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Abstract: Biocompatible and biodegradable materials have been used for fabricating polymeric
microneedles to deliver therapeutic drug molecules through the skin. Microneedles have advantages
over other drug delivery methods, such as low manufacturing cost, controlled drug release, and the
reduction or absence of pain. The study examined the delivery of amphotericin B, an antifungal
agent, using microneedles that were fabricated using a micromolding technique. The microneedle
matrix was made from GantrezTM AN-119 BF, a benzene-free methyl vinyl ether/maleic anhydride
copolymer. The GantrezTM AN-119 BF was mixed with water; after water evaporation, the polymer
exhibited sufficient strength for microneedle fabrication. Molds cured at room temperature remained
sharp and straight. SEM images showed straight and sharp needle tips; a confocal microscope was
used to determine the height and tip diameter for the microneedles. Nanoindentation was used to
obtain the hardness and Young’s modulus values of the polymer. Load–displacement testing was
used to assess the failure force of the needles under compressive loading. These two mechanical
tests confirmed the mechanical properties of the needles. In vitro studies validated the presence
of amphotericin B in the needles and the antifungal properties of the needles. Amphotericin B
GantrezTM microneedles fabricated in this study showed appropriate characteristics for clinical
translation in terms of mechanical properties, sharpness, and antifungal properties.

Keywords: microneedles; amphotericin B; transdermal drug delivery; fungus

1. Introduction

The drug delivery administration route is an important topic for optimizing drug
efficacy. Each administration route is associated with various benefits and shortcomings;
the most suitable route must be selected for each drug type. The oral route is convenient
and pain-free [1]; due to first-pass metabolism and poor absorption, the desired serum level
may not be obtained [2]. Injections are painful, require trained staff, and produce sharp
biohazard waste [3]. Novel delivery methods may improve efficacy and adherence to drug
therapies [4]. Local delivery approaches have been used to deliver therapeutic agents and
vaccines to the skin, which is the largest organ [5].

The stratum corneum is the outermost layer of human skin; it exhibits a thickness of
10–15 µm [6] and serves as a barrier to the transepidermal delivery of many types of drugs.
Microneedles can be painless if they do not interact with the unmyelinated nerve endings
that detect pain or the mechanoreceptors that detect pressure in the dermis [7,8].

Microneedles made from biodegradable polymers are nearly painless and require no
trained staff for local release of therapeutic agents; these devices leave no sharp medical
waste after use [1,9–11].

Various biocompatible polymers, such as polylactic acid (PLA) [12], polyvinylpyrroli-
done (PVP) [13], poly(lactic-co-glycolic acid) (PLGA) [14], poly(glycolic acid) (PGA) [15],

Pharmaceutics 2022, 14, 1551. https://doi.org/10.3390/pharmaceutics14081551 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14081551
https://doi.org/10.3390/pharmaceutics14081551
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-4876-9869
https://doi.org/10.3390/pharmaceutics14081551
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14081551?type=check_update&version=1


Pharmaceutics 2022, 14, 1551 2 of 15

and carboxymethyl cellulose (CMC) [16], have been used for making microneedles.
GantrezTM AN-119 BF is a synthetic biodegradable copolymer that contains methyl vinyl
ether and maleic anhydride units [17]. When GantrezTM AN-119 BF is dissolved in wa-
ter, the anhydride side chain hydrolyzes and produces free diacid solutions [18,19]. The
mechanical strength of the polymer can be increased through the incorporation of cross-
linking agents [20]. Microneedles must possess appropriate mechanical properties in order
to pierce the outermost layer of the skin, the stratum corneum. After penetrating the stra-
tum corneum, the biocompatible polymer is dissolved, and the drug is released. Various
medical conditions, including influenza, acne, and diabetes, are able to be treated using
microneedle therapies [21]. Polymers used in microneedles must exhibit certain manufac-
turing characteristics. The monomer must flow into the tiny bores of the molds; moreover,
attachment of the polymer to the walls needs to be prevented by anti-stick materials or
alterations to the mold. The reaction the monomer or polymer might have with the drug
must also be considered.

In this study, the microneedle master structure was created by two-photon polymer-
ization (2PP); the master structure was used for making molds from polydimethylsiloxane
(PDMS). Molding was performed at different temperature situations to obtain straight
microneedles. Amphotericin B was added to the dissolved GantrezTM in water; this solu-
tion was stirred for water evaporation and subjected to micromolding. The replicas of the
master structure were made from GantrezTM AN-119 BF/amphotericin B with two different
weight ratios; mechanical testing was used to select the optimum ratio. Nanoindentation
and compression testing were used to assess the mechanical properties of the microneedles.
Confocal microscopy was used for imaging of the needles. Raman spectroscopy, X-ray
photoelectron spectroscopy (XPS), high-performance liquid chromatography (HPLC), and
FTIR were used to assess the chemical properties of the microneedles. Finally, an in vitro
study was used to examine the antifungal properties of the microneedles.

2. Materials and Methods
2.1. Master Structure Fabrication

The master structure from a previous study [22] was used to fabricated microneedles in
this study. In brief, 1 cm diameter hexagonal array master structures were fabricated using
the two-photon polymerization (2PP) approach. The base diameter of conical microneedles
was 250 µm; the microneedles exhibited nominal heights of 500, 750, or 1000 µm. The
nominal spacing of the needles was 295.45, 361.11, or 423.91 µm for the microneedles
with nominal heights of 500, 750, or 1000 µm, respectively. A Mai-Tai titanium:sapphire
femtosecond laser (Newport Corporation, Irvine, CA, USA) was used to generate laser
pulses (780 nm wavelength, <80 fs pulse duration, 80 MHz repetition rate, M2 < 1.1). The
laser beam passed through (a) a half-waveplate/polarizing beamsplitter pair for manual
power control, (b) an acousto-optical modulator (Gooch & Housego, Ilminster, UK) for
computer power control, (c) a pinhole spatial filter for removing high-order spatial modes
and to expand the beam to 1 cm diameter, (d) a galvanoscanner for fine laser positioning,
and (e) a 20×, 0.5 NA microscope objective. A laser speed of 50 mm/s, hatching of 1.5 µm,
and layer height of 3 µm were used to process the master structures [22].

2.2. Microneedle Fabrication

Microneedles were fabricated using a micromolding technique. Two types of PDMS
molds were fabricated in this study. In the first type, PDMS (Sylgard 184, Dow Corning,
Midland, MI, USA) was placed in a 60 ◦C furnace for five hours for polymerization; in
the second type, PDMS (Sylgard 184, Dow Corning, Midland, MI, USA) was kept at room
temperature for two days. After the molds were fabricated, GantrezTM (GantrezTM AN-119
BF, Ashland Global Holdings Inc., Wilmington, DE, USA) was dissolved in deionized water
(80% w/w), agitated for two days, degassed under vacuum, and sonicated to facilitate entry
of material into the bores of the mold. Amphotericin B powder was added to the matrix
for the last 12 h. Simultaneous vacuuming and sonication were helpful for reducing the



Pharmaceutics 2022, 14, 1551 3 of 15

vacuum pressure and producing sharper needles. When using the mold with material at
room temperature, water was evaporated, and the matrix was polymerized. Microneedles
with two drug ratios (4% and 8%) were fabricated in this study. Since amphotericin B is
insoluble in water, it is in the form of a suspension solution with GantrezTM powder.

2.3. Variable Pressure Scanning Electron Microscopy

An S-3200 variable pressure scanning electron microscope (Hitachi, Tokyo, Japan) was
used to obtain images from the microneedles. Microneedles were sputter-coated with a
60% gold-40% palladium layer using a Technics Hummer II system (Anatech, Battle Creek,
MI, USA) for two minutes [21].

2.4. Mechanical tests
2.4.1. Nanoindentation

Nanoindentation was used to obtain hardness and Young’s modulus values from the
microneedle material. A Ubi-1 Nanoindenter (Hysitron, Minneapolis, MN, USA) was used
for this study; a Berkovich-type tip was used for analysis of the materials. The maximum
force was 1000 µN; for each test, a loading time of 20 s, a dwell time of 10 s at maximum
load, and an unloading time of 20 s were used. Through Oliver–Pharr analysis of the
unloading curves, the hardness and Young’s modulus values were calculated [23].

2.4.2. Compressive Loading of Microneedles

An ElectroForce® 3100 instrument (Bose Corporation, Framingham, MA, USA) was
used to assess the fracture properties of the microneedles when loaded under compression.
Microneedles were placed on the bottom platen of the instrument using double sided tape.
The top platen was actuated in three different steps. The first step was loading at 0.005 N/s
to −0.015 N. This step was used to ensure that the microneedles were in contact with the
probe. The second step involved a dwell time of 10 s. The last step involved displacement
at 0.0025 mm/second to−1.5 mm. The negative value for displacement and load were used
to indicate the compressive nature of the loading process [24]. These tests were repeated
for 5 microneedles of each type.

2.5. 3D Laser Scanning Confocal Microscopy

A VK-X250 3D laser scanning confocal microscope (Keyence, Tokyo, Japan) was used
for imaging of the microneedle dimensions and surface topography. In this study, the laser
was rastered in the XY pattern; the steps in the Z-direction were 0.5 nm. This microscope
was equipped with laser confocal optics to measure the field depth. Keyence imaging was
used to assess the sharpness, height, and base diameter of the microneedles.

2.6. XPS

X-ray photoelectron spectroscopy is a surface-sensitive technique that was used to
assess the chemical composition and the presence of impurities of the microneedle sur-
faces [24–26]. In this study, XPS was used to assess the chemical composition of the
microneedle surfaces that were in contact with PDMS during the micromolding fabrication
procedure.

2.7. Fourier Transform Infrared Spectroscopy

The Fourier transform infrared spectra were obtained using a Nexus 470 system; this
system contains a continuum microscope, an OMNI sampler, and OMNICTM analysis
software (Thermo Fisher, Waltham, MA, USA). The FTIR spectra of the microneedles were
recorded from 400 to 4000 cm−1 with 1 cm−1 resolution [25].

2.8. Raman Spectroscopy

Raman spectroscopy is a common technique for chemical analysis [26,27]. Raman
spectroscopy is used for determining the chemical properties of the microneedle tips and
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base sides (Renishaw, Gloucestershire, UK). A He-Ne laser with 633 nm wavelength was
used to obtain the Raman spectra. The wavelengths used for the measurements were
between 900 cm−1 and 1800 cm−1.

2.9. High Performance Liquid Chromatography

A Shimadzu HPLC (Kyoto, Japan) was used for determining the drug dosage in
each MN; a Luna 5 µm 150 × 4.6 mm C18 column was used in this study. The mobile
phase for the chromatographic separation of amphotericin B was N,N,N′,N′-tetramethyl
ethylenediamine:acetonitrile (65:35 v/v); a 1.1 mL/min isocratic flow rate was used in
this study. An injection volume of 50 µL was used in the study. The retention time for
amphotericin B was 4.497 min; detection was performed using an ultraviolet light detector
with 406 nm wavelength. Needles were broken by hand, and dissolved in methanol/DMSO
(1:1 w/w), and sent for analysis by an external provider (Fungus Testing Laboratory, UT
Health San Antonio, San Antonio, TX, USA). Five samples were prepared for HPLC testing;
they were stored in a freezer before shipping.

2.10. Franz Diffusion Test

A Franz diffusion cell with a 12 mL receptor was used in this study. The pork skin
was cut into the appropriate shape for the cell and equilibrated for 30 min in phosphate-
buffered saline (PBS) (pH = 7.4). The receptor of Franz diffusion cell was filled with PBS
(pH = 7.4); this value is aligned with human extracellular fluid pH value [28]. Pig skin
was then placed in the cell. Next, 8% amphotericin B GantrezTM microneedles were made
by hand to pierce the pig skin; they were left at room temperature for 6 h. All of the pig
skin and the receptor PBS were homogenized with a homogenizer (IKA, T18, 115VAC) at
15,000 rpm for 30 min and filtered with the 0.45 µm pore membrane. The amphotericin B
concentration is determined by HPLC; this process was repeated five times. This test was
performed to understand the amount of drug delivered to the skin.

2.11. Antifungal Testing

An agar-based disk diffusion assay was used to assess the growth-inhibiting properties
of amphotericin-B-loaded GantrezTM biodegradable copolymer microneedles toward the
opportunistic fungal pathogen Candida albicans (ATCC 90028; American Type Culture
Collection, Manassas, VA, USA) [27]. The reagents used for the fungal culturing process
included yeast nitrogen base, dextrose, Sabouraud dextrose agar, and phosphate-buffered
saline (10×) (VWR International, West Chester, PA, USA). Overnight broth cultures of
C. albicans in yeast nitrogen base (YNB) and 100 mmol/L dextrose were made. Cell pellets
were created via centrifugation (4500 rpm) for 10 min. The pellets were then resuspended
to generate a cell density of approximately 108 cells/mL in phosphate-buffered saline
(PBS) (1×). PBS (10×) was diluted using deionized water to formulate PBS (1×). Sterile
swabs were utilized to inoculate Sabouraud dextrose agar plates with C. albicans lawns.
Microneedle samples were inverted and then placed directly onto the inoculated agar plate
surface and incubated for 24 h at 37 ◦C. After 24 h, digital images of the agar plates were
obtained and examined for regions of inhibited fungal growth (e.g., zone of inhibition (ZOI)
measurements). For these modified agar tests, a 20–30 mm void area was removed from
the Sabouraud dextrose agar; microneedles were seated or dispensed (for fully solvated
samples) into the void area to prevent them from migrating across the agar surface during
the 24 h incubation period.

Antifungal solution assessments were performed by solvating microneedles in 3.0 mL
of PBS (1×) (pH = 7.4) for 24 h and subsequently preparing a 1:2 dilution series of the fully
solvated solutions (100%) down to 1/64 of the original concentration. 1.0 mL of each dilu-
tion was then mixed with 1.0 mL of a 1:1000 suspension of C. albicans in YNB + 100 mmol/L
dextrose to obtain a final effective microneedle concentration range of 100% to 0.78%.
0.15 mL of C. albicans inoculated dilutions were transferred in triplicate to a 96-well plate
and allowed to incubate at a temperature of 37 ◦C at 150 rpm of shaking for 24 h. Ab-
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sorbance measurements (at a wavelength of 600 nm) were subsequently collected to quan-
tify solution growth and plotted as a function of microneedle solution concentration.

3. Results and Discussion

Microneedles may transform the delivery of many types of drugs [29,30]. Several
criteria must be met for the delivery of a drug via microneedles, including appropriate
mechanical properties. An appropriate matrix surface tension and viscosity are necessary
for filling the molds completely. Higher viscosity and surface tension values lead to
incomplete microneedles. Many solutions for preparing microneedles via molding have
been described; for example, McGrath used a spray approach for producing microneedles
and formed sharp microneedles with complete fidelity to the mold [31].

In this study, amphotericin-B-loaded GantrezTM AN-119 BF microneedles were fab-
ricated using the micromolding technique. The master structure was fabricated by 2PP
printing. The array shape is hexagonal, and needles are conical. Two different ratios
amphotericin B–GantrezTM AN-119 BF ratios were assessed. In vitro studies demonstrated
the antifungal properties of the fabricated microneedles.

Figure 1 shows the buckled tips of GantrezTM AN-119 BF microneedles that resulted
from heating for 5 h. When the PDMS molds are cured at 60 ◦C, the master structure tips
are delicate and thin, which leads to tip buckling as shown in Figure 1.
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Figure 1. Scanning electron microscope image of amphotercin B–GantrezTM microneedles with
buckled tips.

Figures 2 and 3 show the microneedles made in molds that were cured at room
temperature. There is no buckling in these microneedles. It appears that heat, not human
error, led to challenges with removal of microneedles from the mold.

Microneedles should be strong enough to pierce the first layer of skin. Park et al.
suggested that the Young’s modulus of the microneedle material should exceed 1 GPa for
skin penetration [32]. There are different types of variations that affect polymer mechanical
properties, such as polymerization process temperature and the incorporation of various
copolymers and cross-linkers [33,34]. The mechanical properties of needles and simulated
needle failure under compression have been previously investigated [35]. For example,
Du et al. determined the mechanical strengths of two types of the hyaluronic acid micronee-
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dles with and without drugs; they showed that that polymer molecular weight and amount
of loaded drug affected microneedle mechanical behavior [36].
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Previous efforts were undertaken to understand the effect of geometry and supporting
substrate attributes on microneedle penetration depth; for example, an ElectroForce®

3100 instrument was previously used by Boonma et al. to assess the mechanical properties
of sharp- and blunt-bevel microneedles [37]. For determining the fracture properties of
the needles, an ElectroForce® load–displacement instrument was used. When needles
break under an increasing compressive load, the load value drops (as shown in Figure 4).
Point (1) of Figure 4 shows that when the needle tips break, the height of the needles is
decreased, and a sudden decrease in the load is observed. Table 1 shows compression of
microneedles with two drug concentrations; the negative value of the load value indicates
the compressive nature of the loading activity. On average, a needle with an 8% drug
concentration failed at 0.54 N; a needle with a 4% drug concentration failed at 0.65 N. The
addition of drug appears to reduce the compression properties of the polymer [31].
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Figure 4. The load per time diagram of ElectroForce® compression testing of a microneedle;
point (1) reveals when the needle tips break.

Table 1. Mechanical properties of amphotericin-B-loaded GantrezTM polymer from nanoindentation
and ElectroForce® mechanical testing.

Drug Concentration Er (GPa) Standard Deviation H (GPa) Standard Deviation Newton/Needle Standard Deviation

4% 8.65 1.1 0.31 0.85 0.65 2.02

8% 7.05 1.23 0.43 0.96 0.54 2.25

Nanoindentation was used to obtain hardness and Young’s modulus measurements [38].
Table 1 shows the mechanical properties of the microneedles with two different drug ratios.
The Young’s modulus and failure force values were 8.65 GPa and 0.31 GPa, respectively,
for the 4% drug concentration and 7.05 GPa and 0.43 GPa, respectively, for the 8% drug
concentration. The Young’s modulus and failure force values for the 4% drug microneedles
were slightly higher than for the 8% drug microneedles. The Young’s modulus and failure
force values were decreased by increasing the amount of drug.

Figure 5 shows the needle tip and base diameters and the heights of two types of
microneedles. The tip diameter, base diameter, and height for the 8% Amphotericin B
GantrezTM AN-119 BF microneedles were 5.23, 193.53, and 770.69 µm, respectively. The
tip diameter, base diameter, and height for 4% Amphotericin B GantrezTM AN-119 BF
microneedles were 3.20, 194.93, and 772.62 µm, respectively. Changing the drug ratio will
modify the viscosity, which may alter the microneedle’s sharpness and shape. The monomer
matrix cannot easily penetrate the bores of the mold; increasing the drug ratio enhances
the viscosity and makes penetration of the matrix into the mold bore more difficult [31].
The tips of the 4% drug microneedles are negligibly smaller, and the heights are negligbly
taller. There was a greater amount of variation in the profile of 8% amphotericin-B-loaded
microneedle; the roughness of the surface of this microneedle appears to be higher than the
roughness of the surface of the 4% amphotericin-B-loaded microneedle.
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FTIR is often used to understand the structure of polymeric microneedles [39]. Figure 6
demonstrates the FTIR results of the needles made with amphotericin B and GantrezTM

AN-119 BF. The contributions of amphotericin B to the spectra are associated with the
following features: C=C stretching (at approximately 1625 cm−1), C–H stretching (at
approximately 3025 cm−1), C–H (at approximately 840 cm−1), C–O stretching (at approxi-
mately 1407 cm−1), N–H (overlapped peak at approximately 650 cm−1), and O–H stretching
(at approximately 3420 cm−1). Sachan et al. characterized amphotericin B microneedles
with FTIR and observed similar spectral features [40].

As shown by Boehm et al., X-ray photoelectron spectroscopy is useful for evaluating
the chemical composition of new types of microneedles [41]. Figure 7 shows the XPS
spectrum from amphotericin B-loaded GantrezTM AN-119 BF microneedles, which shows
the presence of C (51.9%), O (38.0%), and Si (10.1%) on the surface. It is important to note
that no Si atoms occur in either amphotericin B or GantrezTM AN-119 BF. The presence of
Si atoms in the XPS data may be attributed to the contact between the microneedles and
the PDMS mold. Fortunately, Si atoms should not impart toxicity to the microneedles [42].
Insertion of the MNs reduces skin barrier function and increases transepidermal water loss.
The water loss will continue for several hours before the pores close and the skin barrier
function is restored [19,43–45].

HPLC results showed the drug amount in each microneedle type. Three microneedles
were tested; the results showed that each microneedle (8% concentration) was loaded with
0.85 mg of amphotericin B (standard deviation = 0.027). A Franz diffusion test showed that
88.88% of the loaded amphotericin B was delivered to skin (standard deviation = 0.0164).
Since the patches are not flexible, the entire height of a needle did not permeate the skin
and was not dissolved in the skin; however, the permeated component diffused into the
Franz cell receptor fluid. Based on the literature, the extracellular fluid pH (approximately
7.4) is aligned with Franz cell receptor pH [28]. GantrezTM was noted to be soluble in
PBS with a pH of 7.4, which suggests that GantrezTM will be soluble in extracellular fluid
(e.g., interstitial fluid) with the same pH value [17].
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Figure 7. XPS spectrum of the combination of GantrezTM AN-119 BF and amphotericin B.

A Raman spectroscopy microscope was used to study needles that were broken
and placed on the microscope stage. Figure 8 shows the Raman intensity spectra for
amphotericin B, GantrezTM, and the combination of GantrezTM and amphotericin B [46,47].
The bands at 1445 cm−1 and 1702 cm−1 were assigned to CH2 and CH3 deformations,
respectively. The band at 1836 cm−1 was assigned to hydrocarbon bonding (e.g., CH3); the
bands at 2940 cm−1 and 2842 cm−1 were assigned to CH bonding.

Antifungal testing of microneedles through the use of agar diffusion testing is shown
in Figure 9. Initially, the microneedles were characterized by inverting and placing the
samples directly in contact with agar inoculated with lawns of C. albicans, which resulted
in migration of the samples across the agar surface toward the periphery of the petri dish
during the 24 h incubation period at 37 ◦C as a consequence of hydration and partial
solvation of the microneedles. To ameliorate this issue, the microneedles were seated into
a 30 mm void area that was excised from the center of the agar slab to immobilize and
prevent sample movement during the incubation period (Figure 9A). The measured zone of
inhibition (ZOI) due to diffusion of antifungal components was similar for both the 8% and
0% amphotericin-B-loaded microneedles—40 mm and 39 mm, respectively. These results
revealed that the GantrezTM biodegradable acid anhydride copolymer imparts a baseline
level of antifungal activity to the microneedles. Interestingly, the GantrezTM microneedles
loaded with 8% amphotericin B did not exhibit any substantive enhanced activity toward
C. albicans.

To investigate the possibility that amphotericin B diffusion was impeded due to incom-
plete or only partial solvation of the samples, both 8% amphotericin-B-loaded microneedles
and 0% amphotericin-B-loaded microneedles were allowed to fully solvate in 3 mL of PBS
(1×) at 37 ◦C for 20 h prior to dispensing 0.7 mL of the fully solvated samples into agar void
areas (20 mm). Using this modified agar diffusion testing protocol, the 8% amphotericin-
B-loaded microneedles demonstrated enhanced antifungal activity relative to the pure
GantrezTM biodegradable copolymer (0% amphotericin B) as evidenced qualitatively by its
larger area of C. albicans growth inhibition (Figure 9B). The irregular nature of this region,
however, precluded a subsequent ZOI measurement.
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Figure 9. Modified disk diffusion assay results involving Candida albicans for 8% and 0% amphotericin-
B-loaded GantrezTM microneedles; (A) partially solvated microneedles; (B) fully solvated micronee-
dles. ZOI = zone of inhibition.

In addition to agar growth assessments, microneedles fully solvated in PBS (1×) were
characterized by their ability to prevent planktonic growth of C. albicans in solution (Figure 10).
A 1:2 dilution series of the fully solvated microneedle samples in nutrient growth media was
prepared and evaluated, yielding an effective concentration range of 100% (i.e., fully solvated
polymer) down to 0.78%. Complete growth inhibition of C. albicans was observed at each con-
centration of the solvated 8% amphotericin-B-loaded microneedles tested. In contrast, C. albicans
growth was reduced by only 50–70% when cultured in the three lowest 0% amphotericin-B-
loaded microneedle concentrations (0.78%, 1.56%, and 3.13%) and was completely inhibited
at only the two highest concentrations assessed (50% and 100%). The solution testing data,
taken in conjunction with the modified agar diffusion results, clearly demonstrate the enhanced
antifungal properties of 8% amphotericin-B-loaded microneedles relative to the non-loaded,
pure GantrezTM biodegradable copolymer analog.
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4. Conclusions

In this study, amphotericin-B-loaded GantrezTM AN-119 BF microneedles were fabri-
cated using a micromolding technique; amphotericin B, an antifungal drug, was incorpo-
rated in the devices. The master structure for mold fabrication was created by two-photon
polymerization. Molds were fabricated by PDMS under two different thermal situations.
The tips in the master structure were sharp; higher temperatures caused these features to
buckle. PDMS cured at room temperature provided sharper GantrezTM AN-119 BF mi-
croneedles. Nanoindentation and compression testing results showed that the microneedles
possessed appropriate mechanical properties for penetrating the topmost layer of the skin.
Nanoindentation was used to obtain hardness and Young’s modulus values for the mixed
GantrezTM AN-119 BF/amphotericin B polymer; compression testing demonstrated that
the failure force of the needles under compressive loading was sufficient for penetration of
the topmost layer of the skin. Confocal microscopy confirmed the sharpness of the needles.
The chemical properties of the needles were demonstrated using Raman spectroscopy, FTIR,
and XPS. XPS showed the presence of Si on the needles’ surface, which may have been
introduced by the PDMS molds. Finally, in vitro agar diffusion studies demonstrated the
antifungal properties of the microneedles. The advantages of these microneedles include
the loading of a relatively high volume, 0.85 mg of AmB, in the MNs. One disadvantage
of the AmB MNs includes the potential effect of the MN material on drug stability, in-
cluding drug stability over extended periods of time; additional efforts are anticipated to
understand the effect time and temperature on the stability of the MNs.
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