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Abstract

Daphnia species have become models for ecological genomics and exhibit interesting features, such as high phenotypic plasticity

andadenselypackedgenomewithmany lineage-specificgenes. Theyarealsocyclicparthenogenetic,withalternatingasexualand

sexual cycles and environmental sex determination. Here, we present a de novo transcriptome assembly of over 32,000 D. galeata

genesanduse it to investigategeneexpression in femalesandspontaneouslyproducedmalesof twoclonal linesderived from lakes

in Germany and the Czech Republic. We find that only a low percentage (18%) of genes shows sex-biased expression and that

there are many more female-biased gene (FBG) than male-biased gene (MBG). Furthermore, FBGs tend to be more conserved

between species than MBGs in both sequence and expression. These patterns may be a consequence of cyclic parthenogenesis

leading to a relaxation of purifying selection on MBGs. The two clonal lines show considerable differences in both number and

identity of sex-biased genes, suggesting that they may have reproductive strategies differing in their investment in sexual repro-

duction. Orthologs of key genes in the sex determination and juvenile hormone pathways, which are thought to be important for

the transition from asexual to sexual reproduction, are present in D. galeata and highly conserved among Daphnia species.

Key words: sexual dimorphism, males, environmental sex determination, crustaceans, juvenile hormone pathway, genetic

variation.

Introduction

Males and females of many animal and plant species differ

phenotypically while sharing the same genome. Most of these

differences can be attributed to sex-biased genes, i.e., genes

expressed differentially between males and females (Ellegren

and Parsch 2007). In species with genetic sex determination,

an individuals’ sex is determined by its complement of chro-

mosomes. However, this is not the case in species with envi-

ronmental sex determination, such as water fleas (Daphnia),

crocodilians, and Crepidula snails. In these species, males and

females are genetically identical and sex chromosomes are

absent. Thus, sex is a phenotypically plastic trait; differences

between males and females arise through the influence of the

environment on gene expression.

Daphnia is a wide-spread genus of freshwater crustaceans

that serves as an important food source for many fish species.

Because of their dominant position within the phytoplankton

feeders, Daphnia are considered keystone species in many

freshwater habitats (Carpenter et al. 1987). Daphnia are cy-

clically parthenogenetic, which means that they can switch

between an asexual and a sexual mode of reproduction

(Hebert 1978). Under favorable conditions, females reproduce

asexually via parthenogenesis (Hebert 1978; Ebert 2005). If
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environmental conditions change, external biotic and/or abiotic

stimuli lead to a switch to sexual reproduction, resulting in the

production of male, in addition to female, offspring. The inducing

stimuli include high population densities, reduced food availability,

shorter days, and lower temperatures (Stross and Hill 1965;

Carvalho and Hughes 1983; Kleiven et al. 1992). As sex determi-

nation is entirely environmental and no sex chromosomes are

present, both daughters and sons are exact genetic clones of

their mothers. Females also produce haploid sexual eggs, which

form resting eggs once they have been fertilized by males. Pairs of

resting eggs are encased in ephippia and can then endure adverse

conditions such as the drying out of ponds or the freezing over of

a lake (Hebert 1978; Ebert 2005). The ephippia can stay in the

sediment for multiple years and can be dispersed over very large

distances (Cáceres 1998; Vanschoenwinkel et al. 2008). Once

conditions improve, the next generation of sexually produced fe-

males can emerge and resume asexual propagation (Ebert 2005).

Because parthenogenesis is the predominant mode of reproduc-

tion, the sex ratio of natural Daphnia populations is highly skewed

towards females.

With the publication of the genome of Daphnia pulex

(Colbourne et al. 2011), Daphnia has become a powerful

model to study to effect of ecotoxins, phenotypic plasticity,

and environmental sex determination. Daphnia pulex has a

very compact genome of ~200 million base pairs (Mb)

(Colbourne et al. 2011). Nevertheless, it harbors an extremely

high number of protein coding genes (30,810),>36% of which

have no described ortholog in the insects, the sister class of the

crustaceans, for which many genomes have been sequenced.

These orphan genes, as well as duplicated genes, have been

shown to play an important role in local adaptation and pheno-

typic plasticity (Colbourne et al. 2011). However, without more

genome sequences from the genus Daphnia and the crusta-

ceans in general, it is not possible to determine how many of

these orphans and gene duplications are lineage-specific. In

other species, gene duplications are thought to play a role in

the resolution of sexual conflict (Connallon and Clark 2011),

which may contribute to their abundance in Daphnia.

A prime example of phenotypic plasticity in Daphnia is the

switch between sexual and asexual reproduction. The

genome must encode everything necessary for both types

of reproduction and multiple studies in D. pulex and other

Daphnia species have identified key genes that are involved in

this switch (Olmstead and LeBlanc 2002; Kato et al. 2011;

Chen, Xu et al. 2014; Toyota, Miyakawa, Hiruta, et al. 2015;

Toyota, Miyakawa, Yamaguchi, et al. 2015). Genes involved

in sex determination in systems with genetic sex determina-

tion such as doublesex (dsx) and transformer (tra) appear to

have been coopted (Toyota et al. 2013; Chen, Xu et al. 2014)

for signaling sexual differentiation in Daphnia. Furthermore,

methyl farnesoate (MF), the unepoxylated form of insect ju-

venile hormone III (JH III) produced in the mandibular gland,

has been shown to induce sexual reproduction in Daphnia

(Olmstead and LeBlanc 2002). The signaling cascade leading

to MF production in response to environmental cues remains

to be elucidated. A recent study showed that the NMDA re-

ceptor seems to be involved in signaling upstream of MF and

may be a sensor of environmental stimuli (LeBlanc and

Medlock 2015; Toyota, Miyakawa, Yamaguchi, et al.

2015). In addition, exogenous treatment with MF and other

JH III analogs induces male production in a dose-dependent

manner (Olmstead and LeBlanc 2002; Tatarazako et al. 2003;

Ginjupalli and Baldwin 2013). Some of these JH III analogs are

common insecticides that reach freshwater systems with rain

washout, where they can disturb the natural cycles of sexual

and asexual reproduction in Daphnia. In Daphnia studies,

males are often induced with MF. It is not clear, however,

how exogenous MF-induced male production differs from

natural male production. There is evidence indicating that

exogenously induced males are worse at fertilizing resting

eggs than naturally produced males and that JH III homologs

reduce fertility and life span in general (Tatarazako et al.

2003; Ginjupalli and Baldwin 2013; LeBlanc et al. 2013).

Thus, it seems that MF treatment can have an effect that

differs from natural sexual reproduction.

Although much is known about the involvement of MF and

the juvenile hormone (JH) pathways in triggering male produc-

tion, there have been very few studies on the evolution of sex-

biased genes or gene expression in Daphnia. One early study by

Eads et al. (2007) identified sex-biased genes in D. pulex by

comparing females with MF-induced males However, this

study was conducted before the genome sequence was avail-

able; the microarray used therefore contained only ~1,500

genes (~5% of all genes). Furthermore, due to the lack of

genome sequences from closely related species, the sex-biased

genes found in D. pulex were compared with Drosophila mela-

nogaster, which further limited the number of orthologous

genes available for comprehensive evolutionary analysis.

Together with the D. pulex genome, a much more extensive

characterization of sex-biased gene expression in D. pulex was

published (Colbourne et al. 2011). These data were generated

using a genome tiling microarray, but also using MF-induced

males. As the identification and characterization of sex-biased

genes was not the main focus of the genome paper, no in-depth

analysis on this subset of genes has been carried out.

Since the publication of the D. pulex genome (Colbourne

et al. 2011), the amount of genomic and transcriptomic

resources for arthropod species has grown substantially,

although crustaceans are still poorly represented in compari-

son to the insects. In this study, we present a high quality de

novo transcriptome assembly of D. galeata (Sars 1864), with

extensive annotations and an analysis of sex-biased gene ex-

pression. We used RNA-sequencing (RNA-seq) to identify dif-

ferentially expressed genes between females and naturally

produced males of two clonal lineages derived from geo-

graphically separated populations and compare our findings

to the available data from D. pulex. We also describe key

genes in the sex determination and the juvenile hormone
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pathways that are linked to the switch from asexual to sexual

reproduction. Our results allow for comparative genomics of

sex-biased genes within the Daphnia genus and shed light on

the influence of cyclic parthenogenesis on the evolution of

sex-biased gene expression.

Materials and Methods

Sampling

A set of D. galeata resting stages (ephippia) was collected from

the sediment of four lakes (Jordan Reservoir in the Czech

Republic, Müggelsee and Lake Constance in Germany, and

Greifensee in Switzerland) and hatched under laboratory condi-

tions. The hatchlings were used to establish clonal lines in a

laboratory setting. The lines were maintained for at least eight

months and up to two years at 20 �C and a constant 15:9hour

light-dark photoperiod prior to the start of the present study.

The semi-artificial media (based on ultrapure and spring water,

trace elements and phosphate buffer (Rabus and Laforsch 2011)

was regularly changed, and the Daphnia were fed every other

day with a suspension of the unicellular algae Acutodesmus

obliquus. The species identity was checked by sequencing a

fragment of the 12S mitochondrial locus and 10 microsatellite

markers, following protocols by Taylor et al. (1996) and Yin et al.

(2010), respectively. All clonal lines were found to have a D.

galeata mitochondrial background. A clustering approach

(NEWHYBRIDS, version 1.1; Anderson and Thompson 2002)

with the microsatellite markers showed they belong to the D.

galeata cluster. Furthermore, the level of genetic differentiation

was estimated by p (Tajima 1989), which was calculated from

SNP data using vcftools –window-pi (version 0.1.11; Danecek

et al. 2011). The mean value of p for the pair of clones this study

focuses on was 0.006, averaged over 53,800 windows. For all

the clonal lines used for the assembly, the mean p value was

0.004, averaged over 96,751 windows.

To sequence the complete transcriptome, six clonal lines

per lake were raised in high numbers. Mature females were

placed at equal densities (40 individuals per liter) in semi-artificial

medium for a week, and the juveniles were regularly removed.

Gravid females from the equal density beakers were then

collected within three days during a time window of a few

hours. Twenty to thirty individuals were homogenized in a 1.5-

ml centrifuge tube in 1 ml Trizol (Invitrogen, Waltham, MA) im-

mediately after removing the water. The Trizol homogenates

were kept at �80 �C until further processing. These 24 geno-

types (6 lines�4 lakes) constitute the “assembly” set.

Male and female samples were collected from one clone

from Jordan Reservoir (J2 clone) and one clone from the

Müggelsee (M10 clone). These clones naturally produced

males under standard laboratory conditions and hence, no

MF or short-day induction was necessary. Clones were kept

at densities of ~20� 30 individuals in 250-ml beakers and

juveniles were removed every day and put into fresh beakers.

Juveniles were sexed and separated at day five after birth and

then harvested at day nine. Only females with an empty brood

pouch were collected and used for RNA extraction. Because

sexually reproducing females usually show signs of developing

ephippia by this age, the collected females were assumed to

be asexuals. Individuals were homogenized and stored in

Trizol at �80 �C until RNA extraction was performed. For

the female samples, 10�20 individuals were pooled, whereas

20� 30 individuals were pooled for the smaller males. Two

biological replicates per sex and clone were collected, resulting

in a total of eight samples for RNA-seq library preparation.

RNA Preparation and Sequencing

Total RNA was extracted following a modified phenol/chloro-

form protocol. Briefly, chloroform was added to the Trizol

homogenate and the mixture was centrifuged in a Phase

Lock Gel tube (5 PRIME, Gaithersburg, MD), which allowed

for the clean separation of the upper aqueous and lower

phenol phases. Absolute ethanol was added to the upper

phase containing the RNA and the samples were further pro-

cessed using the RNeasy kit (Qiagen, Venlo, The Netherlands)

for the” assembly” samples or the Isolate II RNA Mini Kit

(Bioline, London, UK) for the “sex” samples and following

the manufacturers’ instructions. The total RNA was eluted in

RNAse free water.

The RNA concentration was checked using a NanoDrop

spectrophotometer (Thermo Scientific, Wilmington, DE) and

the quality was assessed with a Bioanalyzer 2100 (Agilent

Technologies, Santa Clara, CA). In case of phenol contamina-

tion (skewed A230/260 ratio), the RNA was precipitated over-

night with a 3M sodium acetate solution at �20 �C and

washed with ethanol.

The 24 “assembly” samples were pooled in equimolar pro-

portions prior to the sequencing library preparation. In total,

eight “sex” samples and the “assembly” sample were sent to

the company GATC (Konstanz, Germany) for library prepara-

tion and sequencing. To create a complete transcriptome (i.e.,

as many transcripts as possible), the cDNA from the “assem-

bly” sample was normalized prior to sequencing, by first de-

naturing and re-associating of the cDNA strands, and

subsequently by filtering out the single stranded cDNA

through hydroxyapatite chromatography.

The “assembly” sample was size-sorted and only frag-

ments with a minimum length of 650 base pairs (bp) were

retained. Sequencing was carried out on a complete Illumina

(San Diego) MiSeq lane, with 250-bp paired-end (PE) reads.

The “sex” samples were sequenced on an Illumina HiSeq

2000, with 50-bp single-end (SE) reads.

Read Quality Control and Trimming

Pre-processing of the sequence reads generated from the

D. galeata libraries consisted of several steps. First, TruSeq

adapter trimming of paired-end reads was performed using
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Trimmomatic (version 0.32; Bolger et al. 2014). Some overlap

of the paired-end reads was expected; these were merged

using FLASH (version 1.2.10; Magoc and Salzberg 2011). A

custom Perl script was used to remove all reads with uncalled

bases (N’s) in their sequence. Afterwards, quality filtering of

the reads was done using the Trimmomatic sliding window

function to remove fragments of 40 bases that had an average

Phred score<30. Further, reads were trimmed at the 50 and 30

ends, removing bases with a Phred score <10. Reads shorter

than 150 bp after trimming and quality filtering were dis-

carded. For short single-end reads (the “sex” samples), we

used a sliding window function to remove fragments of 10

bases that had average Phred score<35, retaining only those

reads longer than 25 bp.

Transcriptome Assembly

We used a combined approach to obtain the best transcript

predictions for D. galeata, as described in Nakasugi et al.

(2014). Instead of running only one assembly algorithm, we

ran several using the PE “assembly” set, and combined the

resulting transcripts. The input requirements and parameter

settings for each of these assemblers are slightly different and

are listed in supplementary table S1, Supplementary Material

online. In order to ensure the representation of potentially

male-specific transcripts in the final transcript list, short

reads generated for the “sex” study were also assembled in-

dependently from the PE reads with SOAPdenovo-Trans (Xie

et al. 2014) and Oases-Velvet (Schulz et al. 2012).

Four different assembly programs based on de Bruijn

graphs were used: Trinity (release r20131110; Grabherr

et al. 2011), Trans-ABySS (ABySS version 1.4.8, Trans-ABySS

version 1.5.1; Simpson et al. 2009), SOAPdenovo-Trans (ver-

sion 1.03; Xie et al. 2014) and Oases-Velvet (Oases version

0.2.8, Velvet version 1.2.10; Schulz et al. 2012). MiSeq PE

reads merged with FLASH were treated as SE reads and

were used for the assembly for Trinity, Trans-ABySS and

SOAPdenovo, whereas only PE nonoverlapping reads were

used for Oases-Velvet. For Trans-ABySS, k-mer lengths of

22�36 with a step-size of 2 and 40� 68 with a step-size

of 4 were used for assembly. The Trinity assembly was per-

formed with k-mer length 25 because it does not support

multiple k-mer length assembly. PE assemblies with k-mer

lengths of 21� 63 with a step-size of 6 were generated

using Oases-Velvet. The SOAPdenovo-Trans assembly was

performed using k-mer lengths of 21� 61 with a step-size

of 10 (for SE short read assembly parameters see supplemen-

tary table S2, Supplementary Material online).

EviGene Pipeline

In order to reduce the data redundancy, assemblies were first

processed either with built-in utilities of the assemblers or with

CD-HIT-EST (version 4.6.1; Fu et al. 2012) using a threshold of

98% identity to remove nearly identical contigs. A slightly

lower threshold than that used by Nakasugi et al. (2014)

was chosen because several genotypes were mixed in the

sequencing library. If this threshold were set too high, many

variants would be retained, which would reduce the efficiency

of the subsequent analysis steps. The merging utility of Trans-

ABySS was applied for Trans-ABySS assembled contigs.

Instead of using the Oases-Velvet merging utility, all Oases-

Velvet contigs were pooled and clustered using CD-HIT-EST

for both SE and PE read assemblies (table 1). For SOAPdenovo-

Trans, the scaffolding option was not used, the SE and

PE read assemblies were pooled, and the contigs were

directly clustered with CD-HIT-EST. No merging or clustering

was necessary for Trinity because it only implements one

k-mer size.

The contigs set resulting from pooling all assembler outputs

was further processed with the EvidentialGene tr2aacds script

(Gilbert 2013). This script from the EvidentialGene package

(short EviGene pipeline) selects de novo assembled transcripts

from the meta-assembly, based on coding potential. First,

coding DNA sequences (CDS) and amino acid sequences are

produced for each of the transcripts. Highly similar sequences

are identified through a “BLAST on self” (default settings:

98% similarity or higher). The EviGene pipeline then outputs

three sets of transcripts: “okay-main” for primary transcripts,

“okay-alt” for alternative transcripts (variants may be found

here) and “drops” for redundant or uninformative transcripts

(i.e., perfect duplicates of okay-main transcripts, perfect frag-

ments of okay-main transcripts, very short amino acid se-

quences). Unless stated otherwise, the transcript, coding

sequences or translated protein sequences of the okay-main

set of the EviGene pipeline were used for further quality as-

sessment and downstream analyses.

Table 1

Number of Transcripts Produced by the Individual Assembly Programs and Their Contribution to the Final Transcriptome

Assembler Total contigs Contigs after CD-HIT-EST Transcripts in okay-main set Transcripts in alternative set

Trinity 100,749 100,749 9,848 5,251

Trans-ABySS 185,991 185,991 4,962 13,729

Oases-Velvet 442,560 126,055 9,692 19,225

SOAPdenovo 489,649 170,562 8,401 9,644

Total 1,218,949 583,357 32,903 47,849
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Transcriptome Quality Assessment

The basic metrics used for quality assessment in genome se-

quencing projects such as N50 and contig length have limited

validity for transcriptome quality analysis, because the ex-

pected transcript length is unknown for this species. Thus,

the quality of the transcriptome assembly was assessed with

multiple strategies in order to determine its completeness and

reliability.

We first mapped the reads that were used to construct the

transcriptome back to the assembled transcripts. This was

done using the alignment tool NextGenMap (version 0.4.10;

Sedlazeck et al. 2013) with the default parameters except for

increased sensitivity (-i 0.8).

The Core Eukaryotic Genes Mapping Approach (CEGMA)

(version 2.5; Parra et al. 2007) was used to assess how many

of the 248 highly conserved core genes can be identified in the

D. galeata de novo transcriptome. Furthermore, we annotated

orthologs of genes that are presumably present in single copy in

arthropod genomes. For this, we used the Benchmarking set of

Universal Single-Copy Orthologs (BUSCO) (version 1.2; Simao

et al. 2015) with the Arthropod BUSCO set from OrthoDB (ver-

sion 7; Waterhouse et al. 2013), which contains all genes found

in single copy in >90% of the included 38 species. Daphnia

pulex was chosen as the reference species, as it is the closest

relative to D. galeata that is contained in OrthoDB (genome

version JGI060905). The D. pulex BUSCO set contains 2,421

genes that were then used to search the D. galeata de novo

transcriptome, as well as the D. magna genome early release

(version 7; Daphnia Genomics Consortium 2015).

In order to assess contamination in our transcriptome, we

investigated how many and which transcripts might have

their origin in other species. For this purpose, all amino

acid sequences were blasted against the NCBI nonredun-

dant (nr) database (downloaded Feb. 2015) with an E

value cut-off of 1e-05. Subsequently, the results were

loaded into MEGAN (version 5.8.4; Huson et al. 2011) to

visualize in which species the sequences have their best hit

based on the hierarchy of NCBI taxonomy.

Annotation and Functional Analysis

In order to obtain functional annotation of the D. galeata de

novo transcriptome and be able to compare it to other spe-

cies, OrthoMCL (version 2.0.9; Fischer et al. 2011) was used to

cluster amino acid sequences of D. galeata, D. pulex (version

JGI060905; Colbourne et al. 2011), D. magna (version 7;

Daphnia Genomics Consortium 2015), as well as D. melano-

gaster (version 5.56; St. Pierre et al. 2014) and Nasonia vitri-

pennis (version 1.2; Werren et al. 2010) into orthologous

groups and determine “inparalogs”. The initial OrthoMCL

BLAST step was run with an E value cut-off of 1e-05. In addi-

tion to the ortholog annotation, protein domains were anno-

tated for all three Daphnia species using PfamScan (version

1.5) to search the Pfam A database (version 27.0; Finn et al.

2014) together with hmmer3 (version 3.1b; Mistry et al.

2013). Gene Ontology (GO; Ashburner et al. 2000) terms

were transferred from the annotated domains with the

Pfam2GO mapping (version 1.8; Hunter et al. 2009).

Pfam A domain annotations were also used for quality con-

trol. Transcripts containing annotated domains not found in

any of the other Daphnia species or in any of 15 completely

sequenced insect protein sets (supplementary table S3,

Supplementary Material online) were manually checked for

contamination. These transcripts were compared with those

found to be of noncrustacean origin by MEGAN (version 5;

Huson et al. 2011).

Proteins were also annotated with InterPro domains via

InterProScan (version 5.13-52.0; Jones et al. 2014). We used

all databases implemented in InterProScan with the exception

of Coils. In addition to default parameters, the -pathways and

-iprlookup options were set to annotate genes with InterPro

terms and pathway identifiers. This additional domain anno-

tation was done in order to both validate the Pfam annotation

and increase the number of annotated proteins. This approach

increases the statistical power of the over-representation anal-

ysis for the sex-biased genes. For the same reason, the results

from the BLAST search against NCBI nr were used as input for

BLAST2GO (version 3.0; Conesa et al. 2005). The GO terms

transferred from Pfam domains are more reliable as they are

based on functional modules that were experimentally vali-

dated. However, this approach can be too conservative be-

cause only genes that have an annotated Pfam A domain

can be annotated with GO terms. Thus, the Pfam2GO

annotation was complemented with the less stringent

BLAST2GO annotation. As an additional source of functional

terms, we annotated K-numbers for KEGG pathways using

BLASTKOALA (release 72.0, accessed 1 Oct 2014; Kanehisa

et al. 2014).

Differential Gene Expression

Trimmed 50bp single-end reads produced by sequencing the

male and female samples were mapped to the D. galeata de

novo transcriptome using NextGenMap with increased sensi-

tivity (-i 0.8 - -kmer-skip 0 -s 0.0). Different mapping parame-

ters were initially tested to find the best sensitivity threshold.

By default, NextGenMap uses only a subset of the reference

seeds to increase mapping speed. However, this can be dis-

advantageous for genomes with a high proportion of dupli-

cated genes, which is why we increased sensitivity at the

expense of computational time. With an identity of 80%, a

large percentage of reads (~90%) still map, whereas at the

very conservative 95% identity, much more data is lost

(10�20% more reads are discarded than at 80% identity).

The required identity was increased from the default setting

(65% identity) due to the high number of recent gene dupli-

cations that can be expected based on the D. pulex genome

(Colbourne et al. 2011). For the same reason, all seeds were
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used to build the lookup table from the transcriptome and the

highest sensitivity setting was used.

The statistical analysis of differentially expressed genes was

done with DESeq2 (version 1.6.3; Love et al. 2014) as imple-

mented in the Bioconductor package (version 3.0; Gentleman

et al. 2004) in R (version 3.2.0; R core Team 2015). A two-

factor design was used to account for the factors sex (male vs.

female) and clone (J2 vs. M10). All P values were adjusted for

multiple testing using the Benjamini–Hochberg correction

(Benjamini and Hochberg 1995) as implemented in DESeq2.

To reduce multiple testing, DESeq2 only considers genes that

have a minimum number of reads. For our study design, this

minimum was 12 mapped reads across all libraries.

Furthermore, adjusted P values cannot be calculated for

genes with high variation among replicates or low median

expression across libraries (Love et al. 2014). A gene was con-

sidered sex-biased if the comparison for the factor sex yielded

an adjusted P value of 0.05 or lower. The degree of sex or

clone bias was determined by the fold-change difference be-

tween the sexes (or clones) as calculated in DESeq2. Based on

this, sex-biased genes were binned into four groups: <2-fold,

2- to 5-fold, 5- to 10-fold, and >10-fold difference in expres-

sion. In addition to the two-factor analysis, a one-factor anal-

ysis was also used with DESeq2 to study the effect of sex and

clone separately. All sex-biased genes in either the two- or the

one-factor analysis can be found in supplementary table S9,

Supplementary Material online.

Comparisons with D. pulex sex-biased genes were based

on the differential gene expression data set from Colbourne

et al. (2011). These sex-biased genes were detected on a tiling

microarray and the number of genes in each of the fold-

change groups mentioned above can be found in supplemen-

tary table S4, Supplementary Material online. For comparisons

with sex-biased genes in D. melanogaster, we ran DESeq2 on

an adult whole fly RNA-seq data set with two biological rep-

licates per sex by Meisel et al. (2012) with the same parame-

ters as for D. galeata (supplementary table S4, Supplementary

Material online).

To infer the function of sex-biased genes, the annotations

from Pfam, InterPro, and KEGG were used, along with any

available GO terms. Over-representation of these annotated

features was tested with Fisher’s exact test. To take into ac-

count the hierarchy between terms and the classification

into the three separate GO categories (molecular function,

cellular component, biological process), over-representation

analysis for GO terms was done with the Bioconductor pack-

age topGO (version 2.18.0; Alexa and Rahnenfuhrer 2010)

together with the GO hierarchy from the GO.db package

(version 3.0.0, Carlson 2015). Multiple testing corrections

(Benjamini and Hochberg 1995) were also performed in R

using the “stats” package. To determine orthologs to

D. pulex and the overlap of sex-biased genes between species,

the clustering into orthologous groups from OrthoMCL was

used. To test for the conservation of sex-biased genes, we

compared the number of clustering orthologs and BLAST

hits between female-biased gene (FBG) and male-biased

gene (MBG), and between both sets of sex-biased genes

and unbiased genes using Fisher’s exact test. Furthermore,

within the MBG and FBG, we tested whether there was a

relationship between the degree of sex bias (measured as

the log2 fold-change in expression between the sexes)

and a gene’s probability of having a BLAST hit or an ortholog.

This was done using binomial generalized linear models

(GLM) in R.

Evolutionary Rates

We analyzed the correlation of gene expression between the

J2 and M10 clones using quantile normalized RPKM values for

expressed genes (RPKM> 1). Spearman’s r was calculated for

male and female libraries separately using the mean of the

biological replicates. Furthermore, Spearman rank correlations

were calculated for MBG, FBG, and unbiased gene separately

based on the one-factor (separately for each clone) differential

expression analyses. Genes were required to be sex-biased in

at least one of the clones and genes with opposite sex bias

were excluded from the analysis. Only genes classified as un-

biased in both clones independently were used. Differences in

Spearman correlations between groups of genes were identi-

fied using the test of the equivalence of two correlation coef-

ficients after Fisher Z-transformation.

In addition to within-species comparisons, protein-coding

sequences were compared between species. For this, 1-to-1

orthologs based on bidirectional best-hit BLAST against

D. pulex proteins at a 1e-10 E value cut-off were determined.

These protein sequences were then aligned with MUSCLE

(Edgar 2004). Corresponding nucleotide sequences were

aligned based on the protein alignment using tranalign (Rice

et al. 2000) and Ka/Ks values were calculated using

KaKs_Calculator (version 2.0; Wang et al. 2010) with the de-

fault parameters. Based on the two-factor differential expres-

sion analysis, Ka/Ks ratios of MBG and FBG were compared

with each other and those of unbiased genes with the

Wilcoxon test. Genes were classified as positively selected if

they had Ka/Ks> 1 and P<0.05 (Fisher’s exact test) as calcu-

lated by KaKs_Calculator.

Annotation of the Sex Determination and Juvenile
Hormone Pathway

We searched the literature for key genes involved in sex de-

termination and the switch from asexual to sexual reproduc-

tion in Daphnia. To annotate these genes in our D. galeata

transcriptome, we used the domain annotations, the BLAST

results and the OrthoMCL clustering. We compared the

number of genes with those found in D. pulex and

D. magna and searched the alternative transcript set from

the EviGene pipeline for possible isoforms. Furthermore, we

checked whether these genes showed differential expression
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between the sexes or clones and compared the intensity and

direction of the bias in Daphnia species.

Sequence Availability

Raw sequence reads used for the de novo assembly (MiSeq

and HiSeq) were deposited in the European Nucleotide

Archive (ENA) (accessions PRJEB14950 and ERR1551394–

ERR1551397). The experimental set up for the analysis of

sex-biased genes is available in ArrayExpress (accession E-

MTAB-4981). The assembled contigs (okay-main set) are avail-

able at the ENA as a Transcriptome Shotgun Assembly Project

PRJEB14950. Annotation details (Pfam, nr BLAST, Uniprot), as

well as the “okay-alt” set of transcripts are available upon

request from the corresponding author. In order to retain

the assembler information, the prefix “Dgal” was used for

all transcripts names, followed by a character indicating the

origin of the contig: “o” for Oases-Velvet, “t” for Trinity, “s”

for SOAPdenovo, and “a” for Trans-ABySS.

Results

Transcriptome Sequencing

A total RNA sample from D. galeata from a mixture of 24

clonal lines from four different lakes (“assembly” set) was

sequenced using the Illumina MiSeq platform, producing a

total of 40.6 million reads. These consisted of roughly 20.3

million PE reads of 250bp length. After trimming and remov-

ing reads that were too short and/or contained ambiguous

bases, 16.7 million reads remained for the assembly. The ma-

jority (12.1 million) of these pairs could be merged together

using FLASH.

An additional 328 million SE RNA-seq reads of 50bp in

length were generated from males and females of two

clonal lines from two different lakes using the Illumina HiSeq

platform. Depending on the library, 0.30�10.44% of the

reads were excluded after trimming and quality control. In

total, nearly 317 million reads were available for subsequent

differential expression analysis, giving an average of 39.6 mil-

lion reads per library (supplementary table S2, Supplementary

Material online). In addition, 164.4 million reads from male

libraries were used in the de novo transcriptome assembly.

De Novo Assembly

For the de novo transcriptome assembly, multiple assemblies

with four different programs (Trinity, SOAPdenovo, Oases-

Velvet, Trans-ABySS) and different k-mer sizes were com-

bined. The de novo assemblers produced between 100,749

(Trinity) and 489,649 (SOAPdenovo) contigs, with a combined

total of 1,218,949 (table 1). Applying CD-HIT-EST where nec-

essary considerably reduced the redundancy of the data set;

583,357 contigs were merged together and further processed

with the EviGene pipeline. The EviGene pipeline, used to

merge different assemblies, classified 32,903 transcripts into

the okay-main set and 47,849 transcripts into the alternative

set. No particular assembler stood out as delivering very few or

many transcripts, but there were differences among assem-

blers (table 1). Furthermore, Trinity was better in recovering

the longest proteins: 532 of the 1,000 longest proteins were

obtained with this assembler. The number of obtained tran-

scripts agrees well with the number of described genes in the

related species D. pulex (30,810) (Colbourne et al. 2011). In

addition to the 32,903 transcripts, the tr2aacds script from the

EviGene pipeline also produced a set of CDS and proteins.

According to the output, we assembled 33,555 coding se-

quences and proteins. These numbers differ because one tran-

script from the okay-main set can have multiple open reading

frames (ORFs) and thus result in multiple protein sequences.

Transcriptome Metrics and Quality

The EviGene pipeline bases contig selection on sequences’

coding potential. Thus, a greater protein length is expected

from the EviGene pipeline assemblies compared with the as-

semblies obtained by individual programs. The average length

of the EviGene protein okay-main set was 306 amino acids

(median = 191). The average contig length of 1,189bp is

slightly longer than for D. pulex (1,063bp). In general, the

metrics for the D. galeata transcriptome are very similar to

those for D. pulex (supplementary table S5, Supplementary

Material online). Using NextGenMap, 86.83% of the PE

reads and 86.16% of the SE male reads could be mapped

back to the newly assembled transcriptome.

A statistical analysis of the longest 1,000 proteins in a tran-

scriptome can be informative regarding the quality of the as-

sembly. These very long proteins are described for several

species, tend to be conserved, and are usually difficult to as-

semble completely. For D. galeata, the average length of the

1,000 longest proteins was 1,637 amino acids, which is lower

than the observed maximum of around 2,000 amino acids for

insects and crustaceans, and falls below that obtained for

D. magna (2,080bp) (Daphnia Genomics Consortium 2015).

Thus, D. magna appears to have longer and more completely

assembled longest proteins. However, 85% of the longest

proteins for D. galeata were classified as complete according

to the EviGene pipeline classification algorithm. Furthermore,

>99% of the 1,000 longest proteins had a homolog in

D. pulex (BLASTx, E value�1e-07), which further supports

their high quality.

CEGMA is an analysis tool to find ultra-conserved core eu-

karyotic genes (CEGs) that should be present in any de novo

genome or transcriptome assembly. This analysis was carried

out by performing a BLAST search of the CDS (okay-main set)

obtained with the EviGene pipeline for 248 CEGs. To assess

the completeness of the assembly, these results were com-

pared with the number of CEGs in D. pulex and D. magna. For

D. galeata, 80% of the CEGs were identified as complete in

the CDS okay-main set, and this percentage increased to 93%
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when considering also partial hits. In comparison, more CEGs

were identified in D. pulex (93% complete and 98% including

partial hits) and D. magna (94% and 100%, respectively; table

2). However, considering that there is no genome sequence

available for this species, the recovery for D. galeata CEGs was

exceptionally high.

Another way to assess the quality of a genome or tran-

scriptome is to quantify the duplication rate of highly con-

served orthologs that are present in only a single copy in

related species. This is important because genetic diversity,

gene duplications, and/or the presence or multiple isoforms

can lead to misassemblies, where one gene is represented by

multiple contigs. The BUSCO analysis can be used to assess

the frequency of such misassemblies. Applying BUSCO to the

CDS okay-main set allowed the recovery of 2,378 D. galeata

transcripts corresponding to 2,421 single-copy genes of D.

pulex (98%; table 2). However, 59 of the recovered single

copy orthologs (2%) were present in multiple copies. This is

not unusual, as even the BLAST of D. pulex BUSCO genes

against itself produced 2% multi-copy orthologs. Overall,

the majority of the single-copy orthologs in D. galeata

showed very high recovery, with 88% of the genes being

over 95% complete (table 2).

Functional Annotation

We annotated the D. galeata transcriptome using BLAST,

orthologous clustering, protein domain annotation, GO, and

metabolic pathway annotation. In total, 24,641 of the 33,555

D. galeata proteins (73%) could be annotated with at least

one of the methods used in this study. The BLAST search

against NCBI nr yielded the largest number of annotations:

24,285 proteins (72%) had a good BLAST hit with E<1e-05.

According to the MEGAN analysis, 88% of these (21,210)

have their best BLAST hit to D. pulex proteins, 389 have

their best hit to a bacterial sequence, and 97 are most similar

to a plant protein. The others mainly have similarities with

other arthropod sequences (supplementary fig. S1,

Supplementary Material online).

Protein domain annotations yielded 16,237 annotated pro-

teins with the Pfam database alone and 19,729 using all data-

bases in InterPro except for Coils. GO terms based on

Pfam2GO could be found for 10,431 proteins and K-numbers

for the KEGG pathway analysis could be found for 7,192 pro-

teins of the okay-main set. Furthermore, 22,887 proteins from

the D. galeata okay-main set (68%) could be clustered in

orthologous groups with proteins from D. pulex, D. magna,

D. melanogaster, and N. vitripennis (see “Materials and

Methods” section). In a total of 21,403 orthologous groups

resulting from clustering of these five proteomes, 14,535 con-

tain D. galeata proteins. The clustering shows that many

Daphnia-specific groups (~5,000 per species) contain se-

quences from at least two Daphnia species, but none from

the insect species (fig. 1). The insect-specific groups are much

fewer in comparison (~1,500 depending on how many

species were used). Although the inclusion of more insect

proteomes results in a slight increase in the number of

insect-specific clusters, it does not change the overall pattern

(supplementary fig. S2, Supplementary Material online).

Shared orthologs between the Daphnia species do not re-

flect their phylogenetic relationship, with D. pulex showing

the greatest similarity to D. magna, rather than to D. galeata.

Using the okay-main set of transcripts, 9,461 orthologous

groups are shared by all three Daphnia species, 1,065 are

shared by D. pulex and D. galeata, 1,080 are shared by

D. pulex and D. magna, and 902 are shared by D. galeata

and D. magna. However, the annotation qualities differ

among the species and many D. magna genes were manually

annotated based on the D. pulex annotation. This has not

been done for D. galeata because the genome sequence is

not available. If putative alternative transcripts for D. galeata

are included (the okay-alt set), we find that there are more

shared orthologous groups between D. galeata and D. pulex

(1,193) than between D. galeata and D. magna (788) or be-

tween D. pulex and D. magna (985), correctly reflecting the

phylogenetic relationship.

Among the protein domains annotated with Pfam A, we

found 330 domain IDs that were present only in Daphnia, but

Table 2

Quality Measurements to Assess Transcriptome Completeness

Daphnia pulex D. magna D. galeata

Complete CEGs 231 (93%) 234 (94%) 197 (80%)

Partial CEGs 12 (5%) 13 (6%) 34 (13%)

BUSCO (total) 2,421 2,418 2,378

95� 100% complete 2,421 2,076 2,093

90� 95% complete 0 161 97

80� 90% complete 0 121 77

60� 80% complete 0 42 54

40� 60% complete 0 12 42

<40% complete 0 6 15

No hits 0 3 43
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not in insects. Of these 330 domains that are present in at

least one of the three Daphnia species, 72 are found only in

D. galeata (supplementary fig. S3, Supplementary Material

online). These 72 different domain types are present in 83

proteins, of which 72 are mono-domain proteins. Of these

proteins, 34 have no BLAST hit against NCBI nr, 10 have

their best hit to plants and 23 to bacteria. Plant and bacterial

sequences might reflect contaminations, as the animals were

not treated with antibiotics before sequencing and had fed on

algae the day before they were harvested. Horizontal gene

transfer is also possible, but rather unlikely. Only three proteins

have a BLAST hit to a protein of an insect species and might

thus represent valid proteins. A complete D. galeata genome

sequence will make it possible to evaluate the presence or

absence of these genes.

Sex- and Clone-Biased Gene Expression

To compare gene expression between the sexes, adapter-

trimmed 50bp SE reads from a total of four male and four

female RNA-seq libraries were mapped to the D. galeata tran-

scriptome (supplementary table S2, Supplementary Material

online). The male and female libraries were prepared from two

clonal lineages derived from different lakes: Jordan Reservoir,

Czech Republic (clone J2) and Müggelsee, Germany (clone

M10). Even though most assemblies that contributed to the

transcriptome are based solely on long paired-end reads from

females, we observe similar mapping efficiencies for the male

and female libraries (91� 92% and 92�94% of reads

mapped, respectively), which suggests that our transcriptome

has nearly equal representation of male and female

transcripts.

Using a two-factor model that accounts for both sex and

clone, we find a total of 10,253 differentially expressed genes

(adjusted P<0.05). Of these, 5,842 genes are differentially

expressed between males and females, and 5,492 are differ-

entially expressed between the clones. Of the sex-biased

genes, 2,518 are MBG and 3,324 are FBGs (table 3). For the

clone-biased genes, 2,873 are upregulated in M10 compared

with J2, whereas the opposite case holds for 2,619 genes

(table 3). There are 1,081 genes (10.5%) that are both sex-

and clone-biased (supplementary fig. S4, Supplementary

Material online). The majority of the sex-biased genes show

only low expression differences between males and females,

with almost half of the genes having a fold-change <2 (table

3). The 3,041 genes with more than a 2-fold expression dif-

ference between the sexes are depicted in figure 2. Some of

these genes show highly sex-biased expression in one clone,

but only a low degree of sex bias in the other. In contrast

to sex-biased genes, clone-biased genes have a stronger

expression difference between clone J2 and M10: the

median fold-changes of sex- and clone-biased genes are 2.0

and 3.1, respectively (Wilcoxon test P<0.001).

The one-factor analysis, in which the two clones were an-

alyzed separately for sex-biased genes (see “Materials and

Methods” section), revealed that clone J2 has many more

sex-biased genes than clone M10. In the combined two-

factor analysis, we find 5,842 sex-biased genes. Using only

clone J2 leads to a similar number of 5,488 sex-biased

genes (2,648 MBG and 2,840 FBG). However, using only

clone M10 results in only 1,573 sex-biased genes (545 MBG

and 1,028 FBG; fig. 3 and supplementary table S6,

Supplementary Material online). If we exclude the genes

FIG. 1.—Number of orthologous groups per species that are shared

between Daphnia and insects, are shared between multiple species within

either the insects or Daphnia or contain only proteins from one species

(species-specific).

Table 3

Numbers of Sex- and Clone-Biased Genes in Daphnia galeata and Their Degree of Bias as Determined in the Two-Factor Analysis

All <2-fold 2- to 5-fold 5- to 10-fold >10-fold

Sex-biased 5,842 2,801 2,416 294 331

MBG 2,518 1,264 984 126 144

FBG 3,324 1,537 1,432 168 187

Clone-biased 5,492 1,276 2,634 884 698

J2 2,619 685 1,187 419 328

M10 2,873 591 1,447 465 370
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that were already identified as sex-biased in the combined

two-factor analysis, we find an additional 1,691 differentially

expressed genes between males and females in clone J2, but

only 106 additional differentially expressed genes in clone

M10 (fig. 3). Consistent with the two-factor model, there

are more FBG than MBG in the two individual one-factor

analyses (supplementary table S6, Supplementary Material

online). Interestingly, in clone J2, the majority of genes show

low sex bias, similar to the two-factor analysis. In clone M10,

however, there are only very few genes in the category with

the lowest degree of sex bias (supplementary table S6,

Supplementary Material online). The median fold change of

sex-biased genes in clone M10 is twice as high as in clone J2

(4.6 and 2.3, respectively, Wilcoxon test, P<0.001). The one-

factor analyses identify 333 MBG and 736 FBGs that are sig-

nificant in both clones. In addition, this analysis finds seven

genes with the opposite sex bias in the two clones. Six of these

are male-biased in clone J2, but female-biased in clone M10.

The function of these genes is unknown. They either have no

annotation and no BLAST hit or are homologous to “hypo-

thetical proteins” of D. pulex. Two of the genes that are

female-biased in J2 but male-biased in M10 harbor Pfam A

domains. The gene Dgal_o31139t1 contains a homeobox

domain and Dgal_o39721t1 contains an RNA binding

domain. The latter is also more highly expressed (3.5-fold) in

M10 than in J2 in the two-factor analysis. These domains

could indicate that the proteins play a role in transcriptional

regulation. Overall, the one-factor analyses reveal that the sex

bias we observed is mainly driven by clone J2 (fig. 3 and sup-

plementary table S6, Supplementary Material online). We also

find that, in the one-factor analyses, there are more clonal

differences between males than between females (3,453

and 2,249 clone-biased genes for males and females, respec-

tively; Fisher’s exact test, P<0.001; fig. 3 and supplementary

table S6, Supplementary Material online).

GO and protein domain annotations were used to analyze

the differentially expressed genes from the two-factor analysis

for over-represented functional terms. Among the highly FBG

(>10-fold), we found mainly terms related to lipid metabolism

(5 genes) and protein-binding (24 genes). For highly MBG,

only the term “serine-type endopeptidase inhibitor activity”

is over-represented and found in three genes. Additionally,

when looking at all sex-biased genes, MBGs show enrichment

for multiple terms involved in G-protein coupled receptor sig-

naling. Among the FBG, transcription factors and terms in-

volved in nucleic acid binding, transcription and GTPase

binding were found. A complete list of over-represented GO

terms and Pfam domains is provided in supplementary tables

S7 and S8, Supplementary Material online. The genes that are

found in the one-factor analyses in both clones show very

similar GO-term enrichment. MBG are also enriched for

serine-type endopeptidase inhibitor activity and, additionally,

for RNA binding. FBG in the one-factor analyses show the

same terms for protein binding and lipid transport, but are

also enriched for pseudouridine synthase activity, which is

important in post-translational modification of cellular RNAs.

As there were only few annotations with K-numbers in

the KEGG analysis (21% of proteins have a K-number), no

FIG. 2.—Heatmap showing all sex-biased genes with more than a

2-fold expression difference between males and females in the two-

factor (combined) analysis. Clustering is based on Euclidean distances of

RPKM values.
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over-represented K-numbers could be found among the sex-

biased genes. For the FBG, 1,212 genes (36%) could be an-

notated with K-numbers, whereas for the MBG only 420

genes (17%) could be annotated.

We find that more FBG than MBG have orthologs in other

Daphnia or insect species (64% and 52% for FBG and MBG,

respectively; Fisher’s exact test, P< 0.001) and the higher the

sex bias, the less likely a gene is to have an ortholog (table 4).

However, this is only significant for FBGs, probably due to the

relatively low number of strongly MBGs (GLM, P< 0.05 and

odds ratio = 0.84 for FBG, P = 0.07 and odds ratio = 0.88 for

MBG). Not only are FBG more likely to have orthologs in

Daphnia or insect genomes, but they also have more BLAST

hits to the NCBI nr database (Fisher’s exact test, P< 0.001),

FIG. 3.—Results of the one-factor analysis showing sex-biased genes in each clone separately. (A) Dot plot showing the ratio of male/female expression

for the J2 clone and the M10 clone, highlighting those genes that show differences in sex bias in the one-factor analysis compared with the two-factor

(combined) analysis. Genes identified as sex-biased in the two-factor analysis or in the one-factor analysis for both clones are depicted in gray. Genes

detected as sex-biased only in the J2 clone are shown in orange, whereas those detected as sex-biased only in the M10 clone are shown in yellow. Green dots

indicate genes that are significantly female-biased in one clone, but significantly male-biased in the other. (B) Dot plot showing the ratio of M10/J2 expression

for females and males. Genes identified as clone-biased in the two-factor analysis or in the one-factor analysis in both sexes are depicted in gray. Genes

detected as clone-biased only in females are shown in orange, whereas those detected as clone-biased only in males are shown in yellow. Green dots indicate

genes that are significantly M10-biased in one sex, but significantly J2-biased in the other. (C) Proportional Venn diagram for female-biased genes in the two-

factor analysis and in each of the clones in the one-factor analysis. (D) Proportional Venn diagram for male-biased genes in the two-factor analysis and in each

of the clones in the one-factor analysis.
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suggesting that they are more conserved than MBG.

Furthermore, highly sex-biased genes have fewer hits to the

NCBI database, indicating that there is a negative relationship

between sex-biased expression and evolutionary conservation

(table 4; GLM, P<0.001 and odds ratio = 0.75 for FBG,

P< 0.001 and odds ratio = 0.74 for FBG). Comparing sex-

biased genes in D. galeata with those found in D. pulex

shows that 1,280 genes are FBG in both species (39% of

FBG in D. galeata), whereas 601 are MBG in both species

(24% of MBG in D. galeata). The direction of the sex bias is

different for 192 D. galeata genes. Ninety-five genes are

male-biased in D. galeata but female-biased in D. pulex,

whereas 96 show the opposite pattern. The genes that

differ in sex bias between Daphnia species are not limited

to those with weakly sex-biased expression, as 44%

show>2-fold sex bias in D. galeata and 9% show>5-fold

sex bias. The genes that are male-biased in D. galeata, but

female-biased in D. pulex, do not show an enrichment of any

functional terms. However, the genes that are female-biased

in D. galeata, but male-biased in D. pulex, are enriched for

collagens and genes that play a role in calcium-dependent

phospholipid binding.

Evolutionary Rates

The annotation and orthology mapping indicated differences

in conservation between FBG and MBG between species, with

MBGs being less conserved. To see if this pattern was present

within species, we investigated gene expression divergence

between the J2 and M10 clones. Even though the number

of sex-biased genes differs greatly between the clones (fig. 3),

expression between clone J2 and M10 is highly correlated in

both males and females (Spearman’s r= 0.9 in both sexes, fig.

4A and B). We also looked at the correlation of gene expres-

sion between the clones for the different classes of sex-biased

genes. If MBGs evolve faster in their expression level than

unbiased genes (UBG), we would expect lower correlations

between clones for MBGs. Our data indeed support this.

While unbiased genes show the highest degree of expression

correlation (test of the equivalence of two correlation coeffi-

cients using Fisher Z-transformation, P< 0.001 compared

with MBG and FBG), the effect is not large (Spearman’s r

only 0.02 higher than for FBG and MBG). However, MBG

and FBG do not differ significantly (P = 0.72, fig. 4C). Hence,

within species, we do observe faster evolution of gene expres-

sion in MBGs, as well as in FBGs compared with genes with

unbiased expression.

In order to compare rates of protein evolution of sex-biased

genes between species, we determined 1-to-1 orthologs be-

tween D. galeata and D. pulex and calculated the ratio of the

nonsynonymous and synonymous divergence rates (Ka/Ks). Ka/

Ks ratios could be calculated for 7,442 unbiased, 1,409 FBGs,

and 815 MBGs (with sex bias determined in the combined two-

factor analysis). First, we compared the different categories of

sex-biased genes to one another and to unbiased genes. MBGs

show significantly higher Ka/Ks than unbiased genes (Wilcoxon

test, P< 0.05), whereas FBGs show significantly lower Ka/Ks

than unbiased genes (Wilcoxon test, P< 0.001; fig. 5A). There

were six genes with Ka/Ks values significantly >1 (supplemen-

tary table S9, Supplementary Material online). Interestingly,

three of these genes are strongly female-biased (all with a

fold change> 20), whereas the other three are unbiased. The

first two of these female-biased genes are also female-biased in

D. pulex, but the third gene was not present on the tiling array

used for sex-biased gene expression and thus, we have no in-

formation about its expression in D. pulex. One of the unbiased

genes in D. galeata with a Ka/Ks value >1 is female-biased in

D. pulex, whereas the other two are also unbiased in D. pulex.

None of these genes has a known function, but four of them

have a BLAST hit to a hypothetical D. pulex protein. One of the

unbiased genes has a Pfam A domain and a corresponding GO

term indicating that it may be involved in protein binding and

chromatin mediated gene regulation.

Second, we tested for the relationship between the degree

of sex bias and Ka/Ks within the MBG and FBG, respectively.

We find a significant, albeit weak, positive correlation be-

tween the log2 expression fold change and Ka/Ks for both

FBG and MBG (Spearman rank correlation, P<0.001 for both

MBG and FBG; supplementary fig. S5, Supplementary

Material online). Hence, the stronger the sex bias, the faster

the gene evolves at the protein level (fig. 5B). This is in agree-

ment with our identification of orthologs in other species,

where we found that highly sex-biased genes have fewer

orthologs than lowly sex-biased genes.

Table 4

Conservation of Sex-Biased Genes in Daphnia galeata Based on Homology to Other Arthropod Species

Orthologous groups BLAST hit

Degree of bias FBG MBG FBG MBG

All 64% 52% 87% 65%

>10-fold 49% 41% 73% 40%

5- to 10-fold 56% 47% 85% 60%

2- to 5-fold 51% 46% 85% 65%

<2-fold 79% 58% 90% 69%

De Novo Transcriptome Assembly and Sex-Biased Gene Expression in the Cyclical Parthenogenetic Daphnia galeata GBE

Genome Biol. Evol. 8(10):3120–3139. doi:10.1093/gbe/evw221 Advance Access publication September 07, 2016 3131

Deleted Text: while
Deleted Text: while
Deleted Text: r
Deleted Text: '
Deleted Text: to
Deleted Text: biased
Deleted Text: to
Deleted Text: while
Deleted Text: greater than 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw221/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw221/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw221/-/DC1
Deleted Text: while
Deleted Text: greater than 
Deleted Text: while
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw221/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw221/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw221/-/DC1


Genes Involved in Sex Determination and the Juvenile
Hormone Pathway

We annotated genes that are putatively involved in the sex

determination pathway and the juvenile hormone (JH) path-

way in D. galeata. Orthology and annotation information

were used to identify these genes and we searched the

EviGene alternative set for possible isoforms. Furthermore,

we tested all genes for differential expression between the

sexes or clones, as especially the sex determination genes

are known for their sex-specific splicing and expression. We

FIG. 4.—Divergence between clones J2 and M10. (A) Expression correlation between females of clone J2 and clone M10 including Spearman’s r. (B)

Expression correlation between males of clone J2 and clone M10 including Spearman’s r. (C) Expression correlation between clones for male-biased, female-

biased, and unbiased genes as a measure of gene expression divergence. Error bars indicate 95% confidence intervals for 1000 bootstrap replicates.

Significance was determined by a test of the equivalence of two correlation coefficients after Fisher Z-transformation. *P< 0.05, **P< 0.01, ***P< 0.001.

FIG. 5.—Divergence between Daphnia galeata and D. pulex measured as Ka/Ks ratios between 1:1 orthologs. (A) Sequence divergence for male-biased,

female-biased, and unbiased genes. (B) Sequence divergence for the different categories of sex-biased genes according to the degree of sex bias. Outlier

genes with values> 0.8 are not shown on the plot, but were included in the statistical analysis. Significance was determined by a Wilcoxon test. *P< 0.05,

**P< 0.01, ***P< 0.001.
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were able to find orthologs of all key genes in these pathways

(table 5), which supports the completeness of the

transcriptome.

The JH pathway is an essential signaling pathway involved

in many functions in arthropods. Male sex-determination in

daphnids is initiated by environmental cues leading to synthe-

sis of MF, an analog of JH III produced in the mandibular

gland. MF signals are perceived by a methyl-farnesonate re-

ceptor (MfR) (LeBlanc and Medlock 2015; Toyota, Miyakawa,

Yamaguchi, et al. 2015) leading to a downstream cascade

that ultimately produces the male phenotype. We thus

searched the D. galeata transcriptome for genes from the JH

pathway that have been shown to contribute to MF synthesis

and signaling.

Farnesoic acid O-methyltransferase (FAMT) is the key reg-

ulator in MF biosynthesis in insects and crustaceans. A FAMT

gene has been identified in D. pulex (Colbourne et al. 2011). A

putative D. galeata FAMT gene has been identified based on

OrthoMCL clustering and BLAST results. It shows no differen-

tial expression or alternative transcripts in the D. galeata tran-

scriptome. An alternative path for JH III biosynthesis involves

the conversion of farnesoic acid (FA) to JH III acid instead of MF

and then further conversion to JH III. This second step is cat-

alyzed by the protein juvenile hormone acid O-methyltransfer-

ase (JHAMT) (Shinoda and Itoyama 2003). A candidate

JHAMT gene in D. galeata clusters with the D. melanogaster,

D. pulex, and D. magna genes. This gene does not show any

sex bias and no alternative transcripts were found.

A putative sex-lethal (sxl) homolog has been identified in

D. pulex (Kato et al. 2010) and also in the D. galeata tran-

scriptome. We found no alternative transcripts and sxl is the

only gene from the sex determination pathway that does not

show any sex-biased expression in either the two-factor or the

one-factor analyses. In D. magna and D. pulex, only one tra

gene, the target of sxl, has been identified and, in contrast to

other species, only one isoform is expressed in both sexes

(Kato et al. 2010; Chen, Xu et al. 2014). In the D. galeata

transcriptome, we also identified only one tra homolog.

Although we found a putative tra splice variant in the alter-

native set, this transcript is shorter than the main transcript

due to missing amino acids at the C-terminus and could be an

assembly artifact. For the D. galeata tra homolog, we observe

a slight female bias in expression. In the one-factor analysis,

this was only significant for clone J2, but M10 has a similar

fold change. We find two dsx orthologs in the D. galeata

transcriptome, both showing extremely male-biased expres-

sion with 11- and 34-fold upregulation in males compared

with females, respectively (consistent in the two-factor and

one-factor analyses). We found two putative fru homologs

in the D. galeata transcriptome. One is annotated as fru and

clusters with the D. pulex and D. magna fru and the other one

is annotated as “sex determination protein fruitless like” (fru-

like) and also clusters with a homolog in D. pulex. None of the

genes are differentially expressed between the clones in the

two-factor analysis. However, the one-factor analysis reveals

that fru is female-biased and fru-like is male-biased in clone J2.

The alternative set contains three putative splice variants of

fru. These may be true variants, as alternative splicing of fru

has also been reported in D. melanogaster (Hoshijima et al.

1991; Heinrichs et al. 1998).

Discussion

We present here the first comprehensive RNA-seq study of

sex-biased gene expression in Daphnia from females and

males without MF exposure. While MF frequently is used to

induce male production in the laboratory, it is not clear how

induced and naturally produced males differ. Nevertheless,

some differences between MF-induced and naturally pro-

duced males have been described. For example, MF-induced

males show delayed development and decreased fecundity

(Olmstead and LeBlanc 2002; Tatarazako et al. 2003;

Ginjupalli and Baldwin 2013). We could also observe this in

a preliminary study on our own D. galeata populations. A few

clones were kept in control conditions or in medium with MF

at a concentration of 400nM. Under MF, D. galeata had fewer

offspring (if any) and the mortality rate was much higher.

Table 5

Daphnia galeata Orthologs of Genes Involved in the Sex Determination and Juvenile Hormone Pathways Including Their Isoforms and Differential

Expression Information

Gene name D. galeata gene ID Differential expression D. pulex gene ID

sex-lethal Dgal_a24_b_768893 – JGI_V11_299722

Transformer Dgal_a30_f_668354a FBG (<2-fold) JGI_V11_324323

doublesex1 Dgal_s258843 MBG (>10-fold) JGI_V11_225264

doublesex2 Dgal_s190135 MBG (>10-fold) JGI_V11_299653

Fruitless Dgal_a80_b_445118b FBG in J2 (2- to 5-fold) JGI_V11_290551

fruitless-like Dgal_s441825 MBG in J2 (<2-fold)

farnesoic acid O-methyltransferase Dgal_o10886t1 – JGI_V11_208220

juvenile hormone acid O-methyltransferase Dgal_o22519t1 – JGI_V11_300180

aIsoform: Dgal_s424561.
bIsoforms: Dgal_ a34_b_717420, Dgal_o5567t3, Dgal_t24935c0t6.
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Whereas most previous studies in Daphnia were conducted

using microarrays designed from female-derived mRNA, the

reference transcriptome for our RNA-seq study was assembled

from both female and male mRNA sequences. This increased

the number of male RNA-seq reads that could be mapped to

the transcriptome: ~5% more reads from each male library

could be mapped to this transcriptome than to a female-de-

rived transcriptome. Thus, we had similar mapping efficiencies

in both sexes, allowing identification of strongly male-biased

and male-limited genes.

We also present a high quality transcriptome with detailed

annotations for the freshwater crustacean D. galeata. This

represents a valuable contribution to the available Daphnia

genomic resources for at least two reasons. First, its sister spe-

cies, D. pulex, has become a model organism for studies of

phenotypic plasticity and ecotoxicology, as well as for genetics

(e.g., to study gene duplication in adaption to new environ-

ments) (Colbourne et al. 2011). However, to assess which fea-

tures of this genome are lineage-specific and which are shared

with other species of crustaceans, it is important to extend

genomic studies to other Daphnids. Furthermore, additional

genomes and transcriptomes make comparative genomic

studies possible. Second, all three species for which genome/

transcriptome sequences are available (including D. galeata)

are dominant phytoplankton grazers in very different habitats:

D. pulex is found in large water bodies in Northern America,

D. magna occupies all kinds of small ponds and temporarily

freshwater bodies in Europe, and D. galeata belongs to a

species complex found in permanent freshwater bodies of all

sizes in Europe (for an overview see Flössner 1972). Our study

thus extends the ecological breadth that is covered and allows

for more comparative studies within the Daphnia genus,

whereas providing new resources for molecular ecology

studies in Europe.

Transcriptome Quality

De novo transcriptome assembly without an available genome

presents challenges, including resolving the different transcript

isoforms and closely related paralogs. For species with a high

gene duplication rate, like those from the genus Daphnia, this

task is far from trivial (Colbourne et al. 2011; Nakasugi et al.

2014). We used the tr2aacds script from the EviGene tran-

scriptome assembly pipeline to create a nonredundant,

coding-potential optimized set of 32,903 transcripts. This

pipeline has been applied for transcriptome assembly in

other species, such as Nicothiana benthamiana (Nakasugi

et al. 2014), Eleusine indica (Chen, McElroy et al. 2014), and

alfalfa cultivars infected with root-knot nematodes

(Postnikova et al. 2015), providing biologically useful sets of

transcripts for comparative studies.

Transcriptomes are evaluated based on the percentage of

reads that map back to the obtained assembly and/or the

recovery of conserved genes (Smith-Unna et al. 2015).

Recently, Honaas et al. (2016) assessed which quality mea-

surements are the most relevant for high quality transcrip-

tomes based on a comparative study using 90

transcriptomes assembled with six different programs. They

concluded that the combination of a high proportion of reads

that map back to the assembly, a high proportion of identifi-

able conserved genes, N50 values close to expected median

gene length and obtaining more contigs than the estimated

number of genes are the most informative quality features

that distinguish high quality assemblies. We used a similar

strategy to evaluate our transcriptome.

When performing a quality control analysis, the unusual

properties of Daphnia genomes need to be taken into ac-

count, as they could cause errors in the assembly

(Colbourne et al. 2011). Most importantly, the D. pulex

genome has been shown to contain many recent gene dupli-

cations with low divergence between the paralogous copies. It

is reasonable to expect a similar situation in D. galeata. The

assembly of closely related paralogs is a difficult computational

problem (Gilbert 2013) and could complicate downstream

analysis (Asselman et al. 2016). In addition, our assembly

was performed using a pool of individuals from different pop-

ulations. Thus, we expect some level of polymorphism within

individual genes. This can contribute to reduced map-based

scores because higher levels of mismatches are expected than

when using more homogeneous samples. To reduce the

impact of divergence on mapping quality scores, we used

NextGenMap for mapping, which has been shown to perform

well even when levels of divergence are high (Neme and Tautz

2016). With this strategy, a high percentage (~86%) of the

RNA-seq reads could be mapped back to our de novo tran-

scriptome indicating that it includes a large proportion of the

expressed genes in D. galeata.

The high recovery rates of BUSCO genes in our assembly

and the CEGMA analysis further indicate that the transcrip-

tome is nearly complete. In these analyses, the numbers are

slightly lower than for D. pulex and D. magna (table 2), which

is not surprising given that genome sequences are available for

these two species. The D. galeata transcriptome shows a rel-

atively low rate of fragmented transcripts as the total number

of transcripts (32,903) is similar to the number of protein-

coding genes in D. pulex (30,810) and D. magna (29,127),

and is 16 times smaller than before the removal of redundant

transcripts. BUSCO results indicate that the redundancy in our

transcriptome is also similar to D. pulex and D. magna. In

addition to the recovery of conserved orthologs in the

BUSCO and CEGMA data sets, many genes that are usually

highly conserved in arthropods or were identified in Daphnia

in previous studies are also present in the D. galeata transcrip-

tome. These include sex-determining genes, genes involved in

the response to juvenile hormone, and methyl-transferases.

We were able to annotate the majority of genes (73%).

The MEGAN analysis showed that the proportion of proteins

that have their best BLAST hit outside the arthropods, and
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thus may represent putative contamination, is low (7%).

However, this might underestimate non-D. galeata transcripts,

because 28% of all proteins have no BLAST hit against NCBI nr

and may also contain sequences from other species. The Pfam

analysis also indicated that the majority of putatively gained

domains might be the result of contamination. However, this

phylogenetic incongruence only concerns 36 proteins and an

alternative explanation for their occurrence in D. galeata could

be horizontal gene transfer. More detailed studies of these

proteins, as well as the sequencing of the D. galeata

genome, will help elucidate the origin of these sequences.

Sex-Biased Gene Expression

We find that only a relatively small proportion of genes in the

D. galeata transcriptome shows sex-biased gene expression

(18%). If we consider the clones individually, as was done

in the one-factor analysis (fig. 3), the percentage is even

lower for M10 (5% of all genes are sex-biased). If a more

conservative cut-off is applied to the differentially expressed

genes from the two-factor analysis and only genes with an

expression difference of 2-fold or more between the sexes are

considered, then only 9% of the genes are classified as sex-

biased. These results are similar to those observed in D. pulex,

where 25% of the genes are classified as sex-biased with a P

value cut-off of 0.05, and 10% are classified as sex-biased

with a fold-change cut-off of 2 (supplementary table S4,

Supplementary Material online). The proportion of sex-

biased genes is much less than that reported for Drosophila

species where as many as two-thirds of all genes can show

sex-biased expression when whole animals are assayed (Gnad

and Parsch 2006; Jiang and Machado 2009; Meisel et al.

2012). However, in D. melanogaster, the proportion of

genes showing sex-biased expression can vary greatly

among tissues (Huylmans and Parsch 2015). A possible expla-

nation for the low proportion of sex-biased genes in D. galeata

is that there is very little sexual dimorphism outside of the

reproductive organs and that the gonads are smaller relative

to body size than they are in Drosophila. However, ripe ovaries

(just before oviposition) also occupy a large section of the

ventral cavity in Daphnia. Another possible explanation is

that cyclic parthenogenetic reproduction leads to a loss of

sex-biased gene expression, especially among the highly sex-

biased genes. This has been observed in aphids, as well as in

hermaphrodite species of Caenorhabditis, where either the

lower frequency of sexual reproduction or self-fertilization

has led to a feminization and overall desexualization of gene

expression (Thomas et al. 2012; Jaquiéry et al. 2013). Since the

Daphnia genome experiences selection mainly in a female

background and only rarely in a male background, one

might also expect the loss of strongly MBGs, especially if

their expression is detrimental to females. Thus, the low

number of sex-biased genes, their low degree of sex bias,

and the excess of FBG relative to MBG could be a

consequence of cyclic parthenogenesis, which leads to a re-

laxation of purifying selection on MBGs. However, more stud-

ies are needed to test this hypothesis, especially in the light of

the high variation in sex-biased expression that is observed

between clones.

We find that D. galeata FBG are more likely to have ortho-

logs in other species and they are also more likely to be

female-biased in D. pulex (table 4). This indicates that MBG

evolve faster than FBG in Daphnia, a pattern also observed in

many other species (Eads et al. 2007; Ellegren and Parsch

2007; Parsch and Ellegren 2013). In general, highly sex-

biased genes have fewer orthologs and are less conserved,

indicating fast evolution. Whether this is a result of positive

selection or of relaxed selective constraint is still unclear.

Within the species (i.e., between the clones), we found that

both FBG and MBG have slightly lower expression conserva-

tion than UBG. However, there is no difference in conserva-

tion of expression levels between MBG and FBG (fig. 4C).

Furthermore, FBG show significantly greater sequence conser-

vation between species (fig. 5A). This result is consistent with

FBG being subject to greater purifying selection on the se-

quence level. Alternatively, these patterns could be the

result of FBG often having housekeeping functions and, in

general, showing greater pleiotropy in many species

(Larracuente et al. 2008). Furthermore, the fact that FBG are

more frequently exposed to selection than MBG due to the

skewed sex ratio in Daphnia could also contribute to this pat-

tern. However, the skewed sex ratio cannot fully explain the

observations, because the Ka/Ks ratios of FBGs are also lower

than those of unbiased genes, which should be subject to

selection at least as frequently as FBGs. MBGs, on the other

hand, show elevated rates of sequence evolution which is in

line with the lower conservation of these genes (Ellegren and

Parsch 2007; Parsch and Ellegren 2013, and citations therein).

Even though FBG are on an average more conserved, we find

three FBG, but no MBG, with Ka/Ks significantly >1, which is

indicative of positive selection (table 4). In addition, there are

three other genes with Ka/Ks rates consistent with positive

selection, of which at least one is female-biased in D. pulex.

Furthermore, we could also show that highly sex-biased genes

evolve faster than weakly sex-biased genes and that this pat-

tern is observed not only for MBG, but also for FBG (fig. 5B).

Thus, it is possible that adaptive evolution also occurs more

frequently in females than in males.

We find strong clonal differences in the number and iden-

tity of sex-biased genes between the two clones, J2 and M10

(fig. 3). Since the RNA used for sequencing was extracted

from a pool of individuals collected over the same time span

for both clones, we can exclude a sampling effect.

Furthermore, because the number of RNA-seq reads was

very similar for the two clones, the difference in the number

of sex-biased genes cannot be explained by differences in sta-

tistical power. Thus, the difference in sex-biased gene expres-

sion between the clones appears to have a biological basis. The
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two clones came from different habitats, the Jordan Reservoir

in Czech Republic and the Müggelsee in Germany, respec-

tively. Although Daphnia disperse over long distances, gene

flow is limited (see De Meester et al. 2016 for a recent

review) and local adaptation and founder effects may influence

phenotypic and genotypic divergence between locations

greatly. We therefore hypothesize that the two clones differ

in their investment in sexual reproduction, which may lead to

the activation of different genes through the use of different

molecular mechanisms. Lineage-specific differences in repro-

ductive strategy are supported by our observation that in the

laboratory, the clones produced males at different rates, with

males being more frequent in clone M10 than in J2. In con-

trast, clone J2 produced more ephippia than M10. In addition

to differing reproductive strategies, drift is probably stronger

and purifying selection weaker in males due to their relative

scarcity. This may result in reduced selective-constraint on the

sequence of MBGs and on the level of gene expression in

males. This is supported by the fact that we found significantly

more clonal differences in expression between males than be-

tween females when conducting a one-factor analysis (fig. 3

and supplementary table S6, Supplementary Material online)

and generally lower conservation and faster evolutionary rates

of MBGs (table 4 and fig. 5). Finally, differences between

clones may have been more apparent in our study because

of the natural male production. By inducing male production,

artificially added MF may elicit a more homogenous response

in the clonal lines that have been studied previously, therefore

obscuring differences among clones.

Juvenile Hormone Pathway and Sex
Determination Pathway

We found two key genes from the JH pathway in the

D. galeata transcriptome, FAMT and JHAMT. Neither of

these have any isoforms or sex-biased expression in either

the two-factor or the one-factor analyses. FAMT converts FA

to MF in many insect species (Wainwright et al. 1998;

Gunawardene et al. 2002; Bellés et al. 2005). However,

Toyota, Miyakawa, Hiruta, et al. (2015) suggested that

FAMT is not involved in MF synthesis in D. pulex and

that JHAMT catalyzes the final step of MF synthesis in

Daphnia instead of converting JH III acid into JHIII, which is

its known function in insects (Shinoda and Itoyama 2003). As

JH III does not appear to be produced in Daphnia (Daimon and

Shinoda 2013; Miyakawa et al. 2014), the exact function of

JHAMT remains to be determined. Although FAMT and

JHAMT orthologs are present in D. galeata, the lack of differ-

ential expression between sexes in our study indicates both

proteins might have lost their role in the JH pathway in D.

galeata as well.

Overall, the JH pathway components show strong similar-

ities among Daphnia species, indicating that the switch be-

tween asexual and sexual reproduction is also likely to be

conserved. Daphnia galeata strains that spontaneously pro-

duce males under standard laboratory conditions may help

to shed more light on the factors involved in the perception

of environmental stimuli and the resulting signal transduction

upstream of MF. A similar approach has already been used in

D. pulex for a strain that produces males under short light

conditions (Toyota, Miyakawa, Hiruta, et al. 2015; Toyota,

Miyakawa, Yamaguchi, et al. 2015). An interesting aspect

of D. galeata, however, is that some clones from the same

population produce males under standard laboratory condi-

tions, whereas others do not. Hence, clonal differences in re-

productive strategy can be studied within the same

population.

Although we were able to identify a homolog for the sxl

gene, it is the only gene from the sex determination pathway

that does not show any sex-biased expression in either the

two-factor or the one-factor analyses. This lack of sex-specific

expression was also found in another crustacean, the Chinese

mitten crab (Shen et al. 2014). To our knowledge, the expres-

sion of sxl has not been studied in other Daphnia species.

Similar to D. magna and D. pulex, we could identify only

one tra gene in D. galeata. The species differ at the gene

expression level, however. In D. pulex, expression of tra was

shown to be higher in males and ephippial females compared

with parthenogenetic females (Chen, Xu et al. 2014), whereas

we observe a slight female bias in D. galeata. This could rep-

resent a difference between species or it could be that females

used in this study were reproducing sexually and there is an

expression difference between sexually and asexually reprodu-

cing females. If this is the case, tra would be a good candidate

gene to study the switch to sexual reproduction, as has already

been suggested for D. pulex (Chen, Xu et al. 2014). Like other

members of the Daphniidae family (Toyota et al. 2013),

D. galeata possess two dsx copies. While dsx1 in D. magna

seems to be necessary for male trait development, the func-

tion of dsx2 is still unknown (Kato et al. 2011). The duplication

predates the species split and represents a cladoceran-specific

event (Toyota et al. 2013). In D. magna, both copies showed

male-biased expression (Toyota et al. 2013), which is in accor-

dance with our findings for D. galeata. The two homologs of

the fru gene in D. galeata show opposite sex bias in one of the

analyzed clones. Hence, while fru and fru-like may not be

involved in the general mechanism of sex determination in

D. galeata, they may play a role in different investment strat-

egies in sexual reproduction in the clones. However, to deter-

mine if D. galeata indeed possess two copies of this gene, if

multiple isoforms of fru are present, and if they play a role in

influencing investment in sexual reproduction will require fur-

ther experimental investigation.

The fact that we were able to annotate all key genes of the

sex determination and JH pathways speaks for the complete-

ness of our de novo assembly, and the gene expression results

fit very well with previous studies in Daphnia. In all three

Daphnia species for which genomes and/or transcriptomes
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are currently available, the sex determination pathway is

highly conserved and no species-specific gene duplications

have taken place. This suggests that the mode of sex deter-

mination is conserved across the genus. Because the number

and identity of sex-biased genes differ drastically between the

two D. galeata clones used in our study, it is possible that the

two clones have different reproductive strategies. Given their

differences in sex-biased expression between clones, fru and

fru-like are potential candidate genes for the clonal differences

in investment in sexual reproduction, and the opposite sex bias

of the two paralogs in the J2 clone might be indicative of

(partially) resolved sexual antagonism. However, we cannot

rule out the possibility that fru and fru-like expression are

influenced by another, not-yet-identified upstream factor

that differs between the two clones.

Supplementary Material

Supplementary figures S1–S5 and tables S1–S9 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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