directly from the same
modality and apply it to EEG with ocular artifacts, (2) develop a

continuous scoring method for data when the noise can only be
measured from another modality, requiring multimodal sources,
and apply it to EEG with motion artifacts, and (3) apply our
developed scoring metric to evaluate artifact removal algorithms,
specifically comparing two artifact removal algorithms that target
ocular artifacts.

This work proposes new methods to create a metric to
quantify quality of electrophysiological data. Our first proposed
approach is targeted at applications when the noise source
can be recorded directly using the same measurement tool,
i.e., unimodal data such as EEG and EOG, which are both
recorded from electrodes on the head. Our second approach
would be needed when there are noise sources that cannot be
recorded directly and can only be quantified by other means, i.e.,
multimodal data such as EEG and motion, which require both
EEG electrodes and IMUs. We propose a feature-based Bayesian
approach to score EEG with ocular artifacts since EEG and
EOG can be directly measured through same set of electrodes.
Recently deep learning, specifically deep convolutional neural
networks (DCNN), have shown state-of-the-art results and
superb effectiveness in EEG applications (Roy et al., 2019). As
such, we next present a deep learning-based approach to score
EEG with motion artifacts since motion cannot be directly
recorded with electrodes but rather is quantified by IMU or other
motion tracking tools.

Further, we validate and apply our scoring metric to evaluate
the effectiveness of different artifact removal algorithms. We
hypothesize that data cleaned with other artifact removal
algorithms will obtain higher scores than before they were
processed. Methods to compare the performance of EEG artifact
removal algorithms have not been well-developed and currently
rely on either visual inspection or synthetic data (Islam et al.,
2016). Since ocular artifacts are the most common noise targeted
by artifact removal algorithms for EEG, we score recorded data
with noise present and data after being processed by different
ocular artifact removal algorithms (Jiang et al., 2019). These
scoring methods could be used to evaluate the effectiveness of
noise removal algorithms by comparing scores of EEGs processed
by different methods.

2. METHODS

We first introduce a scoring method for cases when the noise
source can be recorded directly by the same modality (section
2.1). We next describe a scoring method when the noise
source cannot be measured directly through the same recording
modality (section 2.2). Both methods are designed to generate a
score 0 ≤ Q ≤ 1 (QU for data with unimodal source and QM for
data with multimodal sources). A score of zero would imply that
the data is entirely noise or from sources not of interest, while
a score of one would mean the data is entirely from the desired
electrophysiological source. We applied these methods to EEG
with different types of noise sources. In general, we used common
average re-referencing as a pre-processing step so that models
generated could be applied to signals with different recording
parameters (e.g., reference or ground channels). Figure 1 shows a
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FIGURE 1 | Flowcharts of model generation and validation of scoring methods for data with (A) unimodal and (B) multimodal sources.

high-level processing pipeline ofmodel generation and validation
of scoring methods for data with unimodal (Figure 1A) and
multimodal (Figure 1B) sources. Finally, we outline two different
noise removal algorithms and how our scoring method could be
used to evaluate their performance (section 2.3).

2.1. Scoring Data With Unimodal Source
In cases where the noise source can bemeasured directly from the
same recording modality (referred to as “unimodal method”), it
is possible to compare quantitative features of both the signal of
interest and the noise. After computing these features and their
corresponding scores, we detail how to identify which features
would be most effective to score data quality.

2.1.1. Scoring Method for Data With Unimodal Source
We begin by computing several quantitative features (30 initial
features were used in this study) for data without noise, hereafter
referred to as clean data (C), raw recorded data with noise
present, referred to as raw data (R), and the noise source, referred
to as noise data (N ).

With the collection of quantitative features for each recording,
we fit a distribution for each feature for each type of data, (clean,
raw, and noise) through kernel density estimations (KDE). Our

KDE based models are computed using Gaussian kernels and
Scott’s rule for bandwidth size. For each source of data and
feature, f , a set of parameters, 2, and subsequently distributions
df (2C), df (2R), and df (2N), are estimated.

To obtain a sub-score from each feature, we use the Bayesian
decision critical value, v∗

f
, which minimizes the probability of

error between each set of estimated distributions, df (2C) and
df (2N ) (Duda et al., 2000). For each feature used, if the mean
value ofN is less than the mean value of C, a sub-score using that
recording’s feature’s value, vf , is obtained by

Qf (vf ) =

{

1
2 +

1
2P(vf > xi | xi ∈ C), if vf ≥ v∗

f
1
2P(vf ≤ xi | xi ∈ N ), if vf < v∗

f

(1)

In essence, if vf ≥ v∗
f
then Qf (vf ) represents the proportion of

values in C less than vf scaled between [0.5, 1], or if vf < v∗
f

thenQf (vf ) represents the proportion of values inN greater than
vf scaled between [0, 0.5]. If the mean value of features in N is
greater than the mean value of features in C, then the inequalities
in Equation (1) are reversed appropriately. To obtain the final
quality score for our unimodal method a set of features for a
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recording, V ,

QU(V) =
1

F

F
∑

f=1

Qf (vf ),

vf ∈ V for features f that meet inclusion criteria, (2)

where F is the number of computed features used to obtain the
overall score.

We next develop a method to identify an inclusion criterion
for which features would be best for determining QU . We
compute three probabilities of errors for each feature for each set
of data as follows:

P(error|C, f ) = P
(

df (xi|2C) < df (xi|2N ) | xi ∈ C
)

(3)

P(error|R, f ) =P
(

df (xi|2C) < df (xi|2N ) | xi ∈ R
)

=1− P
(

df (xi|2N ) ≤ df (xi|2C) | xi ∈ R
)

(4)

P(error|N , f ) = P
(

df (xi|2N ) < df (xi|2C) | xi ∈ N
)

(5)

Ideally, the clean and noise distributions should be completely
separable, with a probability of error of zero, while the
distribution of raw data should be a combination of values
from the clean and noise distribution and thus should have a
probability of error of 0.5 between both the clean and noise
distributions. Thus, we can evaluate the utility of each feature by
computing the error of each estimated distribution from the ideal
error, referred to as total error. We define the total error for each
feature as

Etotal, f = P(error|C, f )+
∣

∣0.5− P(error|R, f )
∣

∣ + P(error|N , f )

(6)

where 0 ≤ Etotal,f ≤ 2.5.
Lower Etotal,f represent features best suited for scoring signal

quality and only features with low enough Etotal,f should be used.
Finally, we formulate a metric to determine the inclusion criteria
of how low Etotal,f of all features should be, Etotal threshold. We
define a measure of the error from the ideal solution,

δ =
∣

∣0.75− QU(C)
∣

∣ +
∣

∣0.50− QU(R)
∣

∣ +
∣

∣0.25− QU(N )
∣

∣ (7)

where QU is the mean QU(V) across all data of each type, VC ∈

C, VR ∈ R, and VN ∈ N , features from clean data, raw data,
and noise data, respectively.

To interpret QU from this method effectively we wish to have
the mean of QU(VC), QU(C), be 0.75 and have range between 0.5
and 1, the mean of QU(VR), QU(R), to be 0.50 and have range
between 0.25 and 0.75, and the mean of QU(VN ), QU(N ), to
be 0.25 and have range between 0 and 0.50. These constraints
and parameters make it such that ideally there will be no overlap
between C andN whileR will overlap approximately half with C

and half withN .

Therefore, to obtain an optimal Etotal threshold, we calculate
δ with increasing values of Etotal thresholds to observe when δ

begins to increase. From this analysis, we only use features with
Etotal,f lower than the determined threshold value as an inclusion
criteria for Equation (2).

2.1.2. Data With Unimodal Source
As the unimodal approach is data-driven, we present here data
used to generate scoring parameters and subsequently validate
this method. We focus on noise from eye-movement, EOG, since
for high density EEGs they are generally captured directly by
electrodes placed near the eyes.

The data set used in this study was obtained from the
University of Houston and contained EEG and EOG recordings
(sampled at 100 Hz) as well as motion capture from eleven
subjects walking on a treadmill for 6 min (Kilicarslan and Vidal,
2019). Of these eleven subjects, eight were used for this unimodal
approach because of the availability and consistency of data. EEG
were recorded with a 58 electrode array following labels from
the extended 10-20 system while EOG were recorded with four
electrodes placed above and below each eye.

A robust noise removal method developed by the University
of Houston research group directly used available noise sources
to remove them from the recorded EEG (Kilicarslan et al., 2016).
This noise removal algorithm targeting EOG noise used an
H∞ filtering formulation since it guarantees robustness where
small modeling errors and external noise do not cause large
estimation errors (Hassibi and Kailath, 1995). This algorithm and
subsequent study used four EOG channels directly recorded as
reference disturbance input. The strength and effectiveness of
this algorithm are shown to out-perform other common ocular
artifact removal techniques (Kilicarslan and Vidal, 2019). For
more detailed derivation of the H∞ filtering formulation and
algorithm targeting EOG noise used in this study, the following
reference can be reviewed (Kilicarslan et al., 2016).

The H∞ EOG cleaning algorithm was applied to the 6 min
of recording for the eight subjects. We then separated data from
EEG channels and EOG channels. This gave us 58 channels with
6 min of recording of both clean EEG data and raw EEG, as well
as four channels with 6 min of EOG data. For EEG, we used 30
features on segmented data of 1-min epochs since these features
have been shown to be stable with these higher epoch lengths in
previous quantitative EEG studies (Nahmias et al., 2019). This
yielded CEye and REye with n = 2, 784 (58 channels × 6 min ×

8 subjects = 2,784), and NEye with n = 192 (4 channels × 6 min
× 8 subjects = 192), where each sample was of size 30 × 1 (30
features), for our method scoring data with unimodal source.

2.1.3. Model Generation for Data With Unimodal

Source: EEG With Ocular Artifacts
To obtain scoring models for this data we separated 90% of
the data randomly to generate the models and reserved 10%
of the data to test and validate the results. We present 10-fold
cross-validated values from ten generated models from different
samplings of 90% of the data, denoted with the subscript “model,”
that resulted in CEye,model and REye,model, both with n = 2506,
and NEye,model, with n = 173. We report the mean results
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FIGURE 2 | (A) QU means (lines) and standard deviations (shaded area) using features with increasing Etotal thresholds. Green represents QU (CEye,model ), yellow

QU (REye,model ), and red QU (NEye,model ). (B) δ values using QU obtained from increasing Etotal thresholds. (A,B) Blue dashed-line marks a threshold of Etotal = 0.35,

where δ begins to increase more rapidly.

as well as the mean standard deviation across samples for the
10-fold cross-validation.

As mentioned, we computed 30 features for both EEG and
EOG data. For spectral features, the Fourier transforms were
taken on the pre-processed recording after which various spectral
features were computed. The power spectral density (PSD) of
frequency bands commonly analyzed in the EEG were estimated
using the periodogram. The ranges of the frequency bands
applied in this study were as follows: δ(delta) : 1 − 4 Hz,
θ(theta) : 4 − 8 Hz, α(alpha) : 8 − 12 Hz, µ(mu) : 12 − 16 Hz,
β(beta) : 16 − 25 Hz, γ (gamma) : 25 − 40 Hz (Schomer and
Lopes da Silva, 2010). Both absolute powers and relative powers
were computed, with relative power equal to the power in a
frequency band divided by the total power. The entropy of the
periodogram, and entropy of the normalized periodogram, were
found using the Shanon entropy definition (Blanco et al., 2014).
In addition to the spectral features, the following time domain
features, directly from the pre-processed EEG signal, were
computed: entropy of the normalized signal, mean thresholded
Lempel-Ziv complexity (LZC), minimum value, maximum value,
median, mean, variance, standard deviation, skew, kurtosis,
curve length, energy, non-linear energy, sixth power, sum,
mobility, complexity.

To identify the appropriate Etotal threshold for the set of Qf

that will be used to calculate QU (Equation 2), we analyze the
relationship between the Etotal threshold (Equation 6) and QU

along with their associated δ (Equation 7) in Figure 2.

We see from Figure 2A that using scores from features with
lower Etotal,f yielded better performing mean scores across data,

QU . Scores ofNEye,model were lower and closer to 0.25,REye,model

were closer to 0.50, and CEye,model were higher and closer to 0.75.
Further, from Figure 2B, the lower the Etotal threshold applied,
the lower the corresponding δ value. The best performing and
most informative QU values were obtained with an inclusion
criteria of either a threshold of Etotal ≤ 0.20 or Etotal ≤ 0.35.
Table 1 shows our probabilities of errors (Equations 3–5) and
Etotal,f (Equation 6) for each of the 30 features, where features
with Etotal,f ≤ 0.35 are shaded and in bold. Further, to show
how these features were distributed and data types appropriately
mixed and separated, we show in Figure 3, the estimated
distributions of CEye,model, REye,model, and NEye,model for features
with Etotal,f ≤ 0.35.

We see from Table 1 that the three features with the
lowest Etotal,f were relative µ power, relative β power, and
mobility, followed by relative α power, relative γ power,
entropy, and LZC. Visually, we see that features with Etotal,f ≤

0.35 show the following similar traits (Figure 3): (1) the
clean data and noise data distributions had little overlap,
(2) the mean value of the raw data distributions were
close to the critical value (Equation 1), and (3) all data
distributions were generally smooth and had a single mode. We
verify numerically in Table 2 the appropriate Etotal inclusion
criteria threshold by using sets of features with increasing
Etotal thresholds.
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TABLE 1 | Probabilities of error (P(error)) and total error for estimated densities of

each feature (Etotal,f ) from CEye,model , REye,model , and NEye,model used in unimodal

method.

qEEG features P(error|C, f) P(error|R, f) P(error|N , f) Etotal,f

S
p
e
c
tr
a
l

Relative δ Power 0.12 0.18 0.73 1.17

Relative θ Power 0.14 0.50 0.33 0.47

Relative α Power 0.11 0.55 0.09 0.25

Relative µ Power 0.04 0.54 0.02 0.10

Relative β Power 0.06 0.54 0.02 0.11

Relative γ Power 0.15 0.60 0.05 0.31

Absolute δ Power 0.02 0.17 0.36 0.71

Absolute θ Power 0.06 0.13 0.43 0.86

Absolute α Power 0.23 0.23 0.64 1.14

Absolute µ Power 0.23 0.25 0.72 1.20

Absolute β Power 0.62 0.68 0.24 1.04

Absolute γ Power 0.84 0.87 0.10 1.31

Spectral Entropy 0.17 0.63 0.06 0.36

I.T
. Entropy 0.14 0.51 0.13 0.28

LZC 0.10 0.59 0.06 0.25

S
ta
tis
tic
a
l

Minimum 0.07 0.37 0.32 0.52

Maximum 0.10 0.47 0.31 0.44

Median 0.00 0.86 0.12 0.48

Mean 0.00 0.87 0.09 0.46

Variance 0.07 0.26 0.26 0.57

SD 0.11 0.41 0.17 0.37

Skew 0.15 0.42 0.39 0.63

Kurtosis 0.11 0.21 0.51 0.91

S
ig
n
a
lS

h
a
p
e

Curve Length 0.29 0.27 0.61 1.13

Energy 0.00 0.31 0.47 0.66

Non-linear Energy 0.19 0.18 0.65 1.15

Sixth Power 0.00 0.27 0.59 0.83

Sum 0.00 0.87 0.09 0.46

Mobility 0.07 0.56 0.04 0.17

Complexity 0.27 0.47 0.40 0.70

Features with Etotal,f ≤ 0.35 in bold. I.T., Information theoretic; LZC, Lempel-Ziv

complexity; SD, Standard deviation.

We find that increasing the Etotal threshold from 0.20 to 0.35
and including features with 0.20 < Etotal,f ≤ 0.35 did not have
much of an impact in performance since δ only increased by
0.03. However, further including features with 0.35 < Etotal,f ≤

0.50 did seem to affect score more negatively since δ further
increased by 0.12. Thus, to include more features and capture
more characteristics of the signals we set the inclusion criteria of
features’ Qf to use when computing QU (Equation 2) to features
with Etotal,f ≤ 0.35. We can visualize estimated distributions
of QU and see in Figure 4 that distributions of CEye,model and
NEye,model scores were well-separated with wider distributions
and intersected at QU = 0.53, while the estimated distribution of
QU of NEye,model had a more narrow distribution with relatively
symmetric decreasing tails centered at 0.47.

2.2. Scoring Data With Multimodal Sources
In cases when the noise source cannot be captured directly from
the same recording modality and require multiple recording

modalities (referred to as “multimodal method”), it may not
be possible to directly compare distributions of quantitative
features of both the signal of interest and noise. For example, in
our application scoring EEG with motion artifacts, the value of
entropy of an EEG channel may not be directly comparable to the
entropy of acceleration in the X-axis from an IMU. Therefore, we
must compare clean signals and raw signals with noise present to
formulate models to identify differences.

2.2.1. Scoring Method for Data With Multimodal

Sources
This problem can be formulated as a two-class classification
machine learning problem. In one class we have clean data
(C) and in the second class we have raw recorded data with
noise present (R). For classification these two data are assigned
numeric labels, {C : 1, R : 0}. The deep learning classifier can then
find the difference between the two data sets which here is the
presence of the noise. Once trained, new data can be classified
with a probabilistic prediction using Softmax functions in the
last layer. The closer the probability is to zero, the more similar
the signal is to the noise source, while probabilities closer to one
would represent predicted signals without noise.

The deep learning model would traditionally select the class
with the highest probabilities as the prediction. To score the
data from the deep learning models, we used the prediction
probabilities directly (Equation 8). Here, PC is the predicted
probability of input data being part of the clean data class and
PR is the predicted probability of input data being part of the
raw data class with noise present. Then the scoring function for
our multimodal method is defined as

QM =

{

1
2 +

PC−PR
2 , if PC ≥ PR

1
2 −

PR−PC
2 , if PC < PR

(8)

The motivation of this definition is such that if PC = 1, PR = 0
then QM = 1, if PC = 0, PR = 1 then QM = 0, and if
PC = 0.5, PR = 0.5 then QM = 0.5. Further, when differences
between the probabilities are larger, QM should be made higher
when PC >> PR and lower when PC << PR. This is desired
since larger differences between PC and PR would imply that the
predictions of the model are more confident and therefore scores
should be adjusted accordingly.

2.2.2. Data With Multimodal Sources
To generate trained models and subsequently validate the
multimodal approach, we focused on EEG with noise from
motion since motion cannot be recorded directly by electrodes,
as EEG and EOG are.

We again used the data set obtained from the University of
Houston that contained EEG recordings (sampled at 100 Hz)
as well as motion capture from eleven subjects walking on a
treadmill for 6 min (section 2.1.2) (Kilicarslan and Vidal, 2019).
EEG was recorded from the same electrodes and configuration
referred to above with data from all eleven subjects available.
Further, the experimental protocol had subjects walk on a
treadmill at one, two, three, and four miles-per-hour.
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FIGURE 3 | Estimated distributions clean, raw, and noise data for features with Etotal,f ≤ 0.35. Etotal,f for set of estimated distributions of each feature are also shown.

Another noise removal algorithm was used to remove
motion artifacts (Kilicarslan and Vidal, 2019). This algorithm
also used an H∞ filter formulation with Voltera series and
time-varying weight assumption. Unlike EOG data which was
directly measured from the same modality, the reference signal
used to identify the motion artifacts in EEG signals were 3-
axis acceleration values, after gravity compensation, using the
quaternion of IMUs. For more detailed derivation of the H∞

filtering formulation and algorithm targeting noise from motion
used in this study, the following reference can be reviewed
(Kilicarslan and Vidal, 2019).

We further supplemented this data with EEG data from
another study. EEG was recorded from 20 subjects while walking
around an art exhibit (Kontson et al., 2015; Cruz-Garza et al.,
2017). These EEG were recorded with a 20 electrodes labeled
in accordance with the extended 10-20 system as well as two
electrodes for EOG, placed below the right eye and on the
right temple. Each trial began with a baseline wall stair of
approximately 1-min. Afterwards, subjects walked around an art
exhibit for at least 7 min.

To obtain a robust model that scored EEG quality based on
the presence of motion artifacts we combined data from both
these sources to obtain a CMotion that represented EEG data
from recordings where motion was removed through an artifact
removal algorithm and recordings where motion was known to
not be present. Similarly, we combined data from both sources
to obtain a RMotion that represented EEG data from recordings
where motion was present under different circumstances, in both
controlled environments with different walking speeds, and in

TABLE 2 | Mean scores QU ± standard deviation and δ values of unimodal

method across model generation cross-validation using features with incremental

Etotal thresholds.

Data
QU QU QU

(Etotal,f ≤ 0.20) (Etotal,f ≤ 0.35) (Etotal,f ≤ 0.50)

CEye,model 0.73± 0.14 0.72± 0.13 0.71± 0.08

REye,model 0.50± 0.15 0.49± 0.14 0.51± 0.13

NEye,model 0.26± 0.15 0.27± 0.15 0.38± 0.12

δ 0.03 0.06 0.18

Values with chosen threshold, Etotal,f ≤ 0.35, in bold.

an uncontrolled setting where subjects walked through an art
exhibit. Since data from our second source (Kontson et al.,
2015) only had 20 EEG channels available, we used the same
20 channels from our first data source (Kilicarslan and Vidal,
2019). Each recording from both sources were segmented into
30-s epochs for our multimodal method. Combining these we
obtained CMotion with n = 568 (12 30-s segments from 6-min
× 4 walking speeds× 11 subjects + 2 30-s segments from 1-min
of baseline × 20 subjects = 568), and RMotion with n = 808 (12
30-s segments from 6-min × 4 walking speeds × 11 subjects +
14 30-s segments from 7-min of walking × 20 subjects = 808),
where each sample was of size 3, 000×20 (30-s segments sampled
at 100 Hz across 20 channels), for our method scoring data with
multimodal source.
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FIGURE 4 | Estimated distributions of QU for CEye,model , REye,model , and NEye,model using features with Etotal,f ≤ 0.35. Distributions of QU of CEye,model and NEye,model

intersect at QU = 0.53. Distribution of QU of REye,model centered at 0.47.

2.2.3. Model Generation for Data With Multimodal

Sources: EEG With Motion Artifacts
To obtain scoring models for this data we separated 90% of
the data randomly to generate the models and reserved 10%
of the data to test and validate the results. We present 10-fold
cross-validated values from ten generated models from different
balanced samplings of 90% of the data, denoted with the subscript
“model,” that resulted in CMotion,model andRMotion,model, each with
n = 512.We report the mean results as well as the mean standard
deviation across samples for the 10-fold cross-validation. For
this application we used deep learning models used in previous
research that used multi-channel EEGs as input and output class
predictions (Schirrmeister et al., 2017).

We show in Table 3 predicted probabilities and associated
scores (Equation 8) using model training data from our deep
learning-based scoring for our multimodal scoring method.

We see that the recorded data was in fact scored well below
0.5 while data without walking artifacts were scored well above
0.5, instilling confidence in the trained deep learning models. We
visualize estimated distributions of QM and see in Figure 5 that
the distribution of CMotion,model scores was negatively skewed, the
distribution RMotion,model scores was positively skewed, and both
distributions intersected at QM = 0.62.

2.3. Evaluating Artifact Removal
Algorithms: Removing Ocular Artifacts
From EEG
Using scoring methods introduced in this study, we can evaluate
the efficacy of artifact removal algorithms that target a specific
type of noise. The most common type of noise that artifact
removal algorithms target in EEG recordings is from ocular

TABLE 3 | Mean predicted probabilities ± standard deviation and corresponding

mean scores, QM, of multimodal method across model generation

cross-validation.

Data Probability of CMotion Probability of RMotion QM

CMotion,model 0.79± 0.13 0.18± 0.12 0.81± 0.13

RMotion,model 0.28± 0.26 0.67± 0.26 0.30± 0.26

activity. Therefore, we use our unimodal method (section 2.1) to
evaluate these types of algorithms. A MATLAB software toolbox
that is commonly used in EEG processing is EEGLAB. We used
two artifact removal algorithms with different approaches that
aim to remove ocular artifacts. Though different, both methods
rely on independent component analysis (ICA) which is the most
common method used for removing ocular artifacts (Jiang et al.,
2019).

Using EEGLAB (version 14.1.1) and available plug-ins,
we applied the independent component artifact classification
multiple artifact rejection algorithm (MARA) to REye (Winkler
et al., 2011, 2014). This method uses trained classifiers to identify
components from ICA that are artifactual for rejection. The
FastICA method was used for obtaining ICA components and
components identified by MARA were automatically rejected
(Hyvarinen, 1999).

We also applied automatic artifact removal (AAR) (version
1.3) targeting EOG removal using blind source separation (BSS)
to REye (Jung et al., 2000a,b). AAR with BSS was applied with
all defaults, using the SOBI algorithm in MATLAB which has
been shown to be effective for BSS (Belouchrani et al., 1997;
Sahonero-Alvarez and Calderon, 2017). To automatically apply
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FIGURE 5 | Estimated distributions of QM for CMotion,model and RMotion,model . Distributions of QM of CMotion,model and RMotion,model intersect at QM = 0.62.

AAR with BSS to EOG, the method identifies ICA components
that represent EOG noise by removing components with the
lowest mean fractal dimension values (Gomez-Herrero et al.,
2006).

To evaluate and compare the effectiveness of these artifact
removal algorithms we obtained the average score of QU(REye)
and compared the average scores of the data after being processed
with MARA, QU(CEye−MARA), and ARR, QU(CEye−AAR).

3. RESULTS

We show mean results as well as the mean standard deviation
across samples for our unimodal and multimodal scoring
methods for the data sets specified. For both methods, we
report the 10-fold cross-validated values from 10 generated
models with the remaining 10% unseen data, denoted with the
subscript “valid.” For the unimodal method, we scored CEye,valid

and REye,valid, both with n = 278, and NEye,valid, with n =

19. For the multimodal method, we scored CMotion,valid and
RMotion,valid, each with n = 56. These validation results are
presented below in section 3.1 (unimodal method) and section
3.2 (multimodal method). We also validated both methods using
an independent public data set from a study analyzing the
differences in neural activity between motor imagery, mental
arithmetic, and other artifact generating tasks (Shin et al., 2017).
Each of the 29 subjects included in this study performed each
of the motor imagery and mental arithmetic tasks three times
and all other tasks once. These data were recorded using thirty
EEG electrodes according to the 10-5 system. Different subset
of the tasks were evaluated for each scoring method given data

availability. Details of the analysis and data are presented in Data
Availability Statement. Section 3.3 shows results using all data
and validation data.

3.1. Scoring Data With Unimodal Source:
EEG With Ocular Artifacts
For our unimodal method, in addition to the scoring models,
we also formulated a criterion to quantify features that were
effective for scoring EEG. Results show that the Etotal measure
and δ performance metric meaningfully represented a feature’s
ability to score EEG in a unimodal data source setting. We
determined that features should be used only if they have a Etotal,f
≤ 0.35. From analyses shown in Figure 2 and Table 2, we see
that features with Etotal, ≤ 0.35 performed better than those with
higher Etotal. Incorporating features with 0.35 < Etotal,f ≤ 0.50
along with features with lower Etotal,f decreased performance.

Applying the unimodal method to data not used for model
development we scored the data (Equation 2) and present cross-
validation results using features that met the inclusion criteria
determined for features, Etotal,f ≤ 0.35 (Table 4).

We see that the models developed performed well, obtaining
δ = 0.04 from ideal mean score characteristics. The QU and
δ found using the unseen validation data were similar to those
from data used generating these models. Further, estimated
distributions of QU of validation data followed closely those
shown in Figure 4 with distributions of QU of CEye,valid and
NEye,valid intersecting at 0.52.

Further, we validated our unimodal method on an
independent open source data (Shin et al., 2017). The data
was annotated such that EEG data was available under five
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TABLE 4 | Mean scores QU ± standard deviation and δ values of unimodal

method results across cross-validation using features Etotal,f ≤ 0.35.

Data
QU

(Etotal,f ≤ 0.35)

CEye,valid 0.73± 0.11

REye,valid 0.50± 0.14

NEye,valid 0.23± 0.14

δ 0.04

TABLE 5 | Comparison of mean scores QU ± standard deviation of unimodal

method across cross-validation for all data from independent validation data.

Task QU

Blinking 0.23± 0.16

Eye movements 0.34± 0.12

Head movements 0.39± 0.13

Motor imagery 0.40± 0.14

Mental arithmetic 0.40± 0.14

Gazing 0.52± 0.17

different conditions: (1) subjects instructed to blink at one
second intervals for 20 s (Blinking), (2) subjects instructed to
look at a moving dot that moved around at four locations on
the screen at 2 s intervals, repeated 5 times (Eye movements),
(3) subjects instructed to move their heads in four directions at
2 s intervals, repeated 5 times (Head movements), (4) subjects
performing motor imagery tasks (Motor imagery), (5) subjects
performing mental arithmetic tasks (Mental arithmetic), and (6)
subjects instructed to gaze at cross-hairs before trials during tasks
(Gazing). These five conditions presented tasks with different
levels of expected noise which could be used to evaluate the
effectiveness of our unimodal model on a second, completely
independent dataset. We scored all data available of each type
which are shown in Table 5.

We see that as expected, the blinking and eye movement data
fall in the 0 to 0.5 range of our metric, as our NEye data, since
they generally represents noise. The remaining data fall near the
middle of the 0.25 to 0.75 range of our metric, as our REye,valid,
since they have both EEG and noise from ocular artifacts present.
We also see that the moments when subjects were instructed to
gaze, for the purposes of reducing eye movements, our unimodal
method produced higher scores.

3.2. Scoring Data With Multimodal
Sources: EEG With Motion Artifacts
We next show results of our multimodal data scoring method.
We show the cross-validated predicted probabilities for each data
type as well as the quality score (Equation 8) using our deep
learning-based scoring method on unseen data (Table 6).

We see that the predicted probabilities and QM from unseen
data were similar to those from the model generation data.
The model was able to score recorded data with noise well

TABLE 6 | Mean predicted probabilities ± standard deviation and corresponding

mean scores, QM, of multimodal method results across cross-validation.

Data Probability of CMotion Probability of RMotion QM

CMotion,valid 0.77± 0.13 0.19± 0.12 0.79± 0.13

RMotion,valid 0.28± 0.27 0.67± 0.28 0.31± 0.28

TABLE 7 | Comparison of mean scores QM ± standard deviation of multimodal

method across cross-validation for task data from independent validation data.

Task QM

Motor imagery 0.93± 0.14

Mental arithmetic 0.94± 0.12

below 0.5 while also scoring clean data well above 0.5. Estimated
distributions of QM of unseen validation data followed closely
those shown in Figure 5 with distributions of QM of CMotion,valid

and RMotion,valid intersecting at 0.57. We note that mean cross-
validated standard deviations of QM(RMotion) data were twice as
large as QM(CMotion) data, which we discuss in section 4.

Further, we also validated our multimodal method on an
independent open source data (Shin et al., 2017). Though the
data was annotated such that EEG data was available under five
different conditions, here we score only the two task conditions:
(1) subjects performing motor imagery tasks (Motor imagery),
and (2) subjects performing mental arithmetic tasks (Mental
arithmetic). This was done since 30 continuous seconds of
data was not available under the other conditions. These two
conditions present two tasks with similar levels of expected noise
from motion to evaluate the effectiveness of our multimodal
model on a second, completely independent dataset. We scored
all data available of each type which are shown in Table 7.

We see that as expected, the data from tasks done in this
experiment, which were conducted while seated, obtained high
scores from our metric, close to 1, similar to our CMotion data,
since they generally did not have noise from motion.

3.3. Evaluating Algorithms Removing
Ocular Artifacts From EEG
As an extension and further application of our unimodal scoring
method we score REye data with artifacts removed by two
different methods, MARA and AAR (section 2.3). To compare
their effectiveness we score all REye data (section 2.1.2), with
n = 2, 784, and validation REye,valid data (section 3.1), with
n = 278 (Table 8).

We see that for both sets of data, QU(CEye−MARA) >

QU(CEye−AAR). That is, data processed with MARA, CEye−MARA,
was scored higher than data processed with AAR, CEye−AAR. This
means that MARA may have been more effective than AAR at
removing ocular artifacts from EEG. Further, as hypothesized,
data processed by both artifact removal algorithms resulted in
data with mean scores higher than QU(REye).
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TABLE 8 | Comparison of mean scores QU ± standard deviation of unimodal

method across cross-validation of all data and validation data processed by

MARA and AAR methods.

Data QU

CEye−MARA 0.72± 0.12

CEye−AAR 0.60± 0.11

REye 0.50± 0.14

CEye,valid−MARA 0.72± 0.10

CEye,valid−AAR 0.61± 0.10

REye,valid 0.50± 0.14

4. DISCUSSION

We present in this work two novel methods to score
electrophysiological data signal quality. In the first method,
we quantify signal quality when the noise source (e.g., ocular
artifacts) could be recorded from the same modality (i.e.,
electrodes on the head) as the signal of interest. In such cases,
the same quantitative features can generally be computed on
both the signal of interest (EEG) and noise source (EOG), and
compared directly to each other. For other sources of artifacts
such as motion, supplemental physiological measurement tools
would be needed to measure artifact signals directly. In these
cases, it is not usually possible to compare quantitative features
computed on both the signal of interest and noise source
directly. Therefore, in the second method, the noise source signal
is not needed; rather only data with and without the noise
are required.

With both methods, we generate models to score signal
quality of EEG with either ocular or motion artifacts. Though
high density EEG headsets with electrodes to measure EOG are
commonly used in research settings, low density headsets are
becoming more common and have been shown to be effective
for many applications (Justesen et al., 2019). Even when high
density EEG headsets are used, other artifact sources, likemotion,
are not generally directly captured. These data-driven models,
once generated, can be used to evaluate the quality of EEG and
potential presence of noise from artifacts of other data without
the need to directly record noise sources.

In general, our unimodal method was able to generalize
to data not used in generating the scoring models. Results
in Table 4 and score distributions matched values found from
generating these models in Table 2 and shown in Figure 4.
For our multimodal method, we were able to score data
from two different data sets well. Combined data that had
artifacts removed and baseline data when subjects were known
to be still were both scored as generally clean data. Both
in the model generation and validation of this method, we
found that the cross-validated standard deviations of recorded
data scores, QM(RMotion), were twice as large as standard
deviations of clean data scores, QM(CMotion) (Tables 3, 6). We
also saw a dual-mode distribution of QM(RMotion) scores, with
peaks around 0.05 and 0.65 (Figure 5). The large standard

deviation and dual-mode distribution may be due to variation
in the speed and direction of subject walking within data
sources used. Some subjects walked at various speeds (1–
4 mph) while others walked through an art exhibit at their
own pace, even potentially with stops and turns to view art
pieces (Kontson et al., 2015; Kilicarslan and Vidal, 2019).
Future work could separate out these data of different walking
types to further validate the accuracy and effectiveness of the
scoring model.

We also validated our unimodal and multimodal methods on
an independent data set comprised of recordings from subjects
that were instructed to perform several tasks, including tasks
intended to generate ocular artifacts (Shin et al., 2017). Results
from scoring these independent data showed that our methods
appropriately scored each type of data for quality considering
either noise from ocular (Table 5) or motion (Table 7) artifacts.
Our scores showed that when instructed to perform tasks to
generate ocular artifacts, unimodal scores were lower and when
performing tasks of interest there was noise from ocular artifacts
present, which was acknowledged and removed in the original
study’s analysis (Shin et al., 2017). Our multimodal method’s
effectiveness was also further supported since subjects were
seated during the study and would have been expected that the
data have little to no noise from motion.

Examining the application of our unimodal method to
evaluate the effectiveness of artifact removal algorithms, we
see that MARA was more effective than AAR in removing
artifacts, obtaining higher scores for the processed recorded
data. Strictly speaking, this means that MARA removed ocular
artifacts more similarly to the H∞ method used to develop our
models than AAR did. Further, we see that these results were
consistent both across all data, including those used to generate
our models, and the independent validation data (Table 8). These
results present a significant advancement to evaluating artifact
removal algorithms by providing quantitative measures on real
EEG recordings as opposed to qualitative evaluations or using
synthetic data (Islam et al., 2016).

Both methods were applied to EEG to score different
recordings with different noise artifacts. However, future
work may apply multiple models to the same recordings
to obtain several quality scores that may be combined to
assess an overall data quality score. We also note that though
the unimodal method can only be applied when the noise
source is available from the same modality, the multimodal
method can be applied to data with unimodal source. Our
multimodal approach, which is deep learning-based, requires
a large amount of data to generate accurate models. If
more data were available, we may attempt to apply our
multimodal method to score data from a unimodal source,
in this case using only CEye and REye to score these data
with QM .

Comparing these approaches, we see that our multimodal
method required only an appropriate deep learning model
designed to classify the input signal. These deep learning models
identify signal features important to distinguish the two input
classes, clean signals and signals with noise, automatically. Our
unimodal method on the other hand, required more manual
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selection of both the features of the signal to compute and feature
importance for scoring signal quality. However, as opposed to
our multimodal method, our unimodal method allows for the
identification of specific quantitative features of the signal of
interest that were important for scoring signal quality with
respect to the targeted noise.

Both our unimodal and multimodal methods present
advancements and improvements from existing methods by
evaluating EEG signal quality with continuous scores. Previous
methods have generally evaluated signal quality by classifying
EEG into discrete quality categories (Daly et al., 2012; Hu
et al., 2013; Grosselin et al., 2019). Our scoring models allow
for rapid evaluation of signal quality of EEG data. Future
work may expand the type of data used to generate these
models, such as including signals known to have no ocular
artifacts present. To further validate scores generated by these
models, data could be obtained or generated with known levels
of noise. Signals with more noise introduced should result
in lower scores. Our analyses presented signals of each type
in aggregate, averaging across samples, future analyses may
investigate recordings more specifically to identify the level of
noise in signals.
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