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Viruses are the most common biological entities in the marine environment. There has not been a global survey of
these viruses, and consequently, it is not known what types of viruses are in Earth’s oceans or how they are distributed.
Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major
oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was
a distinct ‘‘marine-ness’’ quality to the viral assemblages. Global diversity was very high, presumably several hundred
thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had
different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages
dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However
most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of
the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common
viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely
dispersed and that local environmental conditions enrich for certain viral types through selective pressure.
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Introduction

Most marine viruses are phages (bacteriophages) that kill
the heterotrophic and autotrophic microbes (both Bacteria
and presumably Archaea) that dominate the world’s oceans
[1]. Phages and the other major microbial predator guild,
nanoflagellates, control the numbers of marine microbes to a
concentration of about ;5 3 105 cells per ml of surface
seawater [2,3].

Phages affect microbial evolution by inserting themselves
into genomes as prophages. Prophages often account for
most of the difference between strains of the same microbial
species [4], and they can dramatically change the phenotype
of the hosts via lysogenic conversion. For example, many
nonpathogens and pathogens only differ by prophages that
encode exotoxin genes [5]. Phages also affect microbial
evolution by moving genes from host to host. It has been
hypothesized that most of the orphan open reading frames
(ORFans) in microbial genomes are actually of phage origin
[6]. Phages may also affect microbial evolution by killing
specific microbes. Various Lotka-Volterra models, called
‘‘kill-the-winner,’’ predict that as one microbial strain
becomes dominant, its viral predator kills it and leaves
open a niche that can be used by a related strain that is
resistant to the phage [7,8]. This model may explain the
enormous microdiversity observed in microbial commun-
ities [9].

The advent of whole-community genome sequencing (i.e.,
metagenomics) is rapidly changing the way viral and micro-
bial diversity are assayed. Using this approach, it is possible to
rapidly characterize the metabolic diversity and community

structure of any microbial ecosystem [10–19]. We studied the
marine viral metagenome (virome) of four oceanic regions.
The viromes were obtained by pyrosequencing uncultured
viral assemblages that were integrated over 4,600 km in
distance, 3,000 m in depth, and over a decade in time in order
to characterize them and identify patterns of viral distribu-
tion and diversity.

Materials and Methods

Samples and Sequencing
Samples were collected from four oceanic regions (Figure

1). Briefly, the viral samples were concentrated on tangential
flow filters (30–100-kD cutoff), distributed into 50-ml tubes
and stored at 4 8C in the dark. A single sample was collected
from the Sargasso Sea (labeled SAR) on 30 June 2005.
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Chloroform was added to this sample to stop microbial
growth. Integrative samples, representing multiple sites and
times, were assembled from the Gulf of Mexico (labeled GOM;
13 sites; 42 individual samples), the British Columbia coastal
waters (labeled BBC; 38 sites; 85 individual samples), and the
Arctic Ocean (labeled Arctic; 16 sites; 56 individual samples).
These samples represent the combined viral assemblages of
four oceanic regions over approximately one decade (sample
details are described in Protocol S1).

Viral particles were purified using a combination of
filtration and density-dependent centrifugation ([10]; http://
scums.sdsu.edu/isolation.html, accessed 15 September 2006).
The cesium chloride gradient was designed to recover virions
with densities from 1.35 g ml�1 to 1.5 g ml�1. Viral DNA was
isolated by a formamide/CTAB extraction [20], and the
resulting DNA was amplified with Genomiphi and sequenced
using pyrophosphate sequencing (454 Life Sciences, Bran-
ford, Connecticut, United States) [21] (see Protocol S1 for
details on the technology). Each Genomiphi reaction started
with 100–150 ng of DNA, above the 10 ng recommended by
the manufacturer. A total of 181,044,179 base pairs (bp) of
DNA sequence data was generated from the four libraries
(SAR, 42 Mbp; GOM, 27 Mbp; BBC, 43 Mbp; and Arctic, 69
Mbp). The difference in library size was due to differences in
number of successful reads during the pyrosequencing. The
1,768,297 sequences had an average length of 102 bp. The
GOM, BBC, Arctic, and SAR metagenomes are deposited on
the SDSU Center for Universal Microbe Sequencing website
at (http://scums.sdsu.edu/phage/Oceans, accessed 15 Septem-
ber 2006).

Bioinformatics
The metagenome sequences from each of the libraries were

compared to the SEED nonredundant database and environ-
mental database using BLASTX [22]. The SEED includes the
GenBank database supplemented with other complete and
draft genome sequences. The environmental database con-
sists of the microbial assemblages from the Iron Mountain
acid mine drainage [16], Sargasso Sea [17], whale fall [18], and

Minnesota farm soil [18]. All large-scale computational
analyses were performed on the Terraport and National
Microbial Pathogen Data Resource cluster at Argonne
National Laboratory. Individual analyses were performed on
a 12-node Orion desktop cluster (Orion, Santa Clara,
California, United States).
These comparisons were supplemented with more exten-

sive TBLASTN and with TBLASTX comparisons [22] of either
selected portions of the data against the complete non-
redundant database or the whole library compared to
boutique databases. The same cutoff E value was always used
for the same database and BLAST search method. In addition,
the sequences were compared to the phage and prophage
sequences from 510 genomes of the phage genome database
(RA Edwards, unpublished data). A FASTA file of these
genomes is at http://scums.sdsu.edu/phage/Oceans.

Taxonomic Composition of the Metagenomes
In an approach similar to previous work [10–12], the best

similarity for each metagenomic sequence was automatically
parsed and assigned as ‘‘known’’ if there was a significant
similarity (E � 10�5) to a sequence from the nonredundant
nucleotide database, else ‘‘environmental’’ for a significant
similarity to any environmental database sequence, and else
‘‘unknown’’ (if there was no significant similarity to any
database). The number of similarities in each group was then
counted (Figure 2A). These numbers were also averaged for
the four samples. In a second step, the sequences from the
‘‘known’’ group were classified as viral, bacterial, archaeal, or
eukaryotic based on their highest similarity (Figure 2B). To
assess the contribution of the prophages (often similar to
bacterial sequences), TBLASTX was used to compare the
sequences against the complete phage genome sequences.
Any significant similarity in the previous four taxonomic
groups that was also similar to a prophage sequence was
assigned to the prophage group instead. The prophage
sequences for these analyses were extracted from complete
microbial genomes. A complete list is available at the
supporting website (http://scums.sdsu.edu/phage/Oceans).
The average of these numbers for the four samples was also
calculated.

Assembly and Verification of Single-Stranded DNA, the
chp1-Like Microphage from the Sargasso Sea
The single-strandedDNA (ssDNA) chp1-likemicrophagewas

partially assembled from all of the sequences that had
significant TBLASTX similarities (E � 10�5). The assembly
parameters were aminimalmatch percentage of 85%and a 20-
bp minimum overlap using Sequencher 4.0 (Gene Codes, Ann
Arbor,Michigan,United States). These sequences alone didnot
result in the assembly of a complete genome due to areas with
low similarity to known chp1-like microphage. To complete
the assembly, batches of sequences from the Sargasso Sea
samplewere added to these assemblies until complete coverage
was obtained (the consensus sequence is in Protocol S1). The
PCR primers SARssDNAF (59 TGC GGA GAA TAT GGT GAT
GA39), SARssDNAR1 (59CGGTTATTACGCCTGTCGTT39),
and SARssDNAR2 (59 CCA TGG TAG GGC AGA GGT AA 39)
weredesignedbasedon the consensus sequence. APCRwas run
against the original Sargasso Sea sample DNA. The reaction
mixture (50 ll total volume) contained target DNA, 1 mM of
each primer, and 1X FideliTaq master mix (USB, Cleveland,

Figure 1. Sampling Sites

The circles represent the sampling locations in the Sargasso Sea (SAR),
Gulf of Mexico (GOM), British Columbia (BBC), and the Arctic Ocean. The
number of samples taken at each location and combined for sequencing,
as well as the date and depth range, are shown in the boxes.
DOI: 10.1371/journal.pbio.0040368.g001
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Ohio, United States). The thermocycler conditions were: 5 min
at 94 8C; 30 cycles of 1 min at 94 8C, 1 min at 65 8C – 0.5 8C per
cycle, 3 min at 728C; and 10 min 72 8C. Positive PCR products
were sequenced for verification of sequence length, and
identity was confirmed using TBLASTX.

Permutation Tail Probability Tests of Phylogenic Similarity
between Phage Assemblages

Because the sequences did not originate from a single
genetic locus, the evolutionary relationships could not be
determined by using standard alignment-based phylogenetic
analyses. To determine phylogeny, the sequences were first
mapped to the Phage Proteomic Tree based on their best
TBLASTX similarity. The version of the Phage Proteomic
Tree used here contained 510 complete phage genomes
(http://scums.sdsu.edu/phage/Oceans) and was constructed as
described previously [23]. Permutation tail probability (PTP)
was then used to infer phylogenetic similarity among the
phage assemblages. The PTP test uses phylogenetic parsimony
to determine whether a given characteristic correlates with
phylogeny [24]. Briefly, if a sequence had a best similarity to a
phage genome on the Phage Proteomic Tree, it was scored on
a tree using Phylogenetic Analysis Using Parsimony software
(PAUP) [25]. The number of steps that would be required to
produce a tree from one sample to another was then
determined. To assign significance, this value was compared
to a distribution produced by randomizing the input tree
10,000 times.

Genetic Isolation by Distance of the Phage Assemblages
Isolation by Distance Web Service (IBDWS) ([26]; http://

biome.sdsu.edu/ibdws) was used to test for a correlation
between the geographic distance between two samples and
the genetic divergence between viral assemblages. This online
software uses Mantel tests to determine whether marine
phages in closer physical proximity have greater genetic
similarity (as measured by UST) than those separated by large

geographic distances. For these tests, the current datasets
were combined with data from the California coast [10]. The
Arlequin program [27] was used to calculate UST. The UST

statistic compares the phylogenetic diversity within each
assemblage to the total phylogenetic diversity of the
combined assemblages using the equation:

UST ¼ ðhT � hW Þ=hT ð1Þ

where hT is the total phylogenetic diversity of two assemb-
lages and hW is the phylogenetic diversity within each
assemblage or population. A UST value close to zero means
there is complete overlap in the phylogenetic diversity,
whereas values greater than zero indicate increasing levels
of phylogenetic differentiation up to a value of 1, indicating
complete differentiation.

Assembly and Mathematical Modeling of Viral
Assemblage Diversity
To estimate viral diversity, sets of 10,000 random sequences

from each oceanic region were assembled using TIGR
Assembler [28] with a minimum overlap length of 35 bp, a
minimal match percentage of 98% and no alignment error in
32 bp to identify overlapping sequences (contigs) [10]. The
Perl script used to automate this task is available at http://
scums.sdsu.edu/phage/Oceans. Average contig spectra were
calculated (Figure S3) over ten repetitions, and the maximum
likelihood assemblage structure of the marine viral assemb-
lages was determined using mathematical rank-abundance
models in PHAge Communities from Contig Spectra
(PHACCS) ([29]; http://biome.sdsu.edu/phaccs). Random sub-
samples of the metagenomes were used instead of the totality
of the whole metagenomes, because PHACCS analyses are
more robust at low coverage [10,11,29]. The diversity
estimates for the best-fitting assemblage model were used
for each oceanic region. Detailed graphical explanations of
these procedures are given in Protocol S1.

Figure 2. Composition of the Assemblage Genome Sequences as Determined by Similarity to Known DNA and Protein Sequences

(A) The percent of ‘‘known’’ sequences compared to the SEED and environmental databases. A sequence was considered ‘‘known’’ if it had a significant
similarity (E , 10�5) to the SEED, else ‘‘environmental’’ if it had a similarity to any environmental database, and else ‘‘unknown’’.
(B) Breakdown of the ‘‘known’’ sequences into viral (both eukaryotic and bacteriophages), prophage, Bacteria, Archaea, or Eukarya.
DOI: 10.1371/journal.pbio.0040368.g002
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To analyze the degree of similarity between the viral
assemblages, the amount of overlap between the assemblages
was determined by assembling a mixed sample of 10,000
fragments obtained by pooling 2,500 fragments from each
region. The fact that fragments from one region assembled
with fragments from another region indicates overlap
between the metagenomes of the two regions, and the extent
of this overlap quantifies the similarity. The contig spectrum
obtained from the mixed sample was modified in two respects
to give what is called the cross-contig spectrum (Figure S4).
First, any contig that contained fragments exclusively from a
single region was removed (i.e., only contigs that included
fragments from more than one region were counted). Thus
for the contigs of size q . 1, Ĉq, the number of q-contigs from
the pooled sample that included fragments from more than
one region, was calculated. Second, the number of 1-contigs
from each region that assembled with any fragments from
other regions was used as the number of 1-cross-contigs, Ĉ1.
The resulting cross-contig spectrum ½Ĉ1; Ĉ2; Ĉ3; :::� was then
compared to the mean cross-contig spectrum from simulated
mixtures of the four assemblages. To simulate such mixtures
requires a model of which genomes with a certain rank and
abundance in one assemblage correspond to which genomes
in another.

There are many ways to envision morphing one assemblage
of genotypes (species defined on the genomic level by
assembly of sequences) into another. For these analyses, two
morphing modes were considered (Figure S5): (i) varying the
proportion of genotypes that were shared between assemb-

lages and (ii) varying the proportion of the genotypes whose
abundance ranks were shuffled (i.e., subjected to a random
permutation). Using these two degrees of freedom, s (percent
shared) and p (percent permuted), Monte Carlo analyses were
performed to estimate the degree of morphing as measured
by these two parameters to find maximum-likelihood values
for s and p based on the closeness of the match to the cross-
contig spectrum found for the pooled sample.
The Monte Carlo simulations were all performed using the

best-fit models for each region. The cross-contig spectrum
based on the mixed sample was used to perform these
simulations (Figure S6). Each simulation included 861 pairs of
s and p values spanning a 213 41 grid between 0% and 100%
for each parameter. Each simulation randomly permuted the
abundance rank of p of the most abundant genotypes,
randomly assigned s of the genotypes to be shared, and
determined the resulting predicted cross-contig spectrum.
This was repeated 100 times for each combination of s and p
values. The entire simulation, including the selection of the
2,500 fragments from each region, was repeated eight times
resulting in 800 predicted cross-contig spectra for each
combination of parameter values. The mean ĉq and variance
r̂2
q of these 800 values were then used to construct a quasi-

likelihood L(s,p)

lnLðs; pÞ ¼ �
X

q

ðĈq � ĉqÞ2

2r̂2
q

ð2Þ

of matching the observed cross-contig spectrum, thereby
generating a contour map of L as in [11]. This log likelihood

Table 1. Number of Similarities to Phage Genomes and Groups of Interest in the Four Metagenomes

Group of Interest Phage Species Marine Region

SAR GOM BBC Arctic

Cyanophage Prochloro. marinus / P-SSM2 4661a 589a 1190a 148a

Prochloro. marinus / P-SSP7 4493a 81a 86 16

Prochloro. marinus / P-SSM4 1759a 263a 587a 51

Synechococcus / S-PM2 1107a 196a 474a 54

Prophage Br. melitensis 16M / Bruc1 pro-/ 12 115a 92 700a

Yersinia pestis / Yers2 pro-/ 12 60a 34 386a

Escherichia coli / CP4–6 pro-/ 4 52 24 364a

Agro. tumefaciens / Tum2 pro-/ 14 43 55 281a

Escherichia coli / CP037–7 pro-/ 6 40 11 240a

Xy. fastidiosa / Xpd5 pro-/ 34 36 23 187a

Escherichia coli / CP037–4 pro-/ 3 29 11 146a

Mesorhizobium loti / Meso1 pro-/ 32 35 176a 56

Pseudo. putida / PP03 pro-/ 397 57a 96 1

chp1-like microphage (ssDNA) Bd. bacteriovorus / MH2K 1835a 20 115 0

Chlamydia / 4 1757a 5 119 0

Chlamydia / 3 1572a 9 119 0

Chlamydia psittaci / 2 568a 2 29 0

Chlamydia psittaci / chp1 519a 16 60 0

Chlamydia / CPAR39 pro-/ 1548a 14 112 0

Miscellaneous Salmonella / epsilon15 56 41 172a 116a

Burkholderia thailandensis / E125 7 29 29 111a

Roseobacteria SIO67 / SIO1 360 409a 465a 36

Rhodothermus marinus / RM 378 301 93a 206a 20

a-proteobacteria / JL001 333 45 197a 55

Bordetella / BIP-1 128 62a 167a 63

Pseudo. aeruginosa / PaP3 123 55 161a 10

aThe ten most abundant similarities are noted for each sample.
Prochloro., Prochlorococcus; Br., Brucella; Agro., Agrobacterium; Pseudo., Pseudomonas; Bd., Bdellovibrio.
DOI: 10.1371/journal.pbio.0040368.t001
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would be expected if each cross-contig value were normally
distributed. The contour map of the quasi-likelihood land-
scape was produced from this grid of 861 quasi-likelihood
values. As a control, the whole procedure was repeated for all
regions with nonoverlapping subsets of sequences all taken
from the same geographical region (rather than from four
different regions).

Results/Discussion

‘‘Community’’ is commonly defined several ways, including
‘‘the species that occur together in space and time’’ [30] and
‘‘an association of interacting populations’’ [31]. Assemblage
is probably the most proper term to describe viral groups,
and most instances of ‘‘community’’ in the literature, both by
ourselves and others, is not correct. See [32] for a
disambiguation of some important ecological terms.

General Characteristics of the Marine Viral Metagenomes
On average, .91% of the sequences were not significantly

similar to those in the extant databases (Figure 2A). A partial
explanation for the high percentage of unknowns is almost
certainly due to the shorter sequences (;100 bp on average)
that are generated by pyrosequencing at 454 Life Sciences.
Previous viral metagenomic studies that used Sanger
sequencing (;650 bp fragments) found that .60% of the
sequences were unknowns [33]. The Arctic Ocean sample had
the highest percentage of known similarities (11%) to the
SEED database, mostly because of the large number of
prophage-like sequences (Table 1). Comparison of the marine
viral sequences to the environmental database did not yield a
significant number of new similarities compared to the SEED
database (;2% to the environmental database), with the
notable exception of the Sargasso Sea sample, where .9% of
the similarities were to the environmental database, presum-
ably because the major sources of sequences for the environ-
mental database were the Sargasso Sea microbial
metagenomes, originally collected in 2003 [17]. The overlap
between the viral metagenome and the microbial metage-
nomes raises several important points. First, a significant
number of viral sequences are retained on the larger-pore
filters, either as free viruses, proviruses, or in cells undergoing
a burst. The latter explanation was hypothesized by Delong et
al. [19], who observed a large number of viral similarities at
one depth at the Hawaii Oceanic Time-series (HOT) station.
Second, the microbial assemblages in the Sargasso Sea appear
to be relatively stable over prolonged periods (;2 y). Finally,
the small amount of sampling and sequencing represented by
these two studies (;1012 bp) is already constricting the
unknown sequence space of the Sargasso Sea. With the
continual decline in Sanger sequencing costs and introduc-
tion of large-scale pyrosequencing, metagenomic approaches
should be able to characterize global sequence diversity in a
relatively short period of time.

Among the fraction of sequences with similarity to the
SEED database, most of the ‘‘knowns’’ were similarities to
bacterial sequences in the Arctic, British Columbia, and Gulf
of Mexico samples (Figure 2B). This can be accounted for by
the following: (i) the larger number of microbial rather than
viral genomes in the database, (ii) unidentified prophages
within microbial genomes, (iii) the large amount of horizontal
gene transfer between phages and their hosts, (iv) phages

carrying full genes from their host, as observed in sequenced
phage genomes [34,35], and (v) the overall larger size of
bacterial genes relative to viral genes, statistically increasing
the probability of sequencing and hitting them.
The sample from the Sargasso Sea was exceptional in that

the majority of ‘‘known’’ sequences were most similar to three
Prochlorococcus phage genomes (Table 1) originally isolated
from the same area of the ocean [34]. This finding suggests
that just a few phage genomes from novel environments will
greatly increase our understanding of viral diversity in these
environments. The distribution of BLASTN similarities along
the Prochlorococcus marinus / P-SSP7 genome [34] is shown in
Figure 3A. There is almost complete coverage of the genome
within the Sargasso Sea sample. In contrast, the similarly sized
Roseobacteria SIO67 / SIO1 genome [36], which was isolated
from near-shore waters in California, is only sparsely covered
in the Sargasso Sea sample, but has higher coverage in the
Gulf of Mexico and British Columbia samples. This supports
the idea that certain phage groups are more prevalent in
certain biogeographic regions. This general pattern was
reinforced by the observation of a number of phage genomes
and groups prevalent in different oceanic regions (Table 1).
The five most abundant putative viral-encoded enzymes

(Table 2) appear to be involved in scavenging host nucleo-
tides (e.g., riboreductases) and supporting host metabolism
through the infection cycle (e.g., carboxylyases and trans-
ferases). The viral fraction also contained psbA genes, which
encode the D1 protein of photosystem II in the cyanobac-

Figure 3. Distribution of Similarities and Assembly Controls

(A) Distribution of similarities between the four metagenome samples to
the P. marinus / P-SSP7 and Roseobacteria SIO67 / SIO1 genomes (as
determined by BLASTN analysis). The green bars represent the average
number of sequences averaged over 100 bp windows.
(B) Comparison of fragments from the Sargasso Sea metagenome
against the consensus ssDNA chp1-like microphage genome. The
consensus from this assembly is in the Protocol S1.
(C) PCR verification of chp1-like microphages in original SAR sample. PCR
primers were designed based on a consensus sequence from the
assembly shown in (B). SAR1 is a ;900-bp fragment and SAR2 is a
;1,500-bp fragment.
DOI: 10.1371/journal.pbio.0040368.g003
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teria. The majority of sequenced cyanophages carry this gene,
and evidence is mounting that the cyanophages need the D1
protein for successful infection and replication [34,37,38].
The occurrence of psbA was lowest in the Arctic sample,
probably reflecting a decrease in the host and cyanophage
numbers in the colder environments.

Discovery of an Abundant Marine ssDNA Phage Group
The Sargasso Sea sample had a large number of sequences

(6% of the total; Table 1) with significant similarities to chp1-
like Chlamydiamicrovirus (Microviridae family). These viruses
are small ssDNA phages. Assemblies from these sequences
resulted in the near-complete genomes of several marine
Microviridae phages from the Sargasso Sea sequences (Figure
3B). To our knowledge, this is the first report describing the
presence of this phage group in the marine environment,
which was previously overlooked because the amplification
and cloning methods excluded ssDNA viruses. The only other
report of ssDNA viruses in the marine environment was a
Circovirus that infected diatoms [39]. However, the marine
sequences in this study did not show any similarity to that
virus. Sequences with significant similarity to the chp1-like
phages were observed less frequently in the British Columbia
(;10-fold less common than in SAR) and Gulf of Mexico
samples (;100-fold less common than in SAR). No sequences
from this group were found in the Arctic sample (Table 1 and
Figure 4). Primers were designed against these genomes and
appropriately sized DNA fragments were amplified from the
Sargasso Sea sample (Figure 3C). No amplicons were detected
in the Gulf of Mexico or British Columbia samples, suggesting
that they were present at numbers below the level of
detection in this PCR or had a divergent sequence. A
geographical constraint that limits the distribution of these
viruses would be most consistent with these results. However
concerns about sample amplification and storage bias make it

impossible to accurately access the relative abundances of
these viruses at this point.

Every Phage Everywhere?
The distribution of similarities to the chp1-like Micro-

phage, P. marinus / P-SSP7, Roseobacteria SIO67 / SIO1, and
others in the viral-fraction suggests that viruses have
restricted geographical distributions similar to those ob-
served in micro- and macro-organisms [40,41]. This is in
contrast to studies that have shown that identical phage genes
are distributed throughout the biosphere and that phages
from soils and sediments can replicate in marine microbial
populations [3,42,43]. To determine whether all marine
phages are spread everywhere or if there is a strong
regionalization, three different approaches were used.
A new version of the Phage Proteomic Tree was con-

structed, and similarities from the samples were mapped onto
this tree (Figure 4). Eighty-four phage species were specific to
one marine region, whereas 45 were common to all four.
From the remaining phage species, 102 were found in several
oceanic regions. The phylogenetic parsimony of phages from
each sample was compared to the Phage Proteomic Tree
using the PTP tests, because viruses do not have a single
genetic locus conserved across all genomes. The PTP test
showed that the distribution of phages in the marine samples
is not random. First, marine phages are phylogenetically
distinct from the available genomes, suggesting a ‘‘marine-
ness’’ to the group as a whole (p , 0.0001; 10,000 random-
izations). Second, there was a significant difference between
phages from the different oceanic regions (p , 0.0001; 10,000
randomizations), supporting a geographical specificity for
viruses despite the wide prevalence of some phage species.
An Isolation By Distance (IBD) approach demonstrated

that there was a significant positive correlation between
geographic distance (km) and genetic distance (as measured
by UST) (Mantel test; Z¼�78.9; r¼ 0.585; p , 0.017) (Figure 5),

Table 2. The Most Abundant Enzyme-Coding Genes in the Four Oceanic Viral Metagenomes

Marine Region Enzyme Name EC number Gene Occurrences

Sargasso Sea (SAR) Ribonucleotide reductase of class Ia (aerobic), alpha subunit 1.17.4.1 89

Ribonucleoside-diphosphate reductase 1.17.4.1 75

Ribonucleotide reductase of class II (coenzyme B12-dependent) 1.17.4.1 50

GTP cyclohydrolase I, type 2 3.5.4.16 37

Adenine-specific methyltransferase 2.1.1.72 22

Gulf of Mexico (GOM) Formate dehydrogenase-O, major subunit 1.2.1.2 27

Carbamoyl-phosphate synthase large chain 6.3.5.5 25

Cytochrome c oxidase polypeptide I 1.9.3.1 24

Ribonucleotide reductase of class II (coenzyme B12-dependent) 1.17.4.1 23

DNA polymerase III alpha subunit 2.7.7.7 23

British Columbia coast (BBC) Ribonucleotide reductase of class II (coenzyme B12-dependent) 1.17.4.1 34

DNA polymerase III alpha subunit 2.7.7.7 22

3-polyprenyl-4-hydroxybenzoate carboxylyase 4.1.1.- 18

Cytochrome c oxidase polypeptide I 1.9.3.1 18

Ribonucleotide reductase of class Ia (aerobic), alpha subunit 1.17.4.1 18

Arctic Ocean 3-polyprenyl-4-hydroxybenzoate carboxylyase 4.1.1.- 205

DNA polymerase III alpha subunit 2.7.7.7 185

Cytochrome c oxidase polypeptide I 1.9.3.1 175

Isoleucyl-tRNA synthetase 6.1.1.5 157

Methylcrotonyl-CoA carboxylase carboxyl transferase subunit 6.4.1.4 155

EC number, Enzyme Commission number.
DOI: 10.1371/journal.pbio.0040368.t002
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indicating that the further two sites are from each other, the
more differences there are between the viral assemblages.
The magnitude of the slope was very small with only 3.28 3

10�5 UST/km.
Considering that any two locations on Earth can be

separated by a maximum of 20,000 km (half the circum-
ference of the globe), by extrapolation, any two viral
assemblages could have a phylogenetic diversity of at most
0.656 UST. Although these data suggest a limit to the
distribution of viruses among marine environments (e.g.,
due to limited viral movement or geographical selective
pressure) (UST .. 0), it also indicates that no two marine
viral assemblages could be totally different (UST ,, 1).
Rather, they would exhibit a relatively large phylogenetic
overlap.

Together the PTP and IBD test support that the marine
virome is composed of specific viral groups. These viral
assemblages undergo a regionalization, although a large
fraction is vastly widespread. It is possible that some viruses
are distributed ubiquitously, but their relative contribution
to overall assemblage structure differs between oceanic
regions. If this were true, then cross-contigs—i.e., contigs

made of sequences from different metagenomes—would
reflect this composition.
In the computer model of cross-contig analysis, all four

viral assemblages were considered at the same time. Assem-
blies were performed and cross-contigs were identified. A
Monte Carlo simulation was used to explain the average
cross-contig spectrum. A full description of the assemblies
and Monte-Carlo simulations are in the Protocol S1.
A number of genotypes (varied between 0% and 100%)

were arbitrarily and randomly defined as shared between
samples; at the same time, the occurrence of individuals in
the viral assemblage was also varied (Figure 6). As an
illustration, imagine two assemblages sharing 100 viruses,
but with the relative rank on a rank-abundance curve being
shuffled for the top viruses in the assemblage (see Protocol
S1). The best explanation of the observed cross-contigs is
shown in Figure 6 and estimates that 35% of the most
abundant genomes in any sample would have to be permuted
in their relative abundance rank and that 100% of the viruses
would have to be shared between samples. The intrasample
controls showed that 85%–95% of the most abundant
genomes were shared and 0%–0.5% were permuted (although
100% and 0% were expected, respectively). This discrepancy
is probably due to limitations in the methodology used.
This cross-contig analysis suggests that any two viral

assemblages could have a vast majority of species in common
and the order of the ranks in the rank-abundance curve could
be determined by shuffling about a third of the most
abundant species. These results confirm that geographical
and changing environmental conditions allow different viral
genotypes to become more or less prevalent within different
assemblages while sharing essentially the same types of
viruses. The less abundant viruses are not lost altogether,
merely reduced in occurrence.

Local Versus Global Diversity
Using the PHACCS analysis system [29], the genotype

richness, diversity, and evenness of the different metage-
nomes were estimated (Table 3). The British Columbia viral
metagenome was the most genotype-rich (129,000 predicted
genotypes) and diverse (H9 of 10.8 nats), whereas the Arctic

Figure 5. Relationship between Geographic and Genetic Distances of

Marine Viral Assemblages

In addition to the four metagenomes sequenced for this study, the
previous viral metagenomes from the San Diego area (California coast)
were also included in this analysis [10]. There was a significant correlation
of 3.28 3 10�5 UST / km (Mantel test, Z ¼�78.9, p , 0.017, r ¼ 0.585).
DOI: 10.1371/journal.pbio.0040368.g005

Figure 4. Types of Phages in the Four Metagenomes

A new version of the Phage Proteomic Tree (left panel) was constructed
from 510 complete phage and prophage genomes using the previously
described method [23]. The metagenomic sequences were compared to
the phage on the Phage Proteomic Tree using TBLASTX, and the colored
bars on the right represent significant similarities (E-value , 0.0001).
Names of prophages are in red and the Prochlorococcus phage genomes
are in green. An electronic version of the tree and a FASTA list of phage
and prophage genomes used to make the tree are available at the SDSU
Center for Universal Microbe Sequencing website (http://scums.sdsu.
edu/phage/Oceans).
DOI: 10.1371/journal.pbio.0040368.g004
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metagenome was the least genotype-rich (532 predicted
genotypes) and diverse (H9 of 6.05 nats).

Being located on the west coast of the North American
continent, the coast of British Columbia is in an upwelling
area. It is also enclosed and fed by many rivers. These
conditions might importantly increase the diversity of
microbial communities and thus provide an explanation for
the very high viral assemblage diversity estimated in this
oceanic region. Omitting the BBC, the viral diversity of the
other regions (the Gulf of Mexico, Sargasso Sea, and Arctic
Ocean) correlate with the well-established North-South
latitudinal diversity gradient [44], with a larger diversity at
lower latitudes. Planktonic diversity patterns of near-shore
versus off-shore (more diverse plankton assemblages off-
shore) [45] were not observed here; the large spatial scale of
the sampling probably masked this effect if present.

Assemblies of the mixed sample were used to predict global
viral diversity using PHACCS. A total of 57,600 different viral
genotypes in all four regions (H9 of 9.8 nats) was estimated.
This number is smaller than the number of genotypes
predicted in the BBC sample, which may indicate an
undersampling for the mixed metagenome or be due to
some of the assumptions of the model. Taken together, these
data indicate that the global marine viral richness could be as
high as a few hundred thousand species, with a regional

richness sometimes almost as high, likely because of migra-
tion processes.

Integrative Versus Single Samples
It was expected that the integrated samples would be more

even because it is assumed the viruses that were most
abundant at one spatial-temporal time point would be rarer
at another (‘‘kill-the-winner’’ hypothesis). As summarized in
Table 3, the evenness of the single time point sample (SAR
0.905) fell in between that of the three integrated samples
(Arctic 0.964; BBC 0.918; GOM 0.851). Similarly, the predicted
richness (5140 genotypes) and diversity (H9 7.74 nats) at the
single point represented by the Sargasso Sea sample fell in
between that of the integrated samples (richness 532–129,000;
H9 6.05–10.8 nats). Because of factors with a supposedly
greater impact, like latitude, it is not clear that integrating
individual samples gave a greater depth of coverage.
Without a doubt, many interesting trends based on depth

and a wide variety of other spatial, biological, and temporal
parameters were missed by the integrative sampling used
here. However, this sampling does provide a useful overview
of the marine virome on a global and regional scale.
Currently, there are no real criteria as to what constitutes a
useful size or time scale for sampling natural viral assemb-
lages, so there is no particular advantage or disadvantage to
keeping samples separate or analyzing them as a metadataset.

Figure 6. Monte Carlo Simulation of Cross-Contigs between Metagenomic Samples

(A) For the intersample analysis, the maximum likelihood occurred at 35% fraction permuted and 100% fraction shared. (B) The maximum likelihood was
between 0% and 0.5% fraction permuted and 85% and 95 % fraction shared for the intrasample controls.
DOI: 10.1371/journal.pbio.0040368.g006
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Rather the sampling scheme should be driven by the question
being addressed. Viral assemblages are interesting in their
own right, not just in context of their host communities.
However, future studies should also start cross-correlating
the viruses with their hosts. Of particular interest will be
determining if the ‘‘islands’’ and ORFans observed in micro-
bial genomes are represented in the virome [6,46].

Potential Sampling and Processing Biases
Sampling bias in the current datasets was primarily due to

loss of large viruses during filtering. Currently, there is no
experimental method to avoid this problem. The cesium
chloride gradients used here recover all known phage
groups, and essentially all the viral-like particles in the
starting samples migrate to the proper density in these
preparations (as observed by epifluorescence microscopy;
unpublished data). Unfortunately, the cloning methods used
here will not recover RNA viruses. Suttle et al. [47,48] have
shown that RNA viruses are present in the marine environ-
ment. Whereas most electron microscopy [49,50] and nucleic
acid–based studies [51] have not found RNA viruses in large
numbers, RNA viruses are still believed to be important
components of the marine virome that need additional
study.

Another potential source of bias is the different times that
the samples were stored before processing. Phage particles
are very stable and often stored for decades at 4 8C. This is a
commonly known lab phenomenon and is supported by the
observation that the oldest viral concentrates (;12 y old) in
this study had very high concentration of viruses (.109 viral-
like particles per ml). Different phages, however, may have
different decay rates under these conditions. This does not
seem to be especially problematic, because there is no
correlation between the types of viruses observed and the
storage time. For example, the Arctic and SAR samples are
the most recently harvested samples, yet they have the
biggest differences in terms of types of phages (Table 1).
Nonetheless, there may be effects of storage on the
composition of the viral assemblages. For this reason,
analyses based on absolute abundances of one specific virus
to another were avoided in this study. Instead, the presence
of a sequence in the metagenome was simply assumed to
mean that the virus was in the original sample (i.e., an
occurrence).

Whole-genome amplification techniques introduce biases
in the relative concentrations of different genomes. Tests of
Genomiphi by the manufacturer and others [52,53] have not

reported a significant bias in the amplification of circular
double-stranded DNA (dsDNA), with the exception of very
small dsDNA targets (,1 kb), which are much smaller than
the vast majority of marine viruses, and of ssDNA, which will
probably be a preferred target for the DNA polymerase.
Although not bias-free, Genomiphi is the most accurate
amplification method available [54]. Interesting trends
associated with viral assemblage structure may have been
missed because of our choice of using presence/absence data
for the analyses presented here, but by being conservative
there should not be any effects of storage, amplification, and
sampling biases on our interpretations.

Conclusion

The metagenomic analysis of viral assemblages from the
Arctic Ocean, the coast of British Columbia, the Gulf of
Mexico, and the Sargasso Sea presented here has changed
our perception on the composition of viral assemblages in
the sea. First, there is clear evidence that the composition of
viral assemblages varies in different geographic regions
probably reflecting selective pressure. Previously overlooked
viral groups, such as ssDNA viruses and prophages, can be
major constituents of marine viral assemblages (Sargasso Sea
and Arctic Ocean, respectively). Second, global viral diversity
is high (possibly a few hundred thousand viral species), but
regional diversity can be almost as high due to viral
migration. This migration provides opportunities for global
exchange of DNA among viral genomes, as predicted by the
mosaic model [55]. Viral diversity also varied according to
latitude, with a higher richness at low latitudes. Finally, it
seems that although some viral species are endemic and
others are ubiquitous, the vast majority are widespread and
shared between several oceanic regions. Invasion and
replacement by new phages does not appear to be an
important structuring factor for these viral assemblages.
What sets different assemblages apart is likely the change in
abundance of its most abundant members, supporting to
some extent the old tenet ‘‘everything is everywhere, but, the
environment selects’’ [56] for marine viruses.

Supporting Information

Figure S1. Frequency of Homopolymeric Tracts in the Four Marine
Viromes, the Complete Phage Genomes, and Twenty, Randomly
Chosen Microbial Genomes

The tracts from 3 nucleotides (nt) to 15 nt were counted and
normalized to the number of bases in each sequence. One 3-nt tract is

Table 3. Viral Assemblage Structure Predicted from Assembly of Metagenomic Sequences

Sample Richness Evenness Most Abundant Genotype (%) Shannon-Wiener Index

Arctic 532 genotypes 0.964 2.27 6.05 nats

BBC 129,000 genotypes 0.918 7.28 10.8 nats

GOM 15,400 genotypes 0.851 13.3 8.21 nats

SAR 5140 genotypes 0.905 8.45 7.74 nats

Mixed 57,600 genotypes 0.895 9.34 9.81 nats

Ten separate assemblies of 10,000 sequences chosen at random from each library were performed for each sample. For the mixed sample, 2,500 randomly chosen fragments were used
from each library. The average contig spectrum was used to predict assemblage structure using PHACCS.
DOI: 10.1371/journal.pbio.0040368.t003
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found approximately every 30 bp, whereas one 15-nt tract is found
approximately every 10 million bp. The 510 complete phage genomes
totaled 18,909,173 bp in length, and the microbial genomes totaled
22,110,123 bp in length. The lengths of the pyrosequenced libraries
are given in the text.

Found at DOI: 10.1371/journal.pbio.0040368.sg001 (1.3 MB TIF)

Figure S2. Relative Abundance of Phages in the Four Metagenomes

Because of way the samples were stored and the long storage time, the
distribution shown may not accurately reflect the reality.

Found at DOI: 10.1371/journal.pbio.0040368.sg002 (104 KB TIF)

Figure S3. Determining a Normal Contig Spectrum

Found at DOI: 10.1371/journal.pbio.0040368.sg003 (135 KB TIF)

Figure S4. Getting a Cross-Contig Spectrum.

Found at DOI: 10.1371/journal.pbio.0040368.sg004 (3.1 MB TIF)

Figure S5. The Possible Scenarios Considered in the Monte Carlo
Simulation to Explain the Observed Cross-Contigs

Found at DOI: 10.1371/journal.pbio.0040368.sg005 (143 KB TIF)

Figure S6. Analyzing a Cross-Contig Spectrum

Found at DOI: 10.1371/journal.pbio.0040368.sg006 (589 KB TIF)

Protocol S1. Details on Materials and Methods.

Found at DOI: 10.1371/journal.pbio.0040368.sd001 (39 KB PDF)

Accession Numbers

The Genome Projects Database (http://www.ncbi.nlm.nih.gov/
Genomes) accession numbers for the sequences are 17765 (GOM),

17767 (BBC), 17769 (Arctic), and 17771 (SAR); the Genome Catalogue
(http://gensc.sf.net) accession numbers are 000002_GCAT (GOM),
000003_GCAT (BBC), 000004_GCAT (Arctic), and 000005_GCAT
(SAR); and the GOLD database (http://www.genomesonline.org)
GOLDstamps are GM00060 (GOM), GM00061 (BBC), GM00062
(Arctic), and GM00063 (SAR).
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