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Deciphering the genotypic diversity of within-individual pathogens and verifying the
evolutionary model can help elucidate resistant genotypes, virulent subpopulations,
and the mechanism of opportunistic pathogenicity. However, observed polymorphic
mutations (PMs) are rare and difficult to be detected in the “dominant-lineage” model
of bacterial infection due to the low frequency. The four pooled group B Streptococcus
(GBS) samples were collected from the genital tracts of healthy pregnant women, and the
pooled samples and the isogenic controls were genomically sequenced. Using the
PMcalling program, we detected the PMs in samples and compared the results
between two technical duplicates, GBS-M001T and GBS-M001C. Tested with
simulated datasets, the PMcalling program showed high sensitivity especially in low-
frequency PMs and reasonable specificity. The genomic sequence data from pooled
samples of GBS colonizing carrier pregnant women were analyzed, and few high-
frequency PMs and some low-frequency PMs were discovered, indicating a dominant-
lineage evolution model. The PMs mainly were nonsynonymous and enriched in quorum
sensing, glycolysis/gluconeogenesis, ATP-binding cassette (ABC) transporters, etc.,
suggesting antimicrobial or environmental selective pressure. The re-analysis of the
published Burkholderia dolosa data showed a diverse-community model, and only a
few low-frequency PMs were shared between different individuals. Genes of general
control non-repressible 5-related N-acetyltransferases family, major facilitator superfamily
(MFS) transporter, and ABC transporter were positive selection candidates. Our findings
indicate an unreported nature of the dominant-lineage model of GBS colonization in
healthy women, and a formerly not observed mutation pool in a colonized microbial
community, possibly maintained by selection pressure.
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INTRODUCTION

The microbiome, which contains a metagenome more than 100-
fold of the human genome, may be closely related to the health
status of the host (Schwabe and Jobin, 2013; Wirbel et al., 2019).
Microbes colonizing at various human body parts such as guts,
lungs, stomach, and bladder are suggested to play roles in
infection, diabetes, obesity, cardiovascular diseases, and
cancers (Tang et al., 2017; Lloyd-Price et al., 2019; Parida and
Sharma, 2019; Zhou et al., 2019). The respiratory bacterial
communities in cystic fibrosis patients and the host-
microbiome interactions may be related to disease status and
treatment response, and microbiome modeling could help
establish individualized treatment plans and novel therapeutic
approaches (Bevivino et al., 2019). Respiratory viral infection-
induced microbiome alterations may cause secondary bacterial
pneumonia, which often has a more severe clinical course
(Hanada et al., 2018).

Metagenome analysis can help understand the different
microbial community structures and functions of microbes in
distinct individuals (Cai et al., 2017). High-throughput DNA
sequencing data has been used to reveal the genomic variety of
opportunistic bacteria, which are relevant to the status of
individuals. Some opportunistic pathogen species are
associated with diseases when there is an outgrowth narrowing
the microbe diversity, such as Enterobacteriaceae in intestinal
inflammation and infection (Hand 2016). Since only one or
several isolates cannot represent the microevolution profile of
the species, pooled samples for hundreds of colonies were used in
studying the diversity of Burkholderia dolosa, an opportunistic
pathogen, within cystic fibrosis patients. Six pooled B. dolosa
samples were sequenced and polymorphic mutations (PMs) with
a frequency of more than 0.03 were detected, recording the
genomic history of selection on the pathogen within its host
(Lieberman et al., 2014). Two evolutionary models of within-
patient bacteria were proposed in the study of Pseudomonas
aeruginosa, another opportunistic respiratory pathogen, the
diverse community model and the dominant lineage model
(Workentine and Surette, 2011; Chung et al., 2012). In diverse
community model, multiple adaptive lineages arise with an
intermediate frequency and coexist with other lineages, and
most of the PMs found in pooled samples are within an
intermediate frequency. In the dominant lineage model, the
PMs have much lower frequencies.

Sequencing the genomes of all sampled isolates can yield
comprehensive information about a bacterial species, and it has
been shown to be suitable for a diverse community model (Marvig
et al., 2015; Paterson et al., 2015). However, for a dominant lineage
model, this strategy may be ineffective because most isolates are so
closely related that there is limited variation among their genomes.
On the other hand, genome sequencing of the entire population or
the pooled sample is a promising and cost-effective approach for
evaluating the diversity of bacterial colonies (Lynch et al., 2014;
McAdam et al., 2014). Numerous tools such asMuTect2 (Cibulskis
et al., 2013), SNVSniffer (Liu et al., 2016), Lofreq (Wilm et al.,
2012), and Strelka2 (Kim et al., 2018) have been developed to detect
point mutations or indels (insertions and deletions). For detecting

PMs in cancer samples, MuTect2 demonstrates the highest
sensitivity. Most PM callers perform well for high frequency
(HF) PMs, and for a simulated tumor sample of 90% admixture
with a control sequence. The sensitivity of the best low frequency
(LF) PM caller, MuTect2, was reported to be 55.2% (Bohnert et al.,
2017). The sensitivity of LF-PM detection is important for the
dominant lineage model because the frequency of the majority of
PMs will be less than 0.1. So, procedures for PM detection with
high sensitivity and high accuracy of LF PM are necessarily
required, especially for the study of dominant lineage model, in
which false positive PMs may be introduced due to sequencing
error, contamination, and misalignment.

Group B Streptococcus (GBS), also known as Streptococcus
agalactiae, is the most common cause of neonatal sepsis that is
associated with a mortality rate of 5%–20% and serious
complications in newborns (Yu et al., 2011). A worldwide
review estimates that 1% of all stillbirths in developed
countries and 4% in Africa are associated with GBS (Seale
et al., 2017). Previous research has often focused on the
pathogen invading a host and its interaction with the host
defense mechanism (Marvig et al., 2015). However, only a few
studies have investigated the long-term effect of bacterial
colonization among healthy women. The GBS often colonizes
the female genital tract without causing any disease, and it can
also infect infants born from colonized women, showing an
approximate incidence rate of 50%. The distribution of GBS
serotypes in healthy colonized women has been reported to be
different from that in infected babies (Wong et al., 2011). The
colonization status of GBS in healthy women may help
understand the maternal neonate infection and the
development of the GBS vaccine.

In this study, an experimental and analytical strategy, with
higher sensitivity for PM detection and higher accuracy for
filtration has been developed to reach a balance that
minimizes the false negatives and false positives, customized
for the study of microevolution analysis. After the
comprehensive understanding of the metagenome aspect of
microbiome community, this method could be utilized to
further analyze the recognized key player species, especially
the conditional pathogenic bacteria. Using the PMcalling
protocol, written in java, we investigated the genomic diversity
of GBS, which turned out to be the first genomic example of
dominant lineage microevolution model. The validated results
may help decipher the diversity of GBS populations, the
evolutionary model, and the variations in genes under
evolutionary pressure. We also re-analyzed the published data
of B. dolosa to investigate PMs with lower frequencies, while the
reported work mainly focuses on the PMs with higher frequencies
(Lieberman et al., 2014).

MATERIALS AND METHODS

Sample Collection
This study was approved by the Institutional Review Board of
Chang Gung Memorial Hospital, Taiwan (103-2479B and 104-
9360B), and all methods were performed in accordance with the
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relevant guidelines and regulations. Four samples, GBS-M001,
GBS-M006, GBS-M007, and GBS-M008, were collected from the
genital tracts of healthy pregnant women enrolled at Chang Gung
Memorial Hospital, Taiwan, and all the participants had signed
the informed consent. Each sample was cultured in Lim broth
(Creative Microbiologicals, Taipei, Taiwan) overnight before
being subcultured on a 5% sheep blood agar plate, which was
then incubated at 37°C for 24 h. For each sample, 130 random
single colonies of GBS were harvested from the plate to construct
the pooled sample and transferred to a microcentrifuge tube for
DNA extraction. Multiplex PCR was performed using the four
pools to test the serotypes of these “isolates” (Wang et al., 2014).
Colonies in each pool were confirmed to belong to the same
serotype, and the four samples were serotype VI, Ib, Ia, and II,
respectively (Supplementary Table S1).

The construction procedure of the isogenic controls was
similar to that of the pooled samples. First, a random single
colony was picked from 130 colonies of the pooled sample, and
then the selected single colony was streaked on a new plate to
grow for 24 h. Finally, 130 single clones were randomly selected
from the new plate and mixed as the isogenic control sample
(Supplementary Figure S1).

Genome Sequencing
Genomic DNA from the pooled GBS isolates and isogenic
controls was extracted using a MoBio UltraClean Microbial
DNA Isolation kit (Yu-Shing Biotech, Taipei, Taiwan), and
libraries were constructed using an Illumina-compatible
Epicentre Nextera DNA Sample Prep kit (NuGen
Technologies, San Carlos, CA, United States) according to the
manufacturer’s instructions. The entire sequencing was
performed on an Illumina MiSeq platform (Illumina Inc., San
Diego, CA, United States), yielding paired-end reads (301 nt) for
each sample.

Five pooled samples (GBS-M001T and GBS-M001C were
technical duplicates of GBS-M001whose genome libraries were
constructed and sequenced at Chang Gung Memorial Hospital in
Taiwan and the Chinese National Human Genome Center at
Shanghai, respectively), four isogenic control samples, and two
single clones containing the validated PMs from the pooled GBS-
M001 sample were sequenced. The paired-end reads with an
overlapping tail sequence were merged via Flash (Magoč and
Salzberg, 2011) (version 1.2.11). The merged reads were then
filtered using sickle (version 1.33) to trim low-quality bases, and
reads shorter than 50 bps were discarded.

Two candidate PMs (ref: GBS-M002 70,583 in GBS-M001 G
0.99, A 0.01, and ref: GBS-M002 1,326,769 in GBS-M001 C 0.86,
A 0.14) were verified in each single clone of the GBS-M001 pooled
sample by PCR. The two pairs of primer were 5ʹ-GCTTTCTTG
CCATCAT-3ʹ/5ʹ-TACGCATCAAATCTGTTC-3ʹ and 5ʹ-TTC
GCCAGTTACATCAAG-3ʹ/5ʹ-GTCCGAGTCGTGTCAGTT-3ʹ.
The PCR products were sequenced with ABI3730XL.

Evaluation of Contamination
The merged paired-end reads were mapped to the Ribosomal
Database Project (RDP) database
(release11_5_Bacteria_unaligned.fa, http://rdp.cme.msu.edu/

misc/resources.jsp) using the BWA (version 0.7.15-r1140)
software (Li and Durbin, 2009) and classified into genus using
the RDP Classifier (version 2.12) with default settings (Wang
et al., 2007).

The selected reads were annotated using BLASTN to the NCBI
nt database with default parameters. If the best hit of a read in the
BLASTN result was not from GBS, the read was considered a
contaminant.

Proper Reference Selection
A total of 27 complete GBS genomes were downloaded from
NCBI. The genomic reads of the GBS pooled samples were
aligned to the 27 reference genomes, respectively, using the
BWA software. For serotype VI, the reference genomes SG-M8
were added when they were ready online. The SAM tools (version
1.4.1) software (Li et al., 2009) was used to calculate the coverage
or the covered reference genome length by three or more reads of
the pooled samples over the total length of the reference genome,
and the mapping rates, or the number of mapped reads over the
total number of high-quality reads. The fixed mutations and the
raw PMs of the pooled sample of various reference genomes were
obtained using in-house Perl scripts (https://github.com/
wanglinqi123/PMcalling) and the PM calling procedure, and
then the best reference genome with the highest coverage and
mapping rate was selected for further study (Supplementary
Table S2).

Raw Polymorphic Mutations Calling
Unique reads that mapped only one region of the reference
genome were retained for PM calling. Find the mismatch and
indel sites of each read according to the MD tag and CIGAR
value of the SAM file. We get the raw mismatch and fixed
mutations when it meets the thresholds (Table 1). After
removing the bases near by the end and indel sites, the raw
PMs were called from the raw mismatches when the quality
thresholds were reached. If there were raw mismatches that
meet the fixed threshold, the fixed mutation sites were further
supplemented.

TABLE 1 | PMs found in five GBS samples with PMcalling.

Sample Freq Raw PM number Passed PM number

GBS-M001T >0.1 494 14
50 1

≤0.1 454 13
GBS-M001C >0.1 465 14

10 1
≤0.1 455 13

GBS-M006 >0.1 294 27
141 2

≤0.1 153 25
GBS-M007 >0.1 169 16

7 0
≤0.1 162 16

GBS-M008 144 53
>0.1 2 1
≤0.1 142 52

Freq, frequency.
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Polymorphic Mutations Filtration
Clustered PM filter: If three or more mismatches in a narrow
range (50 bps), not counting the fixed mutations, occurred in a
single read, then the read was eliminated.

T-test filter: For a PM, the tail distance of every read
supporting the major and minor allele was calculated
(comparing with the full length of the read) to evaluate bias of
the distribution. If the distribution of the tail distance from reads
supporting a minor allele was significantly different to that of the
major allele in the T-test (p-value less than 1E-3), then the minor
allele was discarded. In addition, if the distribution of the
alignment direction from reads supporting a minor allele was
significantly different to that of the major allele in the T-test
(p-value less than 1E-3), then the minor allele was also discarded.

Isogenic control filter: The isogenic control, a single-colony
sample, was used to eliminate false-positive PMs. If a position
showed a polymorphism in the isogenic control, the same
polymorphism at the same position in the pooled sample was
rejected. In addition, if the read number of minor andmajor allele
of the PMs in the pooled sample was not significantly different to
that of the same PMs in the isogenic sample in the fisher-test
(p-value more than 1E-3), then the minor allele was discarded.

Flapping indel filter: If the distance between a PM and a high
frequency indel (frequency more than 0.1) was short (for
example, 10 bps), then the PM may have been a part of an
indel event because of alignment shifting.

Indel Calling and Filtration
To find the indel sites of each read according to the CIGAR value
of the SAM file, we get the raw mismatch (reads> = 4). After
removing the bases and indels near by the end, the raw indels
were called from the raw mismatch when the quality thresholds
(Minread> = 4, MinFreq> = 0.005) were reached. The Isogenic
control filter and T-test were same as the PM filtration. A raw
indel was discarded if it was caused by homopolymer error
(Mardis 2008) that was a single base insertion or deletion and
the reference was a string of consecutive bases. The remaining
candidate indels were manually checked using Integrated
Genome Viewer (IGV, version 2.3.97) to eliminate alignment
errors (Thorvaldsdóttir et al., 2013), and in-house Perl scripts
were used to mark potentially false indels caused due to
sequencing errors such as homopolymer errors to assist with
manual filtration (Mardis 2008).

Performance Evaluation and Parameter
Test of Pipeline by Simulated Data
The genome sequence of S. agalactiae strain SG-M8 was used as
template, and ten mutant sequences with 100 random variant
sites were generated with Mutate DNA (http://www.
bioinformatics.org/sms2/mutate_dna.html), an online tool of
Sequence Manipulation Suite (Stothard 2000). The eleven GBS
sequences and the genome of E. faecalis strain H25 were treated
with ART (Huang et al., 2012), a sequencing read simulator, and
twelve paired-end sequencing files in fastq format (Illumina,
250 bp*2) with the depth of 950X were generated. The
simulated dataset, admixture.fastq, was composed with 1% of

H25.fastq (as contamination), 25% of SG-M8.fastq, and 1%, 2%,
3%, 4%, 5%, 6%, 8%, 10%, 15%, and 20% of MutGBS1.fastq to
MutGBS10.fastq respectively, and contained 100 PMs for each of
the ten frequencies. GBS-M001 was selected as reference genome,
and SG-M8.fastq was used as isogenic control. Another six
simulated datasets generated with the same procedure were
also used in parameter test.

The numbers of true positive (TP) and false positive (FP) PMs
in test, and the total positive PMs (sum of true positive and false
negative PMs, TP + FN), were used to evaluate the effectiveness.
The sensitivity, aka true positive rate, was calculated as TP / (TP +
FN), the precision, aka positive predictive value, was calculated
as TP/(TP + FP), and the false positive rate was converted into the
number of false positive PMs per million base pairs to indicate the
specificity (Cibulskis et al., 2013).

Pathway Enrichment
The candidate positive PMs returned from the PM calling process
were further analyzed to identify the genes carrying these PMs
and the nonsynonymous PMs. KEGG Pathway analysis and

FIGURE 1 | The workflow chart of PMcalling. The next-generation
sequencing (NGS) reads of the pooled samples and the isogenic control
samples were mapped to the appropriate reference genomes, and the raw
PMs were called from the two BAM files by PMcalling. A series of filters
were used to remove the false positive PMs introduced by systematic bias,
contamination, misalignment, and duplicate regions. Then VCF files of positive
PMs and indels, as well as nucleotide sequences of the regions where PMs
are located were generated from pooled samples and the isogenic control
samples, respectively. PMs validated by PCR/Sanger can be further used for
genotypic diversity analysis of GBS.

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 8135994

Zhou et al. Streptococcus agalactiae Genomes

http://www.bioinformatics.org/sms2/mutate_dna.html
http://www.bioinformatics.org/sms2/mutate_dna.html
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


enrichment were performed on genes carrying the candidate
positive PMs using an online tool (Xie et al., 2011) (KOBAS
3.0, kobas.cbi.pku.edu.cn). The workflow of this study is shown in
Figure 1.

Positive Select Genes
The expected nonsynonymous mutation ratio of a gene was the
average nonsynonymous mutation ratio of all its codens
(Supplementary Table S3). Ka/Ks was calculated from the
actual Ka/Ks ratio (nonsynonymous PM number/synonymous
PM number) divided by the expected Ka/Ks ratio of the gene.
Fisher exact test is performed between the actual and the expected
nonsynonymous and synonymous PM numbers of the gene.

RESULTS

Workflow of Polymorphic MutationsCalling
After mapping the NGS reads of the pooled sample and the
isogenic control to the reference genome, the PMcalling protocol
calls the raw PMs from the two BAM files. Since sequencing error,
contamination, and duplicate genomic regions may cause
misalignment of short reads and thus generate false positive
raw PMs (Figure 2), a series of filters are used (Figure 1).
The clustered PM filter will eliminate the sequence reads if
more or equal mismatches, not counting the fixed PM, then
the parameter MisMatch within a range defined by parameter
MisLen is found in a single read. The T-test filter will determine
the tail distance, and the alignment direction of each read
supporting the major and minor allele. If the distribution of
the tail distances supporting a minor allele is significantly
different to that of the major allele in a T-test (p-value less
than 1E-3), or if the distribution of the alignment direction from
reads supporting a minor allele is significantly different to that of
the major allele in the T-test (p-value less than 1E-3), then the

minor allele, and the related PM, is discarded. The isogenic
control is the negative control, which is samples derived from
a single-colony (Supplementary Figure S1). If a position shows a
polymorphism in the isogenic control, the same polymorphism at
the same position in the pooled sample is rejected. In addition,
although the site is not considered a PM in isogenic control (for
instance, the minor allele read number is less than the threshold),
if the read number of minor and major allele of the PM in the
pooled sample is not significantly different to that of the same
position in the isogenic sample in the fisher-test (p-value more
than 1E-3), and then the minor allele will be discarded. The
accurate indel calling has been a challenge because of the limited
guidelines, low concordance rate among sequencing platforms,
alignment error, and incomplete reference genome in some cases
(Kumaran et al., 2019), so that the SNVs beside an indel are
usually questionable. If the distance between a PM and a high
frequency indel (frequency more than 0.1) is shorter than the
parameter (indel_distance, 10 bps), then the PMmay have been a
part of an indel event because of alignment shifting. The Flapping
indel filter will remove the related PMs.

Robustness Test of the Filters With
Simulated Data
To test the influence of parameters in PMcalling, a series of
simulated GBS sequencing datasets were generated from an
isogenic control dataset with artificial PMs of different
frequencies. After comparing the sensitivity, positive predictive
value, and the false positive rate under different parameters
(Supplementary Figures S2A‒S2J), a default combination was
selected and used in subsequent analysis (Supplementary Table
S4). During the adjustment of some parameters, including
“MLength,” “MQuality,” “PMDep,” “FixDep,” and “FixFreq,”
the PM numbers found were almost constant. And for the
other parameters, such as “MinRead,” “MinFreq,” “End,” and

FIGURE 2 | False PM caused by duplicated region/contamination/systematic error (bias). Mapping biases due to GBS genome duplication regions (A) and
sequencing errors/contaminated DNA (B) are shown.
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“p-value”, LF-PM results are usually slightly affected below allele
frequency of 0.02. The combination of “MisMatch” and “MisLen”
were the most sensitive parameters, which was effective in the
Clustered PM filter. While more positive PMs were found in the
results, the number of false positive PMsmight increase a little bit.
So the parameter values with high sensitivity and an acceptable
false positive rate were preferred.

PMcalling and MuTect2 were used for PM detection in
simulated datasets, and both protocols showed good
specificity, and PMcalling had higher sensitivity for the LF-
PMs (Figure 3). For the PMs with frequency more than 0.05,
the two methods both could find more than 98% of the positive
PMs, and for the PMs with frequency 0.02–0.04, PMcalling
detected 98% of the positive PMs while MuTect2 detected
90%. For the PMs with frequency 0.01, the sensitivities of
PMcalling and MuTect2 decreased to 81% and 74%.

Considering that PMs may have frequencies less than 0.01, we
constructed a simulated dataset containing PMs with frequency
0.005 (removing PMs with frequency 0.2) in a similar way and
detected PMs with Lofreq, Mutect2, PMcalling, SNVSniffer, and
Strelka2 (Supplementary Table S5; Supplementary Figure S3).
For the PMs with frequency more than 0.05, all the five variant
callers could detect more than 93% of the positive PMs. The

sensitivity of SNVSniffer and Lofreq gradually decreased when
the PMs frequency was between 0.02 and 0.04. While PMcalling,
Mutect2, and Strelk2 performed steadily and were able to detect
more than 90% of the positive PMs. For the PMs with frequency
0.005, the sensitivity of PMcalling, Mutect2, and Strelk2
decreased to 46%, 23%, and 5%, and the positive predicted
value decreased to 81%, 61%, and 38%, with false positive rate
of 6.2, 4.7, and 3.8 per million base pairs, respectively.

Validation of Polymorphic Mutations
Detection in Technical Duplicates of Group
B Streptococcus
Two datasets of the pooled sample GBS-M001, GBS-M001T and
GBS-M001C are technical duplicates, which were sequenced
twice from individual sequencing libraries, constructed from
the same sample DNA. These two duplicates were used for
PM detection case study between PMcalling and MuTect2.

Among the total 18 GBS-M001 PMs, 14 (78%) were found in
GBS-M001C with a sequencing depth of >900x, and 14 (78%)
were found in GBS-M001T with a sequencing depth of >700x.
Ten PMs including the only HF-PM (ref: GBS-M002 1,326,769, A
0.14/C 0.86) was shared in both samples. This indicates a

FIGURE 3 |Comparison of PM detection between PMcalling and Mutect2 with simulated datasets. The sensitivity is calculated by dividing the positive PM number
found in the result by the total number of positive PM in simulated datasets for each frequency. The Positive predictive value is calculated by dividing the positive PM
number found in the result by the total number of PM (positive and false positive) found for each frequency. The false positive rate is converted into the false positive PM
number per million basepairs found in simulated datasets for each frequency.
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reasonable sensitivity for LF-PMs, which could be estimated at
71% (10/14). There were 8 PMs found by MuTect2 in GBS-
M001T, and seven of them were shared with those found by
PMcalling. All the 6 PMs found byMuTect2 in GBS-M001C were
included in PMcalling results (Supplementary Table S6). Five
MuTect2 detected PMs were shared between GBS-M001T and
GBS-M001C. The PMcalling has almost doubled sensitivity for
finding more potential PMs, comparing to MuTect2, with the
same proportion of shared PMs in technical duplicates
(Figure 4).

Polymorphic Mutations Detection in Group
B Streptococcus Pooled Samples
Besides the two duplicate samples, GBS-M001T and GBS-
M001C, a total of five GBS pooled samples were analyzed. The
PMs found in the samples are from 14 to 53, and there were only 0
to 2 HF-PMs in each sample (Table 1). Most of the discarded raw
PMs, from 77% to 97%, were trimmed by “Clustered filter.” The
fact that rare HF-PMs existed in GBS suggested a dominant
lineage evolution model of the samples.

Nonsynonymous Positive Polymorphic
Mutations in the Coding Area
Of the 18 positive PMs found in the two GBS-M001 pooled
samples, 13 PMs were in the coding regions of 13 genes, of which
11 (85%) were nonsynonymous PMs. The other three samples,
GBS-M006, GBS-M007, and GBS-M008, resulted in similar
trends, wherein more than half of the PMs in the coding
regions (58%–91%) were nonsynonymous mutations. These
mutations may have influenced the function of 71 genes in
total (Supplementary Table S7). Pathway analysis
(Supplementary Table S8) demonstrated that these genes
were enriched (p-value less than 0.05) in Quorum sensing,
Glycolysis/Gluconeogenesis, ABC transporters, Biosynthesis of

secondary metabolites, Pyrimidine metabolism, Degradation of
aromatic compounds, Purine metabolism, Biosynthesis of
antibiotics, and Nicotinate and nicotinamide metabolism. In
addition, the verified LF-PM in GBS-M001 was located in the
aldehyde-alcohol dehydrogenase gene (WP_000137036.1,
p.G504S), and the LF-PM belonged to the iron-containing
alcohol dehydrogenase (Fe-ADH) domain (Pfam: PF00465,
470-858). The verified HF-PM in GBS-M001 was located in
the bifunctional pyrimidine operon transcriptional regulator
(WP_000823056.1, pyrR, p.S168I).

Polymorphic Mutations Detection of
Published B. Dolosa Datasets
Six public genomic datasets of pooled B. dolosa samples were
analyzed with PMcalling process. There were 112, 63, 79, 84, 54,
and 257 PMs with an allele frequency more than 0.03 found in six
samples, respectively (Supplementary Table S9). The 0.03 allele
frequency was the threshold used by the original publication to
eliminate error prone LF-PMs. Among the total 616
nonredundant PMs, 468 (76%) PMs were shared with the
reported result which included 678 PMs (Lieberman et al.,
2014), while 252 (94%) HF-PMs (frequency more than 0.1)
were shared (Supplementary Figure S4). When the frequency
threshold was set to more than 0.02, there were 1,830
nonredundant PMs found in six samples (Supplementary
Table S10), and 1,393 PMs of them were in coding regions in
1,109 genes, including 1,061 nonsynonymous mutations and 332
synonymous mutations (Table 2). A total of 22,410 PMs with a
frequency more than 0.01 were detected (Supplementary Table
S3), and 17,634 PMs were in coding regions of 4,395 genes
including 13,215 nonsynonymous mutations and 4,419
synonymous mutations.

We found 53 genes potentially under positive selection
(Supplementary Table S11) with eight or more
nonsynonymous PMs (allele frequency more than 0.01, and
Ka/Ks ratio more than 2). Three genes annotated as general
control non-repressible 5-related N-acetyltransferase (GNAT)
family, DUF839 domain-containing protein, and major
facilitator superfamily (MFS) transporters were found
significantly different from the expected distribution of
nonsynonymous and synonymous PM numbers by Fisher
exact test (p-value less than 0.05), suggesting positive selection.
All the 15, 13, and 11 PMs in the three genes were
nonsynonymous.

DISCUSSION

Since the theoretical frequency of PM in pooled sample may be as
low as 1%, the thresholds of the parameters are widened to
include more raw PMs and increase the sensitivity. The strict
filters are designed to eliminate the false PMs that introduced by
sequencing error, contamination, misalignment, and duplicate
genomic regions, so that it can reach a balance between sensitivity
and specificity. When the allele frequency was at a high level, the
adjustments of most protocol parameters influenced the PM

FIGURE 4 | Number of PMs found in technical duplicates with PMcalling
and MuTect2.
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results slightly when using simulated data, so that the robustness
is reasonable in the high frequency region. However, the variation
of some parameters showed significant effects on the detection of
LF-PMs when the allele frequency was below 0.02, with the
combination of “MisMatch” and “MisLen” being the most
sensitive parameters. Because false positives would be easily
eliminated compared with false negatives in further
experimental validation, the balance toward sensitivity of
PMcalling is acceptable.

The validation using simulated sequencing data showed that
PMcalling performed higher sensitivity and predictive positive
value for detecting the LF-PMs compared with the other four
variant callers. The possible reason is that the commonly used
variant callers, such as Mutect2, Lofreq, and Strelka2 are designed
mainly for detecting somatic variants in the human genome.
Compared to the bacterial genome, the human genome is diploid
and has many repetitive regions. The complexity of the human
genome may increase the difficulty of variants detection, and also
limit the threshold of filtering parameters for many variant
callers. PMcalling has been customized for detecting variants,
or PMs, from the genomic data of pooled bacterium samples. The
filtering parameters of PMcalling are tailored to specific models
and therefore may be more rigorous and effective in targeting
bacterial genomic variation. However, real data are much more
complicated, and the sensitivity and specificity may be lower than
simulated data.

The proposed advantage of PMcalling in variant detection of
pooled bacterium samples was further described in an analysis of
two GBS technical duplication samples, with experimentally
validated PMs. The PMcalling has almost doubled sensitivity
for finding more potential PMs, comparing to Mutect2, with the
same proportion of shared PMs in technical duplicates.
PMcalling and Mutect2 shared Five PMs in the T and C
duplicates, and one of them, the HF-PM (ref: GBS-M002
1,326,769, A 0.14/C 0.86), was validated (Supplementary
Table S6). However, a validated LF-PM (ref: GBS-M002
70,583, A 0.01/G 0.99) was shared in both samples in
PMcalling results but was absent in MuTect2 results. The
validation of this PM added credits to the sensitivity of
PMcalling. A MuTect2 detected raw LF-PM (ref: GBS-M002
1,912,682, C 0.01/T 0.99) was filtered as “clustered” in sample
GBS-M001T, but was a PASS in sample C. A PM (ref: GBS-M002
593,534, C 0.01/T 0.99) was found only in GBS-M001T by
MuTect2 and was marked as “clustered PM” by PMcalling.
The according reads were aligned to known bacterium
genomes, finding that they were contaminations from
Enterococcus. Another PM (ref: GBS-M002 1,750,144, C 0.01/T
0.99) was found in both samples with PMcalling, and was

discarded as “alt_allele_in_normal,” which means found in
isogenic control by MuTect2 in GBS-M001T. Further
validation is needed. Two shared and six unique PMs in C
and T samples, were detected by PMcalling but not by
Mutect2. MuTect2 ignored these PMs mainly because of their
low frequency. Since the pooled sample is composed of 130
strains, the frequency of a single variant could be less than
0.01. After checking the IGV files of the LF-PMs manually, we
retained these PMs for further verification. Two PMs (ref: GBS-
M002 396,424, T 0.01/C 0.99, and ref: GBS-M002 1,320,879, A
0.01/T 0.99) were found in GBS-M001T by both PMcalling and
MuTect2, but were absent in GBS-M001C. These PMs indicate
the possibility of missing LF-PMs in a single experiment by
chance. If taking the “sensitivity of sample” into consideration,
duplicate samples would be a better sequencing strategy for
dominant lineage models, contributing to a higher sensitivity
of PM detection. Two random sampling processes are more
efficient than double the depth of single sequencing
experiment. If the sensitivity of a single analysis is about
60%–70%, the duplicates may potentially increase it to 80%–90%.

Choosing a proper reference genome helps eliminate false
positives caused by duplicate genomic region errors. For example,
there was a one-copy region in GBS strain A, whereas there were
two copies of this region in strain B. When we used A as a
reference, there was a B-like strain in our pooled sample, and the
NGS reads of the two regions may be mapped onto the only
region present in strain A. False-positive PMs and HF-PMs may
occur in bases that were different between the two genomic
regions during the PM calling processes. We found that the
coverage rate of the reference genome and the mapping rate
of the sample reads were relevant. In addition, the advantage of
choosing a reference with a high coverage and mapping rate was
to lower the number of fixed mutations, which would interfere
with proper read mapping if there were too many. Therefore, the
reference genomes with the highest coverage and mapping rates
and the lowest number of fixed mutations were selected for
further analysis.

With improvements in genome sequencing technology, longer
reads provide more information than previously obtained to
improve the accuracy of the haplotype, or clustered PM,
detection, which has been proven to be essential to filter out
duplicated regions and contamination causing false-positive
results in this study. Most of the raw PMs were discarded in
the clustered PM filter, and contamination and duplicated
genomic regions of some strains in the pooled sample resulted
in all of the clustered PMs. Interestingly, reads of the HF clustered
PMs were often mapped to two or more adjacent duplicate
regions of the SG-M8 genome, which was sequenced by the

TABLE 2 | PMs, synonymous and non-synonymous mutations found in six B. dolosa samples with PMcalling at different frequency thresholds.

Freq threshold PM number Synonymous mutation number Non-synonymous
mutation number

>0.02 1830 332 1061
>0.01 22410 4419 13215

Freq, frequency.
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PacBio platform. The PacBio platform provides long reads to
distinguish repeat regions in the genome. It may be difficult to
assemble these adjacent duplicate regions correctly in genomes
with relatively short reads sequenced by the Illumina platform.
However, due to the existence of horizontally transferred genes
and highly conserved regions in bacteria, there is a small risk that
a positive PM is considered a contaminant, and the accuracy of
this filtration method needs further verification. The isogenic
control was generated from a single colony randomly selected
from the pooled sample, and its genomic reads should
theoretically not have had any positive PMs, so the PMs
found in isogenic control were assumed to be introduced from
systematic bias. Only 8–20 variants were found in the four
isogenic control samples, and the total size of GBS genome
was more than 2 million base pairs, so there was little
probability that a true PM was accidentally identical with the
variant found in the isogenic control. In this study, most of the
false-positive PMs were discarded in the clustered PM filter, and
the isogenic control filter appeared to have a limited effect, except
that approximately half of the raw indels were eliminated by this
filter when the clustered filter was not efficient after merging
adjacent indels, due to random alignment shifts around the indel
region. The other half of the raw indels were considered to be
possible homopolymer errors, which often occurred when there
were six or more identical bases in a row (Mardis, 2008). When
there was a long string of identical nucleotides in the genome, a
false indel of the same base may have been introduced.
Homopolymer errors were one of the primary disadvantages
of the 454 sequencing platform and may also occur in other
platforms at a much lower frequency (Marinier et al., 2015).

Using the validated PMcalling protocol, we reported a
dominant lineage evolution model of GBS carrier pregnant
women using a pooled sample sequencing strategy. In
particular, detection of LF-PMs has been improved. Previously
published studies have primarily focused on the diverse
community model supported by HF-PM observation
algorithms (Boitard et al., 2012; Ferretti et al., 2013;
Lieberman et al., 2014). Sequencing the genomes of every
bacterial isolate collected from a single individual is a
straightforward strategy for a diverse community model.
However, in a dominant lineage model, this strategy may not
be effective because of the homogeneity among individual
genomes. Genome sequencing of the entire population or
pooled isolates is a promising approach despite the technical
challenges of identifying LF-PMs. Taken together, the average
sequencing depths of the pooled and isogenic samples in this
study ranged from 486 to 1,048 (Supplementary Table S1), and
the positional depths calculated using the number of reads
mapped to each base pair position of their best reference
genomes ranged from 400 to 900, which ensured the
sensitivity of the LF-PMs.

A large portion of the positive PMs in the coding regions was
nonsynonymous, suggesting positive selection pressure in those
affected genes. Interestingly, some of these genes were found
repeatedly in different samples (Supplementary Table S7), and
these genes were related to ABC transporter, dihydrofolate
reductase, phosphoribosylformylglycinamidine synthase, and

family stress response membrane protein. Dihydrofolic acid
(conjugate base dihydrofolate) is a folic acid (vitamin B9)
derivative that is converted into tetrahydrofolic acid by
dihydrofolate reductase. Tetrahydrofolate is required to
produce both purines and pyrimidines, which are the building
blocks of DNA and RNA. The dihydrofolate reductase has been
targeted by various drugs to prevent nucleic acid synthesis
(Podnecky et al., 2017). The pathway analysis showed
enrichments of genes with nonsynonymous PMs in some vital
pathways, including quorum sensing, glycolysis/gluconeogenesis,
pyrimidine and purine metabolism. Quorum sensing is involved
in the development of resistance to multiple drugs in the microbe
(Chen et al., 2016). Extended samples and further investigations
may help elucidate how the diversity of GBS and the frequency of
certain PMs change over time or under different
environmental cues.

This study was inspired by the work of Lieberman et al. (2014),
who used pooled samples to investigate microevolution of B.
dolosa within patients, and found it was consistent with the
diverse community evolution model. A total of 678 PMs
(allele frequency more than 0.03) were reported. The
PMcalling was used to re-analysis these public genomic data
of pooled bacterial samples and focused on LF-PMs. The result of
public B. dolosa datasets showed a large number of LF-PMs, and
the PM number increased from 616 to 1,830 and 22,410 while the
frequency threshold decreased from 0.03 to 0.02 and 0.01.
Interestingly, only a few (1%–3%) LF-PMs were shared
between each two samples from different individuals, with
allele frequency threshold from 0.03, 0.02 to 0.01. This finding
suggests that in each B. dolosa colonized microbial community,
there is a formerly not observed mutation pool, which probably
contributes to the response to the environment or host stress.
Three genes annotated as GNAT family N-acetyltransferase,
DUF839 domain-containing protein, and MFS transporter,
were good positive selection candidates, and the functions of
the former two genes were both unclear and needed further study.
The major facilitator superfamily (MFS) was one of the two
largest families of membrane transporters, and some members of
MFS associated with antimicrobial-resistant were found under
positive selection in Salmonella (Liao et al., 2019). Besides the
genes related to MFS transporter and ABC transporter, the other
candidate genes (Supplementary Table S11) have been reported
to be under positive selection in bacteria, such as porin (Vuotto
et al., 2017), DNA topoisomerase (Rojas et al., 2017), OmpA
family protein (Ngwamidiba et al., 2006), glutamine--fructose-6-
phosphate transaminase (Liao et al., 2019), cytochrome P450
(Wan et al., 2017), and penicillin-binding protein 2 (Zhan and
Zhu, 2018). The research on three penicillin-binding proteins of
Streptococcus pneumoniae identifies several sites which are
positively selected and correlated with discriminating
amoxicillin MIC values (Stanhope et al., 2008). Evidence of
positive selection in a penicillin-binding protein 2a of
methicillin-resistant Staphylococcus aureus suggests the
selective pressure operating the gene is not only related to the
antibiotic use, but is more probably related to the host’s
inflammatory or immune response during infection (Zhan and
Zhu, 2018). Some virulence factor genes of Streptococcus pyogenes
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are also found interacting with human immune system and face
direct selective pressures (Wilkening and Federle, 2017). The
mechanism of copious B. dolosa strains with major LF-PMs
colonizing in host may be associated with the effect of very
long-time interaction with host immune system, and selection
pressures may maintain these LF-PMs.

CONCLUSION

We have provided a new tool to investigate the genomic data of
microevolution study, digging into the low frequency variation
field, which has not been systematically analyzed before.
Considering the influence of subtle contamination,
duplicated regions, and sequencing platform errors, a
protocol of LF-PM calling has been suggested. After the
comprehensive understanding of the metagenome aspect of
microbiome community, this protocol could be utilized to
further analyze the recognized key player species (Jordán
et al., 2015), especially the conditional pathogenic bacteria.
Our data are the first genomic-level description of the
population structure of a “dominant lineage” bacterial
evolution model given the fact that rare HF-PMs existed in
GBS samples among healthy people. Although the dominant
strains of GBS were susceptible to antibiotics, minor strains
carried mutations in some vital pathways, which may be the
result of antimicrobial or environmental selective pressure.
This finding has been supported by the re-analysis of the
published genomic data of B. dolosa samples with diverse
community evolution model. The results of this study will
help decipher the diversity of GBS colonization and variations
in genes under evolutionary pressure have implications in the
development of GBS vaccine.
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