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Summary 

Most eukaryotic mRNAs are subject to considerable post-transcriptional modification, including
capping, splicing, and polyadenylation. The process of polyadenylation adds a 3� poly(A) tail and
provides the mRNA with a binding site for a major class of regulatory factors, the poly(A)-binding
proteins (PABPs). These highly conserved polypeptides are found only in eukaryotes; single-celled
eukaryotes each have a single PABP, whereas humans have five and Arabidopis has eight. They
typically bind poly(A) using one or more RNA-recognition motifs, globular domains common to
numerous other eukaryotic RNA-binding proteins. Although they lack catalytic activity, PABPs
have several roles in mediating gene expression. Nuclear PABPs are necessary for the synthesis of
the poly(A) tail, regulating its ultimate length and stimulating maturation of the mRNA. Association
with PABP is also a requirement for some mRNAs to be exported from the nucleus. In the
cytoplasm, PABPs facilitate the formation of the ‘closed loop’ structure of the messenger
ribonucleoprotein particle that is crucial for additional PABP activities that promote translation
initiation and termination, recycling of ribosomes, and stability of the mRNA. Collectively, these
sequential nuclear and cytoplasmic contributions comprise a cycle in which PABPs and the poly(A)
tail first create and then eliminate a network of cis-acting interactions that control mRNA function.
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Gene organization and evolutionary history 
RNA-binding proteins are often purified and classified on

the basis of the RNA sequences with which they interact [1].

One class of these factors comprises proteins recognizing

the homopolymeric polyadenylate tracts that are added to

the 3� end of most mRNAs. Poly(A)-binding proteins have

been identified in many eukaryotes, but appear to be absent

from prokaryotes. PABP genes have been cloned from a

number of organisms, and their sequences are available in

several databases; a current list with database links is avail-

able as an additional data file with the online version of this

article and on our website [2]. Typically, only one gene

encoding cytoplasmic PABP (PABPC) is present in the

single-cell eukaryotes, whereas multiple PAPBC genes are

present in metazoans and plants (Table 1, Figure 1). A single

gene encoding a nuclear PABP (PABPN) has also been iden-

tified in cow, frog, human, mouse, fly, worm, and yeasts

(Figure 1). A phylogenetic analysis comparing all known

PABP protein sequences groups PABPs by organism type

(such as metazoans, yeast, and plants) and also identifies

similarities among the PABP family members (Figure 1). To

date, genes encoding a single nuclear PABP and four cyto-

plasmic PABPs, as well as four pseudogenes, have been

identified in human cells, and their chromosomal locations

have been mapped (Table 2). In humans, three lineages of

PABP proteins are observed: cytoplasmic PABPs (PABPC1,

PABPC3, and iPABP); nuclear PABP (PABPN1); and

X-linked PABP (PABPC5). Within the PABPC group,

PABPC1 and PABPC3 are most closely related. Interest-

ingly, the mouse gene encoding the alternate PABP,



mPABPC2, seems to be a retroposon, as it has no introns

and its promoter is distinct from that of mPABPC1 [3];

mPABPC2 is most closely related to hPABPC3, which also

lacks introns [4]. Similarly, all the characterized PABPC5

genes lack introns [5], suggesting that they too may be

derived from retrotransposition events.

A comparable evolutionary analysis was reported for the

eight PAB genes identified in the plant Arabidopsis

thaliana [6]. Phylogenetic comparisons coupled with

expression analyses identified four classes of PABP pro-

teins. In class I (PAB3 and PAB5), expression is limited to

reproductive tissue; class II members (PAB2, PAB4 and

PAB8) are highly and broadly expressed; class III PABPs

(PAB6 and PAB7) have a restricted, weak expression

pattern; and the sole member of class IV (PAB1) has low,

tissue-specific expression. Comparison of the Arabidopsis

PABPs with those from rice indicates that the duplication

events which gave rise to classes I-III in flowering plants

occurred prior to the divergence of monocots and dicots,

more than 200 million years ago [6]. By analyzing the con-

servation and loss of introns within the PABP gene family,

an evolutionary model has been derived in which an ances-

tral PABP independently gave rise to classes II, III and IV,

with class I subsequently derived from class II [6]. Although

all eight of the Arabidopsis PABPs are more closely related

to the set of nuclear PABPs than to the PABPs of most other

eukaryotes (Figure 1), none of these proteins appears to be

an authentic PABPN1 species.

One interesting characteristic conserved among the PABPC1

genes is an adenylate-rich region in the 5� untranslated

region (UTR). Several studies have suggested that PABP reg-

ulates its own expression by binding to these sequences [7-9]. 

Characteristic structural features
The association of PABPs with poly(A) requires a minimal

binding site of 12 adenosines, and multiple PABP molecules

can bind to the same poly(A) tract, forming a repeating unit

covering approximately 27 nucleotides [10-13]. In vitro

binding affinities of PABP for poly(A) are of the order of 2-7

nM [13-15]. PABPs interact with poly(A) via RNA-recogni-

tion motifs (RRMs; Figure 2). 

The RRM is the most prevalent domain used in the recogni-

tion of RNA, as shown by its presence in hundreds of differ-

ent proteins [16]. RRMs, which are typically 90-100 amino

acids in length, appear to be present in proteins in all types

of organisms, suggesting that this is an ancestral motif with

important functions in RNA biology. Solution nuclear mag-

netic resonance (NMR) and X-ray crystallographic studies

have determined that the RRM is a globular domain com-

posed of a four-stranded anti-parallel � sheet backed by two

� helices (Figure 3a) [17]. The central two � strands of each

RRM include two highly conserved sequence motifs,

octameric RNP1 ((K/R)-G-(F/Y)-(G/A)-F-V-X-(F/Y), where

X is any amino acid) and hexameric RNP2 ((L/I)-(F/Y)-

(V/I)-(G/K)-(N/G)-(L/M))  (Figure 3a). The electron density

map of the human PABPC1-oligo(A) complex identifies eight

adenylate residues extending through a trough lined by the

�-sheets of the RNPs (Figure 3b) [17]. Specificity for recogni-

tion of poly(A) is primarily mediated via van der Waals con-

tacts, hydrogen bonds, and stacking interactions with

conserved residues within the RNP motifs [17]. 

Cytoplasmic PABPs 
The overall structure of the cytoplasmic PABPs is highly con-

served and consists of four RRMs connected to a carboxy-

terminal helical domain by an unstructured linker region

rich in proline and methionine residues [12,18]. Phyloge-

netic analysis suggests that the four RRMs arose from suc-

cessive duplications before the divergence of yeast and

mammals [19]. The first two RRMs make up one functional

unit and the latter two make up a second. This conclusion is

derived partly from the observation that residues participat-

ing in RNA recognition within RRM1 are most similar to

those in RRM3, while those of RRM2 are most like those of

RRM4 [17]. Although each RRM is capable of binding RNA,

they are not functionally equivalent, as they have differing

affinities for poly(A) [15].

The carboxy-terminal helical domain is highly conserved. In

humans it is composed of five helices (Figure 3c), while the

yeast protein has only four, lacking an ortholog of the first

helix [20,21]. The carboxy-terminal domain is not required

for RNA recognition, is dispensable for cell viability in yeast

[13,15], and is missing from PABPC5 proteins [5]. This

domain is shared with HECT domain proteins in the hyper-

plastic disc (HYD) family of ubiquitin-protein ligases [22],

but there is no evidence that PABPs play any role in protein

degradation. The carboxy-terminal domain is, however, the

site of interaction with factors regulating polyadenylation,

deadenylation, translation initiation, and translation termi-

nation (see below).

223.2 Genome Biology 2003, Volume 4, Issue 7, Article 223 Mangus et al. http://genomebiology.com/2003/4/7/223

Genome Biology 2003, 4:223

Table 1 

Genes encoding cytoplasmic PABPs in various organisms

Organism Number of PABPC genes

Arabidopsis thaliana 8

Caenorhabditis elegans 2

Candida albicans 1

Drosophila melanogaster 1

Homo sapiens 4

Mus musculus 2

Saccharomyces cerevisiae 1

Schizosaccharomyces pombe 1

Xenopus laevis 3
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Figure 1 
Predicted evolutionary relationships of PABPs. Full-length PABP sequences were compiled from various databases (see Additional data files) and aligned
using the CLUSTALW program at the European Bioinformatics Institute [122]. The tree was constructed using the neighbor-joining method [123] and
drawn using Phylodendron [124]. The scale bar represents 0.1 substitutions. In the instances where no PABP name is given, only a single PABP protein
has been identified in that organism.
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Nuclear PABPs
The structure of the nuclear PABPs is not as well understood

as that of the cytoplasmic PABPs, largely because crystal and

NMR structures have yet to be determined, but it is known

that they typically have an acidic amino terminus followed

by a single RRM and an arginine-rich carboxy-terminal

domain. Recognition of poly(A) requires both the RRM and

the arginine-rich domain [23]. A run of alanines in PABN1 is

expanded in the recessive disease oculopharyngeal muscular

dystrophy (see Figure 2) [24,25].

In yeast, the nuclear PABP is essential for viability and is

encoded by the NAB2 gene [26]. Unlike other poly(A)-

binding proteins, Nab2p uses an Arg-Gly-Gly (RGG) domain

for binding. This protein also contains a Cys-Cys-Cys-His

zinc-binding motif, similar to one in RNA polymerase sub-

units, and a glutamine-rich region that contains a variable

number of Gln-Gln-Gln-Pro segments, the number of which

is strain-dependent. 

Localization and function 
PABPs have crucial roles in the pathways of gene expression.

They bind the poly(A) tails of newly synthesized or mature

mRNAs and appear to act as cis-acting effectors of specific

steps in the polyadenylation, export, translation, and

turnover of the transcripts to which they are bound. Lacking

any evident catalytic activity, PABPs provide a scaffold for

the binding of factors that mediate these steps and also

apparently act as antagonists to the binding of factors that

enable the terminal steps of mRNA degradation.

Polyadenylation 
Messenger RNAs synthesized in the nucleus generally

contain a 3� poly(A) tail; the rare exceptions to this rule are

principally the transcripts of replication-dependent

histone genes. Newly synthesized poly(A) tails of different

mRNAs are relatively homogeneous in length and approxi-

mately 200-250 residues in mammals and 70-90 residues

in yeast [27]. These poly(A) tracts are not encoded within

genes but are added to nascent pre-mRNAs in a two-step

processing reaction that involves site-specific cleavage and

subsequent polyadenylation of the upstream cleavage

product [23,28-30]. Throughout eukaryotes, pre-mRNA

cleavage and polyadenylation take place in a large complex

(500-1,000 kDa) that includes poly(A) polymerase (PAP)

and many additional factors. In general, the factors regu-

lating PAP stimulate both the specificity and processivity

of an otherwise marginally active and indiscriminate

enzyme. In so doing, they not only regulate the process of

polyadenylation but also determine the ultimate size of the

poly(A) tail. 

In mammalian cells, PABPN1 binds nascent tracts of 11-14

adenylate residues [31] and, along with cleavage and

polyadenylation specificity factor (CPSF), stimulates PAP to

switch from distributive synthesis (dropping off after syn-

thesis of a few nucleotides) to processive (continuous, high-

speed) synthesis [32,33]. PABPN1 monomers continue to

bind available, nascent adenylates until the full-length

poly(A) tail has been synthesized and the polymerase then

reverts back to its distributive mode [34]. This sequential

binding is accompanied by the formation of linear filaments

and 21 nm spherical particles: the latter are thought to serve

as ‘molecular rulers’ that dictate the final length of the

poly(A) tail [34]. In this model, the particle is postulated to

encompass a stable polyadenylation complex and to tolerate

PABPN1-poly(A) oligomers until the tail reaches 200-300

nucleotides. Beyond that point, increased poly(A) length is

believed to be compromised by disruption of critical interac-

tions between PAP and CPSF [34].
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Table 2 

Chromosomal location of human PABP genes

Gene name Chromosomal location

PABPC1 8q22.2-q23

PABPC3 13q12-q13

iPABP 1p32-36

PABPC5 Xq21.3

Pseudogene 1 4

Pseudogene 2 14

Pseudogene 3 6, 12, 21, or X

Pseudogene 4 (formerly PABP4) 15

PABPN1 14q11.2-q13

Information is derived from [10,11,13]. The map position of Pseudogene 3
is uncertain. 

Figure 2
The domains of human PABPs. PABPC1, PABPC3, iPABP, PABPC5 and
PABPN1 are shown, aligned on their first RNA-recognition motifs
(RRMs). White capsules represent individual RRMs; black hexagons (5H)
represent the five conserved helices at the carboxyl terminus. Inverted
brackets indicate the site of expansion of a run of alanines in PABN1 that
leads to the synthesis of PABPN1 with 12-17 alanines and results in the
autosomal recessive disease oculopharyngeal muscular dystrophy
(OMPD) [24,25]. PABPN1 accumulates in OMPD patients and forms
intranuclear inclusions that appear to sequester mRNAs and associated
factors and promote cell death [25]. 

1PABPN1
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PABPs also play a role in the polyadenylation of yeast pre-

mRNAs. Recent studies indicate that Nab2p is the most

likely candidate for the yeast equivalent of PABPN1 function,

at least for a subset of mRNAs. Mutations in NAB2 promote

hyperpolyadenylation of mRNA that cannot be reversed by

overexpression of Pab1p [35]. The failure to detect this activ-

ity of Nab2p in earlier studies may be attributable to

inhibitory interactions between Nab2p and its nuclear

import receptor Kap104p, and/or to the preponderance of

Pab1p in whole-cell extracts used for in vitro polyadenyla-

tion and the consequent obstruction of Nab2p activity by

Pab1p bound to nascent poly(A) [35]. Interestingly, muta-

tions in the yeast gene encoding cytoplasmic PABP, PAB1,

cause a significant increase in mRNA poly(A) tail lengths in

vivo and in vitro [36-38], and this effect, too, is partly attrib-

utable to a switch of PAP (Pap1p) between processive and

distributive activities. Unlike the process in mammalian

cells, the yeast switch appears to be directly regulated by

Fip1p and Yth1p, two factors unrelated to nuclear or cyto-

plasmic PABPs, and only indirectly regulated by Pab1p [39-

41]. Pab1p interactions underlying this indirect effect may

include its binding to the nascent mRNA [28] or a direct

interaction with the RNA-processing factor Rna15p [37]. 

Evidence for a direct role for Pab1p in yeast poly(A) length

control comes from experiments analyzing the Pab1p-medi-

ated regulation of poly(A) nuclease (PAN). This exonuclease,

comprising the Pan2p and Pan3p proteins, appears to trim

up to 20 residues from excessively long newly synthesized

poly(A) tails in an mRNA-specific manner [42-44]. Pan2p,

the subunit with apparent exonuclease activity, is positively

and negatively regulated by interactions with Pan3p and

Pbp1p, respectively; both of the latter interact with Pab1p

(D.M. and A.J., unpublished observations; [43-45]).

Nuclear export 
A second role for PABPs in the nuclear maturation of mRNA

can be inferred from experiments in which impaired 3� pro-

cessing interferes with export of mRNAs to the cytoplasm. In

both mammalian cells and yeast, mRNAs are generally

retained in the nucleus when they lack a functional polyadeny-

lation signal or when polyadenylation is inhibited by the

absence or inactivity of specific catalytic factors [46-49]. Since

the failure to polyadenylate an mRNA would deprive it of
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Figure 3
Structures of the domains of human PABPC1. (a) Crystal structure of
RRMs 1 and 2 in association with poly(A) [17]. The central two � strands
of each RRM include two highly conserved sequence motifs, octomeric
RNP1 ((K/R)-G-(F/Y)-(G/A)-F-V-X-(F/Y), where X is any amino acid) and
hexameric RNP2 ((L/I)-(F/Y)-(V/I)-(G/K)-(N/G)-(L/M)), which is repeated
six times. (b) The RNA-binding trough that is present when RRM1 and
RRM2 of human associate with poly(A). (c) NMR structure of the five
carboxy-terminal helices [21]. Figures were generated by MOLSCRIPT 2.0
using data from Protein data bank (PDB) files (a,b) 1CVJ and (c) 1G9L
[125,126]. 



bound PABPs, nuclear retention of mRNA could be attribut-

able to an essential role for PABPs in mRNA export. 

As noted above, PABPs coat the nascent poly(A) tail and play

a role in determining its ultimate length. How, then, might

this poly(A)-PABP complex facilitate the exit of mRNAs and

their associated proteins (mRNPs) from the nucleus? Con-

sistent with the propensity of PABPs to form interactions

critical to specific functions, yeast Pab1p has been shown to

interact with specific nucleoporins [50] and the nuclear

export signal export receptor, Xpo1p [49], and Nab2p has

been shown to interact with Gfd1p, a nuclear-pore-associ-

ated protein [51]. The presence of bound Pab1p or Nab2p

could serve as a determinant of an mRNP’s export compe-

tence, in a manner analogous to the function of the RNA

export factor Yra1p [52]. This view is consistent with the

observed nucleocytoplasmic shuttling of yeast and mam-

malian PABPs [53-56] and with the inhibitory effects on

mRNA export caused by interactions between the influenza

virus NS1A protein and PABPN1 [57].

The notion of a direct role for PABPs in mRNA export may,

however, be too simplistic. It does not accommodate examples

of mRNAs that enter the cytoplasm without conventional 3�

processing [58,59], viable mutants devoid of PABP [36], or

functional interactions between the 3� processing apparatus

and the factors that promote mRNA export [49,60]. The latter

reflect a quality control mechanism that leads to retention of

an mRNA in the nucleus (often at its transcription site) in the

event of processing problems [49,61,62]. This apparent check-

point illustrates the interdependence of many steps in gene

expression and the manner in which such regulatory mecha-

nisms can make indirect effects appear to be direct.

Translation initiation 
After an mRNA enters the cytoplasm, the association of

PABP with its poly(A) tail promotes 5�-3� interactions that

stimulate initiation of its translation [27,63]. Formation of

this ‘closed loop’ [27] was shown by Sachs and colleagues

[64-66] to promote the recruitment of 40S ribosomal sub-

units and to be dependent, at a minimum, on interactions

between initiation factor eIF4G and PABP and concurrent

interactions between eIF4G and the cap-binding protein

eIF4E (Figure 4). The existence of a translational regulatory

network involving PABP, eIF4G, and eIF4E is consistent

with the impaired-translation phenotypes of yeast strains

lacking functional Pab1p [36] and provides a mechanistic

basis for the synergistic effects on translation known to

occur when mRNAs are both capped and polyadenylated

[65,67,68]. The combined cooperative interactions enhance

the affinity of eIF4E for the 5� cap of the mRNA by lowering

its dissociation rate [69-72], stimulate the RNA-binding

activity of PABP [73], and increase the ATPase and RNA

helicase activities of eIF4A, eIF4B, and eIF(iso)4F [74]. The

combination of these effects also provides an effective means

for the protein synthesis apparatus to ensure preferential

translation of mRNAs containing both a cap and a poly(A)

tail [74] and may create an opportunity for ribosomes to

recycle from the 3� to the 5� end of the same mRNA [27,75].

Studies in yeast and mammalian cells have shown that the

Pab1p-eIF4G interaction requires RRM1 and RRM2 of Pab1p

(the same RRMs required for poly(A) recognition) and an

amino-terminal domain of eIF4G [65,76-78]. Several addi-

tional experiments have indicated, however, that the network

of 5�-3� interactions regulating translation initiation goes well

beyond the communication of a single domain in PABP with

another in eIF4G. This was initially suggested by the exis-

tence of viable yeast pab1 mutants in which the Pab1p-eIF4G

interaction could not occur [65] and others that had defects

in poly(A)-dependent translation but no defects in eIF4G

binding [76]. The potential complexity of PABP’s translation-

promoting interactions is illustrated by interactions of PABPs

in wheat germ with the initiation factor eIF4B [73] and in

mammals with the PABP-interacting proteins Paip1 and

Paip2 [79-82]. Paip1 is homologous to the central segment of

mammalian eIF4G and binds with high affinity and 1:1 stoi-

chiometry to two sites in PABP, one in RRMs 1 and 2 and the

other in the carboxy-terminal domain [79,80]. The region of

eIF4G to which Paip1 is homologous encompasses one of two

binding sites for the RNA helicase eIF4A. Not surprisingly,

Paip1 also interacts with eIF4A, and is capable of stimulating

the translation of a reporter mRNA when overexpressed in

cultured cells [79]. Paip2, a low-molecular-weight acidic

protein, binds PABP at two sites, one in RRMs 2 and 3 and

one in the carboxyl terminus [81,82]. Binding of Paip2 to the

RRM2-3 region competes effectively for binding of Paip1 to

PABP, reduces PABP binding to poly(A), and inhibits the

translation of polyadenylated mRNA [81,82]. 

Tethered-function assays in yeast and Xenopus that exploit

PABP fusions to the bacteriophage MS2 coat protein also

underscore the intricate nature of PABP’s stimulatory

effects on translation [83]. PABP tethered at specific MS2

coat binding sites stimulates translation of a reporter

mRNA in cis, but not in trans, and can do so without its

poly(A)-binding activity and in the absence of a poly(A) tail

[83]. With the exception of the yeast requirement that

Pab1p be bound to poly(A) in order to interact with eIF4G

[64], this implies that, at least with respect to translational

stimulation, poly(A) simply provides a binding site for

PABP. The failure of yeast Pab1p to function in the absence

of bound poly(A) may reflect the selective inability of yeast

eIF4G to stabilize the packing of poly(A)-associated RRMs 1

and 2 in a manner comparable to that achieved by the

eIF4Gs of other species [84]. Tethered function assays also

reveal that RRMs 1 and 2, or RRMs 3 and 4, of Xenopus

PABP are as capable of translational stimulation as the full-

length protein, despite the fact that RRMs 3 and 4 lack the

ability to interact with eIF4G or Paip1 [83]. Like the Pab1p-

eIF4G interaction mutants in yeast [65,76], the novel PABP

interactors in mammals and plants [73,79-82], and the
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Figure 4
Roles of PABP in mRNA translation and stability. This model depicts different stages of a cytoplasmic mRNA ‘life cycle’, in which distinct roles can be
ascribed to PABP. (a) Association of PABP with the mRNA poly(A) tail. (b) Interaction of PABP with elongation initiation factor eIF4G to promote
formation of the ‘closed loop’, thus (c) initiating translation and antagonizing decapping. (d) Interaction of PABP with the termination factor eRF3 and
recycling of the ribosome from the 5� to the 3� end of the same mRNA. (e) Poly(A) shortening by the Ccr4p-Pop2p-Notp deadenylase complex. (f) Loss of
the poly(A) tail and PABP, facilitating (g) dissociation of the proteins of the mRNP, binding of the Lsm1-7p-Pat1p complex, and decapping by the decapping
proteins Dcp1p and Dcp2p, and subsequent (h) 5�-to-3� degradation of the mRNA by the exonuclease Xrn1p or (i) 3�-to-5� degradation by the exosome. 
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unique domain requirements for trans-activation of trans-

lation by Pab1p [78], this observation implies that interac-

tion with eIF4G is not likely to be the only mechanism by

which PABP stimulates translation. One alternative model

for PABP function, supported by genetic analyses in yeast

[85] and the biochemical properties of poly(A)-deficient

mRNAs in vitro [67], suggests that PABP is also a regulator

of the joining of the 60S subunit to the 40S preinitiation

complex. The studies in yeast indicate that PABP controls

60S joining by regulating the activities of two RNA heli-

cases, Ski2p and Slh1p [85]. 

Additional insight into the translational networks affected by

the presence of PABP is derived from studies of the tactics

that viruses and cells use to modulate PABP structure

and/or activity. For example, rotaviruses reroute translation

for their own purposes by synthesizing a protein, NSP3,

which serves as a PABP analog. NSP3 binds to specific 3�

sequences on viral mRNAs and effectively circularizes those

transcripts, and mimics PABP, by also binding to eIF4G

[86]. Enteroviruses, on the other hand, choose to eliminate

the activity of PABP, rather than replace it. As part of a

general assault on host cap-dependent translation, these

viruses express two proteases, 2A and 3C, that not only

remove the PABP-interacting domain of eIF4G but also

cleave PABP into several fragments [87,88]. PABP interac-

tions and activity, at least in plants, are also altered by

changes in its phosphorylation status [89] and may be

affected by arginine methylation within the domain separat-

ing RRM4 from the carboxy-terminal helices [90].

In addition to their global effects on translation initiation,

PABPs can also selectively affect the translation of individ-

ual mRNAs. PABPs can bind oligoadenylate tracts in the 5�

UTRs of their own mRNAs, thereby repressing their own

translation (and possibly their stability [17]) [9,91]. This

autoregulation can be mimicked both in vitro and in vivo,

can be abolished by deletion of the adenylate-rich region

and can be conferred on other mRNAs by insertion of the

adenylate-rich tract within their 5� UTRs. In each case, the

presence of PABP is required to mediate the observed

effects. The inhibition of translation has been ascribed to an

inability of the 60S ribosomal subunit to join the pre-initia-

tion complex [92]. PABP can also facilitate the binding of

translational repressors specific for other mRNAs, such as

that encoding the iron-oxidizing protein ceruloplasmin

[93], and can activate the translation of a large number of

mRNAs whose polyadenylation is developmentally con-

trolled [94], as well as functioning as an mRNA-specific

activator. Cytoplasmic PABP in Chlamydomonas rein-

hardtii, normally a 69 kDa polypeptide, is imported into

chloroplasts where it is processed to a 47 kDa form that

binds the 5� UTR of the psbA mRNA and activates its trans-

lation [95]. The latter role of PABP is particularly intriguing

in light of the generally prokaryotic nature of chloroplast

translation systems. 

Translation termination 
The eukaryotic translation termination factor eRF1, which is

responsible for catalyzing polypeptide hydrolysis in response

to recognition of any of the three nonsense codons by the

ribosome, appears to be activated by the GTPase eRF3 [96].

The amino-terminal region of eRF3 does not participate in

this interaction with eRF1, but does interact directly with the

carboxy-terminal domain of cytoplasmic PABPs [21,97,98].

The eRF3-PABP interaction appears to enhance the

efficiency of termination in cells with mutated or aggregated

eRF3 [98] and to promote ribosome recycling for multiple

rounds of translation on the same mRNA [99]. It also seems

to minimize the multimerization of PABP monomers on

poly(A), possibly expediting access of poly(A) shortening

enzymes to their substrate and linking translational termina-

tion to normal mRNA decay [97]. Additional insights into the

role of PABPs in translation termination come from analyses

of instances in which termination occurs abnormally, such as

at premature nonsense codons. In this case, termination is

thought to be aberrant because of the creation of a ‘faux’

UTR, an untranslated region lacking at least one of the

factors required for efficient polypeptide hydrolysis and ribo-

some release that are normally positioned 3� to a termination

codon by interaction with poly(A)-associated PABP [100]. 

Decay of mRNA 
The process of mRNA decay can be initiated by three distinct

events: endonucleolytic cleavage, removal of the 5� cap, and

poly(A) shortening [101]. In yeast, in which the process of

mRNA decay has been extensively analyzed, most wild-type

mRNAs decay by a mechanism in which the initial nucleo-

lytic event is the shortening of the poly(A) tail to an oligo(A)

length of 10-15 nucleotides. After poly(A) shortening, tran-

scripts are decapped by the Dcp1p-Dcp2p complex.

Decapped and deadenylated mRNAs are then digested

exonucleolytically by the 5�-to-3� exoribonuclease, Xrn1p,

and/or the 3�-to-5� multi-subunit exosome [102] (Figure 4). 

All three decay-initiating events eliminate the closed-loop

state of the mRNP by removing or separating the binding

sites for the respective 5� and 3� interacting proteins [27],

and these events also render the remaining mRNA frag-

ments substrates for further degradation. At a minimum,

then, mRNA decay generally occurs concurrently with the

conversion of an mRNP from a translatable to an untranslat-

able (or poorly translatable) form [27,101], that is, in parallel

with the termination of PABP’s role in the enhancement of

translation initiation. 

Although the onset of mRNA decapping does coincide with

the loss of PABP’s binding site, and efficient translation initi-

ation does, indeed, antagonize mRNA decay [103,104],

PABP’s role in the maintenance of mRNA stability is more

complicated than that of a mere translation enhancer. Several

observations suggest that loss of PABP’s binding site, and

presumptive disruption of the closed loop state, may not
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always trigger immediate degradation of the remainder of the

mRNA. These observations include, first, that poly(A) short-

ening or removal is the rate-determining event in the decay of

some mRNAs whereas for others, it may be an obligate event

in their degradation but not the rate-determining step

[105,106]; second, that yeast pab1 mutations that unlink

mRNA decapping from poly(A) shortening do not necessarily

accelerate the rate of mRNA decay [107,108]; and third, that

the domains of tethered Pab1p that provide yeast mRNA sta-

bilization and translation functions are different [83,109]. 

Additional roles for PABP in the regulation of mRNA stability

range from being an antagonist or promoter of poly(A) short-

ening to a facilitator of the binding of additional factors that

promote or retard rapid mRNA decay. In vitro, excess poly(A)

is an effective competitor of PABP binding to mRNA [63,110-

112]. Such competition accelerates the rate of poly(A) shorten-

ing, indicating that the presence of PABP on the poly(A) tail

provides a protective effect [110-112]. This effect is, in part,

attributable to physical hindrance of the deadenylase, because

poly(A) tails are often shortened in discrete lengths equivalent

in size to a PABP ‘footprint’ [113]. It is also known, however,

that the principal yeast deadenylase, the Ccr4p-Pop2p-Notp

complex (Figure 4), and a major mammalian deadenylase,

PARN, are both inhibited in the presence of PABP [114]. In

contrast, the yeast Pan2p-Pan3p deadenylase, an enzyme

responsible for the initial trimming of the poly(A) tail (see

above), requires Pab1p for its activity [42,44]. 

Much like its role in translational initiation, PABP also

influences mRNA decay by interacting with key regulatory

proteins, either influencing their activity or being influ-

enced by them. Two proteins that bind the 3� UTR of the

�-globin mRNA and enhance its stability, �CP1 and �CP2,

interact with human PABP [113]. PABP appears to stimulate

the ability of the �CP proteins to bind to their target

sequence in the 3� UTR, thereby precluding access of an

endonuclease (ErEN) to its recognition site [115]. Interest-

ingly, the binding of PABP to the poly(A) tail is also

enhanced by the �CP proteins, implying that �-globin

mRNA stabilization is mediated by multiple interdependent

events [115]. Stability of the mRNA encoding the transcrip-

tion factor c-Fos is regulated by sequence elements in its 3�

UTR and coding region [116]. The coding region stability

element, also known as the major protein-coding-region

determinant (mCRD), interacts with a complex of RNA-

binding proteins that includes PABP, Paip1, hnRNPD,

NSAP1, and Unr [117]. Translation through the mCRD

destabilizes c-fos mRNA by a mechanism that is thought to

disrupt interactions with this complex and, in turn,

promote poly(A) shortening [117]. As noted above, PABP

also interacts with the termination factor eRF3 [21,97,98], a

consequence of which is a decrease in the number of PABP

multimers associated with the poly(A) tail. This observation

links translation termination to poly(A) shortening and sug-

gests one mechanism for orchestrating a standardized

‘clock’ that limits the lifetime of a poly(A) tail and, in turn,

the mRNA to which it is appended [97]. 

Additional roles for PABP in mRNA decay are illustrated by

events that occur after the poly(A) tail has been removed. As

shown in Figure 4, mRNA deadenylation is accompanied by

an mRNP rearrangement that allows binding of a decapping

activator complex containing the proteins Lsm1p-Lsm7p and

Pat1p [118]. This complex appears to promote interaction of

the mRNP with the Dcp1p-Dcp2p decapping complex,

thereby creating a substrate for terminal 5�-to-3�, and/or 3�-

to-5� exonucleolytic degradation [119] (Figure 4). Recent

studies indicate that all steps subsequent to association of

the Lsm1-7p-Pat1p complex occur at a limited number of

subcellular sites called P bodies [119]. In principle, therefore,

both the terminal steps of mRNA decay (from decapping

onwards), and their localization to a specific subcellular site,

are prevented from occurring by the presence of bound

Pab1p. Pab1p may simply maintain the mRNP in its transla-

tion-favorable mode, but the formal possibility that it

directly inhibits mRNA association of the Lsm1-7p-Pat1p

complex has not been excluded. In the latter hypothesis,

PABP’s exit from the mRNP would complete a cycle in which

its initial association with mRNA assists in mRNP forma-

tion, then leads to efficient mRNP utilization, and culmi-

nates in destruction of the mRNA. 

Frontiers 
Considering the number of functions associated with the

PABPs, and their simultaneous interactions with both RNA

and other proteins, the number of questions for which we

have no answers far exceeds the number of those for which

we do. Does the presence or absence of PABP determine an

mRNP’s competence for export, or does it play a more active

role? How is nuclear PABP exchanged for cytoplasmic PABP

and where does that exchange take place? How does interac-

tion with PABP actually affect eIF4G and eRF3, and vice

versa; in other words, do these proteins influence each

other’s conformations and interactions with other factors?

Does autoregulatory PABP simply ‘block’ the 5� UTR or does

it promote interactions with other factors that are the ulti-

mate regulators? Why do plants have so many PABP genes?

Have they separated PABP’s functions into distinct polypep-

tides? 

A key question is which of PABP’s many functions are essen-

tial. Of the functions enumerated in this review, most appear

to be dispensable. For example, PABP mutants lacking the

ability to interact with factors governing polyadenylation,

translation initiation, and translation termination are all

viable. Cross-species complementation experiments assess-

ing the essential nature of PABP demonstrate that Arabidop-

sis Pab3p can restore PABP’s role in mRNA biogenesis but

fails to complement defects in mRNA decay and translation

initiation [120]. What does appear to be required is the ability
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of PABP to recognize RNA. The possibility remains that the

essential nature of PABP lies not with a single function but

with a combination of functions. That, of course, raises the

final question: have all of PABP’s functions been enumer-

ated? That seems unlikely. A hint of PABP’s untapped versa-

tility is apparent from its role in the replication of zucchini

yellow mosaic potyvirus, a plant virus whose RNA-depen-

dent RNA polymerase appears to exploit PABP for viral

replication [121]. Who knows - maybe PABP will find its way

into splicing and transcription, completing its act as the one-

man band of gene expression.

Additional data files 
A list of the currently known PABP genes with accession

numbers and links to their entries in the nucleotide and

protein sequence databases (Additional data file 1) and the

sequences of these proteins in FASTA format (Additional

data file 2) are available with the online version of this article.
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