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Summary
Within the scientific literature, it has been identified that women are almost twice as likely to experience

undesired drug side effects compared to men. Men are more likely to experience severe drug side effects that
result in hospitalization or death. To better understand potential genomic causes of these sex-dependent drug
responses, we investigated drug side effects that are more likely to be reported by either males or females,
known as sex-biased adverse events (SBAEs). In this study, we identified 32 drug metabolism enzymes and 84
drug targets enriched across the known drug metabolism enzymes and targets of the 416 drugs we found
associated with SBAEs. Several known drug metabolism enzymes and drug targets of SBAE-associated drugs
have sex differences in gene expression or gene-regulatory networks representing the relationships between
genes and the transcription factors predicted to regulate their expression. Overall, we found an association
between sex differences in gene expression and predicted gene-regulatory relationships of drug metabolism
enzymes and drug targets associated with SBAEs. Additionally, our findings are a resource of sex-biased
drug-adverse event pairs and gene expression profiles for the scientific community.

Abstract

Background:
Previous pharmacovigilance studies and a retroactive review of cancer clinical trial studies identified

that women were more likely to experience drug adverse events (i.e., any unintended effects of medication),
and men were more likely to experience adverse events that resulted in hospitalization or death. These
sex-biased adverse events (SBAEs) are due to many factors not entirely understood, including differences in
body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters.
Methods:

We first identified drugs associated with SBAEs from the FDA Adverse Event Reporting System
(FAERS) database. Next, we evaluated sex-specific gene expression of the known drug targets and
metabolism enzymes for those SBAE-associated drugs. We also constructed sex-specific tissue
gene-regulatory networks to determine if these known drug targets and metabolism enzymes from the
SBAE-associated drugs had sex-specific gene-regulatory network properties and predicted regulatory
relationships.
Results:

We identified liver-specific gene-regulatory differences for drug metabolism genes between males and
females, which could explain observed sex differences in pharmacokinetics and pharmacodynamics. In
addition, we found that ~85% of SBAE-associated drug targets had sex-biased gene expression or were core
genes of sex- and tissue-specific network communities, significantly higher than randomly selected drug
targets. Additionally, the number of SBAE-associated drug targets that were core genes of sex- and
tissue-specific network communities were significantly higher than randomly selected drug targets. Lastly, we
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provide the sex-biased drug-adverse event pairs, drug targets, and drug metabolism enzymes as a resource
for the research community.
Conclusions:

Overall, we provide evidence that many SBAEs are associated with drug targets and drug metabolism
genes that are differentially expressed and regulated between males and females. These SBAE-associated
drug metabolism enzymes and drug targets may be useful for future studies seeking to explain or predict
SBAEs.

Highlights
● Sex-biased adverse events have been identified in previous pharmacovigilance studies.
● We found that 416 drugs associated with sex-biased adverse events were enriched for 32 known drug

metabolism enzymes and 84 drug targets.
● Drug metabolism enzyme genes of known SBAE-associated drugs have sex differences in predicted

liver gene-regulatory network neighborhoods (i.e., immediate node neighbors) and individual
transcription factor and gene relationships.

● SBAE-associated drug targets are more likely to have sex-biased gene expression and be core genes
of sex-specific network communities than other drug targets.

● Drugs with these SBAE-associated drug metabolism enzymes and drug targets should be investigated
further to determine causal relationships.

Background
In the U.S., adverse events (defined by the U.S. Food and Drug Administration [FDA] as any

undesirable experience associated with using a medical product) resulted in an annually estimated 1.3 billion
emergency room visits and an approximate 3.5 billion dollar economic impact [1–3]. Adverse events that are
more likely to occur in one sex are called sex-biased adverse events (SBAEs) [4]. In 2001, the FDA removed
ten drugs from the market; eight had female-biased adverse events [5]. Since then, several studies have found
that women are twice as likely to experience an adverse event than men, based on adverse event case reports
from the FDA Adverse Event Reporting System (FAERS) and World Health Organization (WHO) VigiBase
database [6–10]. A retroactive review of cancer clinical trial studies found that women were more likely to
experience adverse events from chemotherapy and immunotherapies [9]. On the other hand, a VigiBase study
found that men were more likely to experience adverse events that resulted in hospitalization or death [7].
Furthermore, the gender gap between men and women in the number of female-biased SBAEs increased
during the coronavirus disease 2019 (COVID-19) pandemic [8].

While there are multiple sources of evidence for SBAEs, the biological differences that might result in
SBAEs are still being investigated. Proposed causes of SBAEs include, but are not limited to, sex differences
in body mass, hormones, pharmacokinetics, and liver drug metabolism enzymes and transporters [4]. One
early hypothesis was that body mass differences between males and females resulted in SBAEs. While body
mass differences are a known factor for drug response outcomes, many SBAEs are not explained by body
mass differences [11,12]. Sex hormone differences have also been hypothesized to cause SBAEs and found to
compete for drug transporters, compete with and inhibit enzymes, alter transcription, and interact with
receptors on target cells [13]. Another previously investigated drug response factor is pharmacodynamics and
pharmacokinetics [11]. Multiple studies have found sex differences in several pharmacokinetic metrics, such as
the area under the curve of the plasma concentration of a drug versus time after dose or peak/maximum
concentration [11]. Other studies have shown that many drug metabolism enzymes have differential gene
expression and protein activity in male and female liver tissue [14–16]. Additionally, Oliva, et al. showed that in
the Genotype-Tissue Expression (GTEx) project (n = 16,245 RNA-sequencing samples across 44 human
tissues), 37% of genes had sex-biased tissue-specific expression and that these genes were enriched in drug
metabolism gene sets (i.e., Gene Ontology [GO] and Kyoto Encyclopedia of Genes and Genomes [KEGG]
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terms: “Xenobiotic Metabolism, Mitochondrial Genes and Fatty Acid Oxidation,” “ Cellular Response to
Hormones and Drugs,” “Drug Interaction and Response,” and “Drug Interaction”) [17].

Other studies have shown that regulatory relationships between transcription factors and genes differ
between males and females in a tissue-specific manner [18,19]. For example, a previous study in colon cancer
patients applied gene-regulatory network construction to colon cancer gene expression profiles from The
Cancer Genome Atlas (TCGA) project and found that drug metabolism genes were more targeted in the
female network than the male network in tumor tissue [20]. Sex-specific gene-regulatory networks of breast
tissue have also shown sex differences in network communities (i.e., groups of transcription factors and genes
that are more interconnected than other genes in the network) involved in different pathways, such as
developmental and signaling pathways [18]. These sex differences in gene-regulatory networks across tissues
could be potential factors in SBAEs.

We hypothesized that drug metabolism enzymes and drug targets of drugs associated with SBAEs had
sex-biased gene-regulatory network properties compared to other genes and drug targets (Figure 1). First, we
identified 416 drugs associated with SBAEs (i.e., SBAE-associated drugs) from cases reported in the FAERS
database. We found that 32 drug metabolism enzymes and 84 drug targets were more likely to be targets of
these SBAE-associated drugs than non-SBAE-associated drugs. KEGG-annotated drug metabolism genes
also had sex differences in their liver gene-regulatory network neighborhoods and individual transcription factor
gene relationships. For the 84 SBAE-associated drug targets, we found that their gene expression was more
likely to be sex-biased and for those genes to be core genes (i.e., essential genes for gene-regulatory network
community identification). These results support our hypothesis that the known drug metabolism enzymes and
drug targets of drugs associated with SBAE have sex differences in gene expression and gene-regulatory
networks.
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Figure 1: Graphical abstract of the study.

Methods:

Scripts, dockers, and conda environment:
The scripts for this project are available on Zenodo at

https://zenodo.org/record/7938613#.ZGKFpdbMIaQ. In addition to the scripts there, the Docker images used
for this analysis are publicly available on Docker Hub (jenfisher7/rstudio_sex_bias_drugs) and Zenodo
(https://zenodo.org/record/7941598#.ZGOw5tbMKJE) (R version 4.2.2). For Fisher’s exact test calculations,
we used a conda environment on the University of Alabama’s high-performance system, Cheaha, in an array
format (SR_TAU_CELL_environment.yml) (R version 4.0.5).

Comprehensive computer environment and package version information is included in Supplemental
File 1.
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Data download and exploration:
Medical Dictionary for Regulatory Activities (MedDRA):

We downloaded the MedDRA database in July 2022 (Version 25.0). This database contains a 5-level
hierarchy of medical terminology from lowest-level terms (e.g., ”abnormal EEG”) to preferred terms (e.g.,
“electroencephalogram abnormal”), and finally to their highest-level terms, the system organ class terms (e.g.,
“investigations”). FAERS case reports contain MedDRA lower-level and preferred terms to annotate adverse
events. We mapped all the lower-level terms to the system organ class terms to investigate groups of preferred
terms and system organ class terms in the context of SBAEs.

The MedDRA database is a subscription database. We provide the workflow we used to format the
downloaded database to the mappings used for the rest of this study in the provided scripts above.

FAERS:
We downloaded curated FDA Adverse Event Reporting System (FAERS) data from the Zhang et al.

study [8]. The FAERS database contains case reports of reported adverse events. We filtered the curated
cases by country (i.e., “US”), qualification of the reporting party (i.e., “1” = physician, “2” = pharmacist, “3” =
other health professionals), and cases that contained information for both sex (i.e., “gender”) and drugs. We
also converted any lower-level MedDRA adverse event terms to their preferred terms via the MedDRA
mappings described above. We only retained the newest case report for the three duplicated cases we
identified.

GTEx:
We downloaded preprocessed RNA-Seq count tables and metadata for the GTEx project with the

Recount3 R package (version 1.8.0; accessed March 2022). We removed the sample GTEX-11 ILO, identified
in previous literature as an individual who completed a gender-affirming surgery [21]. We also filtered samples
to only those sequenced with the TRUSeq.v1 chemistry. We removed the following tissues due to being a
sex-specific tissue or there being less than five samples in one sex: cervix-ectocervix, cervix-endocervix,
fallopian tube, kidney-medulla, ovary, uterus, vagina, prostate, and testis. We also removed samples with a
RIN score less than or equal to five. We recorded the final number of samples by sex for each tissue in
Supplemental File 2.

In addition, we used the base R prcomp function to perform a principal component analysis (PCA) of
the GTEx liver tissue samples to determine potentially confounding variables (i.e., age, RIN score, and
ischemic time) that may affect gene expression and downstream results. We transformed the gene counts via
DESeq2 (version 1.38.2) variance stabilizing transformation (vst). Then, we visually inspected PCA one
through five for clustering of samples based on age, RIN score, and ischemic time. We found samples
clustered by ischemic time and RIN score with PC 1 (19.09% of variance explained) and PC 2 (8.916% of
variance explained). These had a negative Spearman correlation with one another (rho= -0.5652864).

The methodology used to construct gene-regulatory networks, Passing Attributes between Networks for
Data Assimilation (PANDA), required gene expression profiles. Before normalizing the GTEx data above, we
filtered out genes with less than one count per million across all samples. We normalized the gene expression
counts with a quantile shrinkage normalization via the R package YARN qsmooth function (version 1.24.0) [21]
to remove variation due to technical variables in an unsupervised manner but with the “group” parameter to
normalize the filtered counts data in a sex-aware manner to maintain the biological signal related to sample
sex [21].

Protein-protein interaction and transcription factor motif information for gene-regulatory networks:
The gene-regulatory network analysis required protein-protein interaction, transcription motif

information, and RNA-Seq profiles. We downloaded the human protein-protein interaction network from the
STRING database (accessed date: Jan. 2023; version 11.5). We adjusted this network of known and predicted

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.23.541950doi: bioRxiv preprint 

https://paperpile.com/c/9qHkL8/edwM
https://paperpile.com/c/9qHkL8/Y4kE1
https://paperpile.com/c/9qHkL8/Y4kE1
https://paperpile.com/c/9qHkL8/Y4kE1
https://doi.org/10.1101/2023.05.23.541950
http://creativecommons.org/licenses/by-nc/4.0/


6
protein-protein interactions, including direct and indirect associations, for downstream gene-regulatory network
construction by transforming edge weights to be between zero and one and focusing on highly confident
interactions. To achieve this data transformation, we divided the raw interaction scores by 1000 and filtered for
interactions greater than 0.7. We converted protein Ensembl IDs to HGNC gene symbols with the protein
metadata in STRING. Additionally, we downloaded preprocessed transcription factor motif mapping (accessed
date: Jan. 2023) [22]. We adjusted the TF-to-motif mappings to TF-to-gene mappings by mapping motifs to
target genes to generate TF-gene-regulatory networks.

DrugBank:
We downloaded DrugBank’s complete database (Version 1.5.8) in Jan. 2021. This database contains

information about drugs, including drug approval, drug targets, drug metabolism genes, and indications. We
also used and modified functions to access drug metabolism enzyme information from the drugbankR R
package (version 1.5) to identify drug targets and metabolism enzymes of all drugs in the FAERS dataset.

Fisher’s exact test and reporting odds ratio of FAERS database:
To determine if drug and adverse event pairs were more likely to occur in one sex, we conducted a

Fisher’s exact test and calculated the reporting odds ratio (ROR). We constructed contingency tables for each
drug-adverse event combination for females compared to males. These tables included the following groups: A
= the number of female patients with target drug-adverse event pairs, B = the number of female patients with
the drug but not the same adverse event, C = the number of male patients with target drug-adverse event
pairs, and D = the number of male patients with the drug but not the same adverse event. In addition, based on
these contingency tables, we filtered to focus on more commonly used drugs-adverse event pairs in both
sexes via the following thresholds:

● 30 cases of the drug-adverse event pair in at least one sex (A >= 30 or C >= 30)
● 50 cases of drug-adverse event pair across both sexes (A+C >= 50)
● 1000 cases for a drug across all four groups (A+B+C+D >= 1000)
● More than five adverse events in both sexes (A > 5 and C > 5).

Our approach was similar to the previous Yu et al. 2016 study [6]. We used the Beniamini-Hochberg
(BH) procedure to adjust for multiple hypothesis testing. The calculated ROR from the Fisher’s exact test
described if females (i.e., positive ROR) or males (i.e., negative ROR) were more likely to report the
drug-adverse event combination. These ROR values were log-base2 transformed (i.e., logROR). A threshold
of absolute logROR greater than one and the BH-adjusted p-value less than 0.05 identified sex-biased
drug-adverse event pairs in the FAERS database. We determined if there were shared or different drugs and
adverse events between the male- and female-biased drug-adverse event pairs via hypergeometric test for
both drugs and adverse events.

Identifying SBAE-associated drug target and drug metabolism genes:
We annotated the 416 drugs identified as associated with an SBAE (i.e., SBAE-associated drugs) with

their drug targets and drug metabolism enzyme genes from DrugBank [23]. To evaluate if drug targets were
enriched in the drug target list of the 416 SBAE-associated drugs compared to randomly selected drugs, we
performed permutation testing for all the drug targets of drugs in the FAERS database. We randomly selected
the same number of drugs (i.e., 416) from FAERS and identified the number of drugs with that target, repeating
the process 1,000 times. We performed a one-sample Wilcoxon signed rank test to determine if the number of
SBAE-associated drugs with that drug target was higher than those for the randomly selected drugs. We
applied a BH p-value adjustment. We filtered our top SBAE-associated drug targets by BH-p-value < 0.001. To
focus our downstream analysis on SBAE-associated drug targets across SBAE-associated drugs, five
SBAE-associated drugs had to have that known drug target. We also applied these same processing and
filtering methods to drug metabolism genes.
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Sex-specific tissue gene-regulatory network construction and sex-specific community
analysis:

We applied the PANDA methodology to construct sex-specific gene-regulatory networks by tissue.
PANDA integrates regulatory (TF Motif mappings from DNA-motifs curated by the Glass Lab [22]),
protein-protein interaction (STRING Database [24]), and qsmooth normalized gene expression profiles from
one sex and tissue via the pandaR package (version 1.30.0) [21]. We compared each tissue's sex-specific
network community structures via ALtered Partitions Across Community Architectures (ALPACA)’s differential
modularity functionality (netZooR version 1.2.1). This algorithm determines genes and transcription factors are
differentially connected between networks, in this case, between the female and male networks. We made this
comparison twice: once to determine female-specific communities and once to determine male-specific
communities. To determine female-specific communities, we assigned the female network as the perturbed
network and the male as the baseline network. Then, to identify male-specific communities, we assigned the
male network as the perturbed network and the female network as the baseline network. Along with assigning
each transcription factor and gene to a network community, we used this approach to determine the differential
modularity score for each node in each network. This differential modularity score describes how important a
node (i.e., transcription factors and genes) is to the resulting community assignment.

Sex-specific community core genes:
Based on the differential modularity scores from our ALPACA sex-specific community results, we

identified the core genes for each sex-specific community for each GTEx tissue included in our study. For each
sex-specific community in a tissue, we identified the 100 genes with the highest differential modularity scores
as core genes for that tissue sex-specific community based on [18]. After identifying these core genes, we
conducted functional enrichment analysis via gprofiler2 (version 0.2.1) to determine enriched pathways for
each sex-specific community across the GTEx tissues [25].

Drug metabolism genes’ sex-specific gene-regulatory relationships:
To determine the network property differences between male and female gene-regulatory networks

around drug metabolism genes, we downloaded the Kyoto Encyclopedia of Genes and Genomes (KEGG)’s
drug metabolism gene list (KEGG_DRUG_METABOLISM_CYTOCHROME_P450.v2022.1.Hs.gmt) from
MSigDB via Gene Set Enrichment Analysis (GSEA)’s website in Jan 2023
(https://www.gsea-msigdb.org/gsea/msigdb/human/collections.jsp) [26–28].

Sex-specific communities and differential modularity:
We compared the differential modularity score from the ALPACA analysis of the drug metabolism genes

in both male and female gene-regulatory networks by tissue with paired Wilcoxon rank sum test with continuity
correction with a Bonferroni p-value adjustment. This comparison determined if the differential modularity
scores for drug metabolism genes significantly differed between the sexes across tissues. We also calculated
the log2 fold change of the differential modularity (female - male) of drug metabolism genes between the male
and female networks. In addition, based on the community assignments from the ALPACA analysis, we
annotated the membership of the drug metabolism genes across the sex-specific communities for each tissue.

Weighted in-degree difference:
We used the calcDegree function from the pandaR package to calculate the weighted in-degree for

each drug metabolism gene for each sex-specific tissue network. Then we compared weighted in-degree
between the sexes by conducting a Wilcoxon rank sum test with continuity correction applied across each
tissue and then made a Bonferroni-corrected p-value adjustment [29]. We also calculated the median of the
weighted in-degree difference between the male and female drug metabolism genes for each tissue.
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Sex-biased edges and targeting:
We examined if genes had different proportions of sex-biased edges (i.e., predicted transcription factor

and gene regulatory relationships) between the male and female liver gene-regulatory networks. We defined
each targeted gene as sex-divergent (i.e., the proportion of sex-biased edges in the male- and female-biased
directions is between 0.4 and 0.6), female-biased (i.e., the proportion of sex-biased edges in the female
direction is greater than 0.6), or male-biased (the proportion of sex-biased edges in the male direction is
greater than 0.6) as previously reported by Lopes-Ramos et al. [19].

Specific edges activator and repressor relationships:
For the liver sex-specific gene-regulatory networks, we determined the predicted regulation of the

transcription factor and targeted drug metabolism genes by finding the Pearson correlation between a given
transcription factor gene’s expression and the targeted drug metabolism gene’s expression. If the Pearson
correlation was significant after Benjamini-Hochberg (BH) p-value adjustment and positive, we defined these
edges as activator edges. If the Pearson correlation was significant after BH p-value adjustment and negative,
we described these edges as repressor edges. If the correlation was not significant, we defined these
relationships as undefined. We applied this in a sex-specific manner where we only correlated the transcription
factor and target gene’s expression by sex and in a non-sex-specific manner.

Once we identified these predicted regulatory relationships, we determined which relationships (i.e.,
edges) differed or were the same between the male and female liver gene-regulatory networks for drug
metabolism genes. Then, we used functional enrichment analysis via gprofiler2 to determine enriched
pathways and annotated gene sets for sex-specific relationships (i.e., male activators, male repressors, female
activators, male repressors) [25]. We compared the enriched Biological Process GO terms across these
sex-specific relationships by semantic similarity based on the method proposed by Wang 2007 [30], which
considers the relationship of GO terms in the GO hierarchy via the GOSemSim R package (version 2.24.0)
[30,31]. We used functions from rrvgo (version 1.10.0) (getGoTerm, loadOrgdb, getGoSize, reduceSimMatrix)
to create GO term common parent terms from the enriched pathways based on the parent term in the GO
hierarchy and the Wang semantic similarity [32]. We plotted the enriched pathway results in a heatmap and
clustered them using ComplexHeatmap (version 2.14.0) [33].

To determine if there are more activator- or repressor-predicted gene-regulatory relationships impacting
drug metabolism genes in sex-specific networks, we determined the difference in the sum of the activator edge
weights and the sum of the repressor edge weights for each sex. If this value for a drug metabolism gene is
positive, there are more activator edges than repressor edges. If this value for a drug metabolism gene is
negative, then more predicted repressor relationships exist. We applied a paired Wilcoxon signed rank test with
continuity correction to determine if there was a difference in the targeting relationships between male and
female liver gene-regulatory networks of drug metabolism genes.

Permutation testing of sex-biased gene expression and sex-biased core genes of
SBAE-associated drug targets and core genes of sex-specific communities:

In a previous study with the GTEx project, Oliva et al. identified sex-biased expressed genes for 44
different tissues [17]. We downloaded the sex-biased gene expression results in March 2023 from the GTEx
portal (https://www.gtexportal.org/home/datasets). We assessed SBAE-associated drug targets and drug
metabolism enzyme genes for sex-biased gene expression across each tissue (i.e., the GTEx sex-biased gene
sets). We performed permutation testing by randomly selecting 84 drug targets (the same number of
SBAE-associated drug targets we identified) 1,000 times with a one-sample Wilcoxon signed rank test and a
BH-multiple hypothesis test correction. We applied the same approach for the drug metabolism genes but with
71 or 64 for drug metabolism genes expressed in the liver tissue or the liver gene-regulatory networks,
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respectively. We repeated this permutation approach with the core genes of the sex-specific gene-regulatory
communities for both SBAE-associated drug targets and drug metabolism genes.

Results
SBAE-associated drugs are enriched for known drug metabolism genes and drug targets.

We first used the FAERS database to identify drug-adverse event pairs more likely to occur in one sex
by requiring that each drug-adverse event pair have at least five cases for both sexes to ensure selection for
sex-biased and not just sex-specific adverse events (i.e., where the condition occurs in one sex such as
prostate cancer). Similar to previous studies with the FAERS database [6,8,10], we identified more
drug-adverse event pairs with a female bias than a male bias (2132, female; 748, male) (Figure 2A and
Supplemental File 3). When we investigated the most common SBAEs based on the number of significant
drug-adverse event pairs, malignant neoplasm progression, acute kidney injury, and death were the top three
male-biased adverse events. The top female-biased adverse events were alopecia, urinary tract infection, and
drug hypersensitivity (Supplemental Figures 1 & 2). Some of these adverse events are known to have higher
incidents in one sex, for example, male-biased malignant neoplasm progression and female-biased alopecia
and urinary tract infection [6,10]. In accordance with previous literature using FAERS and other independent
databases and studies, we identified drugs for both male-biased and female-biased drug-adverse event pairs
that were identified as sex-biased, such as warfarin [34], cholecalciferol [35], prednisone [36], methotrexate
[37], and denosumab [38], which were in the top three male and female-biased adverse events (Supplemental
Figure 3 & 4).

Across the 2,880 significant sex-biased drug-adverse event pairs, we identified 610 male- or
female-biased adverse events. Of those, 77 were shared by males and females, which was not a significant
overlap (p-value = 0.293085, hypergeometric test) (Figure 2B). However, there was a significant enrichment of
shared SBAE-associated drugs. We found that 208 of the 416 unique SBAE-associated drugs from those
drug-adverse event pairs were significantly associated with male and female drug-adverse event pairs
(p-value= 2.524481e-11, hypergeometric test) (Figure 2C). When we clustered the 50 most common drugs
and the 50 most common adverse events from those 2,880 significant drug adverse-event pairs by their
logROR, we found they clustered most strongly based on the SBAE (Supplemental Figure 5). This suggests
that particular adverse events are more susceptible to SBAEs compared to particular drug mechanisms.

After identifying these sex-biased drug-adverse event pairs, we determined drug metabolism genes and
targets enriched in the known drug metabolism enzymes and targets of SBAE-associated drugs via
permutation testing of a matched number of random drugs. From this, we identified 32 known drug metabolism
genes enriched in the known targets of SBAE-associated drugs (Figure 2D). The most prevalent known drug
metabolism enzyme across our identified SBAE-associated drugs, CYP3A4, is also the most prevalent drug
metabolism enzyme for FDA-approved drugs overall, as an estimated 50% of FDA-approved drugs are
metabolized by this enzyme [39]. For drug targets, we identified 84 drug targets enriched in the known drug
targets of our identified SBAE-associated drugs compared to random drug selection (Figure 2E). Two of the
top three SBAE-associated drug targets were adrenergic receptors (i.e., ADRA1A & ADRA2A). These
receptors are already known to have sex differences in locus coeruleus (LC)-norepinephrine (NE) arousal
activity in different brain regions due to higher estradiol presence in females compared to males, which has
been hypothesized to increase norepinephrine (NE) arousal in females [40].
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Figure 2: Sex-biased drug-adverse event pairs in FAERS. A) Volcano plot of the log-transformed reporting
odds ratio (ROR) and the negative log-transformed Benjamini-Hochberg p-values from Fisher’s exact test of
overlap of drug and SBAEs. B) Overlap of drugs from male- and female-biased drug-adverse event pairs. C)
Overlap of adverse events from male- and female-biased drug-adverse event pairs.

The gene-regulatory network neighborhoods around drug metabolism genes differ between
males and females in the liver.

Previous studies have identified that many drug metabolism genes have sex-biased gene expression in
the liver [14–17], so we chose to investigate sex-specific liver gene-regulatory networks to determine if there
are potential gene regulation differences of drug metabolism genes between males and females in the liver.
Therefore, we constructed sex-specific liver gene-regulatory networks via the PANDA network methodology,
representing the predicted regulatory relationship between transcription factors and target genes [41]. To
investigate the immediate node neighbors (i.e., the network neighborhoods), we calculated the weighted
in-degree (describes the magnitude of the predicted transcription factor regulation of a gene) of drug
metabolism genes (as annotated by KEGG, n = 64) in the sex-specific liver networks [27]. We found that drug
metabolism genes had a higher weighted in-degree (i.e., more targeted) in the female network compared to the
male network (median of the degree difference of drug metabolism genes = 34.15683) (Figure 3A). To confirm
if this relationship is specific to drug metabolism genes, we compared the degree difference of drug
metabolism genes to other genes in these liver networks. We found a significant difference via a Wilcoxon rank
sum test with continuity correction (W = 663550, p-value = 1.48 x 10-8) (Figure 3A). Additionally, we
determined that this relationship is specific to only a few tissues by comparing male and female PANDA
networks in 42 of the other GTEx tissues and applying the same Wilcoxon test followed by a Bonferroni
correction (Figure 3B). Six other tissues besides the liver (“Brain Hypothalamus,” “Artery Coronary,” “Brain
Anterior Cingulate Cortex [BA24],” “Heart Left Ventricle,” “Brain Nucleus Accumbens [basal ganglia],” and
“Small Intestine-Terminal Ileum”) had more transcription factor targeting in female networks. In comparison,
three other tissues (“Pancreas,” “Minor Salivary Gland,” and “Artery Aorta”) had more transcription factor
targeting in male networks. However, the liver is the most significantly different tissue based on the Wilcoxon
rank sum test with continuity correction with a Bonferroni correction (Figure 3B), and our results indicate that
more transcription factors are predicted to regulate drug metabolism in the female liver gene-regulatory
network compared to the male.

We were also interested in determining groups of transcription factors and genes that are more
interconnected in their edge relationships in one sex-specific network than the other sex-specific network (i.e.,
sex-specific communities) in the liver. We identified eight female-specific communities and 11 male-specific
communities. When we investigated which communities contained the most drug metabolism genes, we
determined that female community number two included 41 of the 64 drug metabolism genes, and the other
drug metabolism genes were contained in four other female-specific communities (Supplemental Figure 6).
However, in the male network, we found that drug metabolism genes were divided between two male-specific
communities (communities four and five), which contained 19 and 17 of the 64 drug metabolism genes,
respectively (Supplemental Figure 6). The eight other male-specific communities contained the remaining 28
drug metabolism genes. We conducted functional enrichment analysis on the core genes (core genes have the
highest differential modularity score, a score used to determine the sex-specific communities) of all the liver
sex-specific communities. Several transcriptional pathways from KEGG and Reactome were similar between
the female and male drug metabolism enzymes communities, such as the RUNX protein-associated pathways
and nuclear receptor transcription pathway (i.e., liver female-specific community number two and male-specific
communities numbers four and five). However, male-specific community number four had several pathways
associated with FOXO transcription activities (i.e., “FOXO-mediated transcription of cell death genes,”
“FOXO-mediated transcription,” “Regulation of FOXO transcriptional activity by acetylation,” “Regulation of
localization of FOXO transcription factors,” and “FOXO-mediated transcription of cell cycle genes”) that were
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not shared with female-specific community number two and male-specific community five (i.e., the sex-specific
liver communities with the most drug metabolism genes). Interestingly, previous aging studies have found that
sex-dependent single nucleotide polymorphisms (SNPs) in FOXO1A (a protein important for regulating energy
metabolism in the liver) are associated with increased longevity in females [42,43] (Supplemental File 4).

For each community, we found differing transcription factor and gene differential modularity scores,
which describe how important that transcription factor or gene is to community integrity (i.e., if the node was
removed, would the community structure still be present). We found that four drug metabolism genes,
CYP2E1, CYP3A43, GSTM4, and UGT2B17, were also core genes in the male-specific liver communities (i.e.,
these genes had the highest differential modularity score). There was no significant enrichment of core genes
in the drug metabolism gene set compared to randomly selected genes for sex-biased, female-biased, and
male-biased liver core gene lists (Supplemental Figure 7). Overall, we found that drug metabolism genes
have higher differential modularity (i.e., community integrity importance) in the male network compared to the
female network (log2 fold change of female vs. male = -2.47633758, paired Wilcoxon signed rank test: V=   289,
p-value = 5.19 x 10-7) (Figure 3C). When we investigated differential modularity across all the tissues, this
relationship was specific to the “Liver,” “Brain Amygdala,” and “Small Intestine - Terminal Ileum” tissues. This
differential modularity score indicates that drug metabolism genes in the male liver gene-regulatory network are
essential to sex-specific communities but are not targeted as highly as the drug metabolism genes in the
female liver gene-regulatory network.
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Figure 3: The neighborhood of sex-specific liver gene-regulatory networks around drug metabolism
genes. A) Degree difference distributions of the sex-specific liver networks for drug metabolism genes
compared to all other genes. B) Bar plot of the negative log-transformed p-value from the Wilcoxon test with
colored bars showing the degree difference of drug metabolism genes between female and male sex-specific
networks by tissue. C) Violin plot of the differential modularity score of drug metabolism genes in the male and
female sex-specific communities. D) Bar plot of the negative log-transformed p-value from the paired Wilcoxon
test with colored bars showing the log2 fold change by tissue. For the bar plots, purple is a higher degree (B)
or differential modularity (D) in female networks, and teal is a higher degree or differential modularity in male
networks. The black dotted line is the p-value cutoff for the Bonferroni hypothesis test correction.

Liver sex-specific networks have different drug metabolism gene-regulatory relationships.
We next investigated the network edges representing the predicted regulatory relationship between a

given transcription factor-gene pair that involved a drug metabolism gene (Figure 4A). Across all the known
drug metabolism enzyme genes, we identified three female-biased targeted genes, GSTO2, CYP2D6, and
ALDH3A1 (i.e., the proportion of sex-biased edges in the female direction was greater than 0.6), and four
male-biased targeted genes, MAOA, AOX1, MGST1, and ALDH3B1 (i.e., the proportion of sex-biased edges in
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the male direction was greater than 0.6). When we compared the sex-biased targeted genes and the
SBAE-associated drug metabolism enzymes, both CYP2D6 and MAOA were drug metabolism genes of
SBAE-associated drugs.

We calculated the Pearson correlation between transcription factors and drug metabolism genes and
significance to identify types of potential regulatory relationships (i.e., BH p-value < 0.05). A significant positive
correlation was an activator relationship, and a significant negative correlation was a repressor relationship.
About 52% of these edge relationships were unique to one sex (Figure 4B). Interestingly, the only edge to
have an opposite relationship between males and females was ONECUT1_GSTM3 . While it was predicted to
have an activator relationship in the female liver network (rho = 0.3511445), it was predicted to have a
relatively weaker repressor relationship in the male liver network (rho = -0.1877166). Altogether, these results
highlight that 1453 of the 2801 edges (~51.87%) involving drug metabolism genes were unique to either sex.
However, when the edges were present in both sexes, they had the same edge relationship (i.e., activator or
repressor). Only 1 of the 1348 shared edges (~0.07%) had an opposite relationship between males and
females.

Given that about half of the drug metabolism gene edges were unique to one sex, we determined which
GO Biological Processes were enriched between the distinctive male and female edges. We applied semantic
similarity analysis to determine how similar the enriched GO terms were between the female and male
activator and repressor edges and the common parent GO term of all the enriched GO terms (Figure 4C and
Supplemental File 5). For all the unique sex-specific edges, “regulation of transcription by RNA polymerase II”
(unsurprising given the abundance of transcription factors due to the examination of gene-regulatory
relationships) and “lipid metabolic process” common parent GO terms were enriched. Male activator and
repressor gene sets had more GO terms enriched for the following common parent GO terms than the female
activator and repressor gene sets: “T-cell activation,” “nervous system development,” “glucose homeostasis,”
“cellular response to lipopolysaccharide,” “cell differentiation,” “female pregnancy,” “positive regulation of cell
population proliferation,” and “response to xenobiotic stimulus”. The parent term “female pregnancy,” which had
more enriched GO terms with the male repressor and activator edges, included the following GO terms that
relate to reproduction: “female courtship behavior,” “reproductive process,” “reproduction,” “developmental
process involved in reproduction,” “multi-organism reproductive process,” and “female pregnancy”
  (Supplemental File 5). Overall, the number of male-biased common parent GO term groups (i.e., 8 of 10
common parent GO terms across all enriched pathways) indicates that liver male-specific edges of drug
metabolism genes are potentially involved in more biological programs than female-specific edges.

For each drug metabolism enzyme gene, we determined if it had more activator or repressor targeting
in the sex-specific networks (similar to the degree difference analysis in Figure 3A). In the female-specific liver
network, we found 30 activator-targeted drug metabolism genes (i.e., a positive difference of activator and
repressor edges of drug metabolism genes in the sex-specific liver networks) and 33 repressor-targeted drug
metabolism genes (i.e., a negative difference of activator and repressor edges of drug metabolism genes in the
sex-specific liver networks) (Figure 4D). However, in the male-specific liver network, we identified 24
activator-targeted and 39 repressor-targeted drug metabolism genes (Figure 4D). In addition, 16 drug
metabolism genes had opposing targeting relationships between males and females. GSTM1, UGT1A8,
CYP1A2, ADH1B, and ADH1A were more activator-targeted in the male liver network, while they were more
repressor-targeted in the female liver network. However, ADH4, CYP2C19, CYP2D6, FMO3, FMO5, GSTA1,
GSTK1, GSTZ1, UGT2B10, UGT2B11, and UGT2B7 were more activator-targeted in the female liver network
and more repressor-targeted in the male liver network. We determined that the activator and repressor
targeting of the drug metabolism genes in males and females differed (Wilcoxon signed rank test with
continuity correction, V = 1504, p-value = 0.0006932). Five of the 11 differentially targeted drug metabolism
genes were SBAE-associated drug metabolism enzyme genes, which might explain some SBAEs, including
those associated with CYP2D6, which metabolizes 25% of drugs currently on the market (Figure 2D) [44].
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Figure 4: Predicted gene-regulatory relationships of drug metabolism genes in the sex-specific
networks of the liver differ. A) Heatmap of the male and female associated liver gene-regulatory edges of
drug metabolism genes (x-axis) and transcription factors (y-axis). The coloring on the heatmap indicates the
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network(s) where an edge was present. The y-axis is annotated with the transcription factors with the most
male or female edges. B) Upset plot showing the intersection of activator and repressor transcription
factor-gene edges in the female and male-specific liver networks. C) A dendrogram of the enriched GO
Biological Process terms of unique female and male activator/repressor edges. The “Common Parent GO
Term[s]” clustering and selection were based on Wang's semantic similarity. D) A heatmap of the difference in
activator and repressor edges of drug metabolism genes in the sex-specific liver networks.

SBAE-associated drug targets were more likely to have sex-biased gene expression and be
core genes in sex-specific gene-regulatory networks than other drug targets.

Building on previously identified sex-biased gene expression in GTEx, we determined if the
SBAE-associated drug targets we identified above also had sex-biased gene expression (Figure 5A) [17]. We
found that 52 of the 84 (~ 62%) SBAE-associated drug targets had sex-biased gene expression in at least one
tissue (29 had higher male gene expression in at least one tissue, and 35 had higher female gene expression
in at least one tissue). We conducted permutation testing to determine if our identified SBAE-associated drug
targets were more likely to have sex-biased gene expression than random sets of drug targets (Supplemental
Figure 8). Across the GTEx tissues, we found that our identified SBAE-associated drug targets were
significantly enriched (BH-adjusted p-value < 0.05) for sex-biased gene expression compared to randomly
selected drug targets with respect to both female-biased (24 of 44 tissues) and male-biased (7 of 44 tissues)
gene expression gene sets. The enrichment of SBAE-associated drug targets with sex-biased gene expression
indicates that SBAEs could be due to drugs perturbing genes with sex-biased gene expression.

Furthermore, we explored ADRA1A, DRD1, and ADRA2C, the top three male-biased SBAE-associated
drug targets based on the Euclidean distance clustering of sex-biased gene expression across tissues (Figure
5A) [33]. 26, 13, and 18 SBAE-associated drugs had ADRA1A, DRD1, and ADRA2C as a drug target,
respectively. Both ADRA1A and ADRA2C are adrenergic receptors and are important for locus coeruleus
(LC)-norepinephrine (NE) arousal activity [40]. While the adrenergic α2C-receptors (ADRA2C) have been
shown to influence aggression behaviors in male mice, neither study investigated female mice in their study
design [45,46]. Of the 52 male-biased drug-adverse event pairs with SBAE-associated drugs with ADRA1A as
a drug target, 20 male-biased adverse events were related to psychiatric disorders (Supplemental Figure 9A).
In contrast, only one of the 126 female-biased ADRA1A adverse events was a psychiatric disorder
(Supplemental Figure 9B). The highest male-biased adverse event preferred term was aggression which has
the system organ class assignment of psychiatric disorder (Supplemental Figure 9C). ADRA1A had
male-biased gene expression in five GTEx brain regions compared to females (“Brain Substantia Nigra,” “Brain
Nucleus Accumbens Basal Ganglia,” “Brain Putamen Basal Ganglia,” “Brain Amygdala,” and “Brain Spinal
Cord Cervical c.1”) (Figure 5A). Additionally, 18 SBAE-associated drugs had ADRA2C as a drug target. 17 of
31 male-biased drug-adverse event pairs of SBAE-associated drugs with ADRA2C as a drug target were
male-biased for psychiatric disorder adverse events (Supplemental Figure 10A). In contrast, only one of the
63 female-biased adverse events was a psychiatric disorder (Supplemental Figure 10B). Aggression was the
highest preferred term for male-biased drug-adverse event pairs with ADRA2C as a drug target
(Supplemental Figure 10C). This gene’s expression is only sex-biased in the hypothalamus (male-biased)
(Figure 5A). Lastly, DRD1, a D1 dopamine receptor-coding gene, is the most abundant dopamine receptor
subtype in the central nervous system [47]. 12 of the 21 male-biased drug-adverse event pairs of
SBAE-associated drugs with DRD1 as a drug target also had male-biased psychiatric disorder adverse events
(Supplemental Figure 11A). However, only one female-biased psychiatric disorder adverse event was
associated with a drug that targets DRD1 (Supplemental Figure 11B). However, DRD1 does not have
sex-biased gene expression in GTEx brain tissue RNA-Seq data (Figure 5A). Additionally, aggression had
three male-biased adverse events, the highest along with hallucination, for SBAE-associated drugs with DRD1
as a drug target (Supplemental Figure 11C). DRD1 genetic variation and gene expression in different brain
regions has been implicated with aggression, cognitive impulsivity, and psychosis [48–52]. It is currently
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unclear from the literature if there is documentation of sex-biased DRD1 gene expression affecting aggressive
phenotypes.

The top three female-biased drug targets with the highest number of tissues with female-biased gene
expression were FCGR2B, AR, and CACNA1S [33]. 6, 28, and 6 SBAE-associated drugs had FCGR2B, AR,
and CACNA1S as drug targets, respectively. 7 of the 45 female-biased drug-adverse event pairs with
SBAE-associated drugs targeting FCGR2B had female-biased adverse events related to general disorders and
administration site conditions, and six female-biased drug-adverse event pairs were infections and infestations
(Supplemental Figure 12). FCGR2B is expressed by many immune cells, and previous literature identified
that macrophages have higher Fcgr2b expression in female mice [53,54]. In addition, many SNPs of FCGR2B
are associated with an increased risk of systemic lupus erythematosus, an autoimmune disease known to be
more prevalent in females than males [54–56]. AR is the androgen receptor that interacts with androgens,
including testosterone, and this receptor is important for sex differences in neural circuitry and metabolism [57].
Its expression was female-biased in 26 tissues, including 9 of 13 brain regions (Figure 5A). However, its
expression was also male-biased in the tibial nerve and the subcutaneous adipose tissue (Figure 5A). While
this gene’s expression was female-biased across 26 GTEx tissues, perturbing AR is associated with both
male- and female-biased adverse events related to psychiatric disorders and nervous system adverse events,
respectively (Supplemental Figure 13A & B). 11 of the 110 female drug-adverse event pairs we identified with
AR as a drug target had female-biased nervous system adverse events, and 11 of the 60 male drug-adverse
event pairs were related to male-biased psychiatric disorders (Supplemental Figure 13A & B). Lastly,
CACNA1S has female-biased expression in 11 of the 13 GTEx brain regions (Figure 5A), and 9 of the 58
female-biased drug-adverse event pairs with CACNA1S as a drug target were related to the nervous system
(the second highest number of female-biased drug-adverse events) (Supplemental Figure 14). Overall, these
cases highlight a potential connection between a drug target's sex-biased gene expression and their most
common adverse events.

We also hypothesized that SBAEs might be due to drug targets that are core genes of sex-specific
communities. We built sex-specific tissue networks for 43 different tissues based on the gene expression data
from the GTEx project. We identified sex-specific communities within each tissue using the same process for
the liver gene-regulatory network analysis above. We selected 100 core genes for each sex-specific
community from the top 100 highest differential modularity score genes in each sex-specific community. In
total, 58 of the 84 (~ 69%) SBAE-associated drug targets were a core gene of a sex-specific gene-regulatory
network in at least one tissue (Figure 5B). 41 of the 84 (~ 49%) SBAE-associated drug targets were male core
genes in at least one tissue, and 43 of the 84 (~ 51%) drug targets were female core genes in at least one
tissue. In total, SBAE-associated drug targets were enriched for female sex-specific community core genes in
34 tissues and for male sex-specific community core genes in 32 tissues (permutation testing with BH-p-value
<0.05) (Supplemental Figure 15). We found that the nuclear receptors PPARA, PGR, PPARG, AR, and
NR3C1, known to be regulated by hormone signaling (including sex hormones [58]), were drug targets and
core genes to more than half of the tissues analyzed [58]. Additionally, PPARA is not differentially expressed
between males and females in the GTEx dataset, while the other core genes had sex-biased gene expression
in at least one tissue. We found one study where a PPARα agonist treatment before a stroke was
neuroprotective in male mice but not females, suggesting that perturbation of PPARα might be sex-dependent
[59]. Therefore, PPARA is an example of a gene that was a sex-biased gene-regulatory core gene without
sex-biased gene expression, but where there was literature evidence of a sex-dependent PPARα agonist
treatment drug response.

Overall, we found that 71 of the 84 (~ 85%) drug targets had either sex-biased gene expression (~
62%) or high differential modularity in sex-specific communities (~ 49%) (Supplemental File 6). 39 of 71 drug
targets overlapped between the sex-biased gene expression list and the core gene list, and 13 and 19 drug
targets were only identified by sex-biased gene expression or core genes, respectively. We found that 194 of
the 389 (~ 50%) SBAE-associated drugs we identified had at least one of the 71 drug targets we identified as
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having sex-biased gene expressions or core genes of sex-specific communities. These SBAE-associated drug
target sex-biased differences in gene expression and gene-regulatory networks support our hypothesis that
SBAE-associated drug targets are enriched for sex differences in gene expression.
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Figure 5: Most SBAE-associated drug targets have sex-biased gene expression or are sex-specific
community core genes. A) Sex-biased gene expression of SBAE-associated drug targets across tissues. B)
SBAE-associated drug targets were sex-specific gene-regulatory network core genes across tissues.
Euclidean distance clustering with ComplexHeatmap’s complete algorithm was used for both heatmaps.

Discussion
Prior pharmacovigilance studies have identified SBAEs, and multiple studies have investigated sex

differences in gene expression and gene-regulatory networks, implicating their role in drug metabolism and
response [6–11,14,18,20]. In this study, we sought to identify if there are sex differences in gene expression
and the gene-regulatory networks of the drug targets of SBAE-associated drugs. We first identified 32 drug
metabolism enzymes and 84 drug targets enriched for SBAE-associated drugs. The liver gene-regulatory
neighborhood and edges differed for drug metabolism enzymes between male and female gene-regulatory
networks. Additionally, we found that SBAE-associated drug targets were more likely to be sex-biased
expressed genes and the core genes of sex-specific gene-regulatory communities than randomly selected
drug targets. Our findings support the hypothesis that some SBAEs may be due to drugs perturbing genes with
sex-biased gene expression or gene-regulatory network properties.

Like previous pharmacovigilance studies with similar methods, we identified more than twice as many
female SBAEs as male SBAEs [6,8,10]. Additionally, we identified 610 male- or female-biased adverse events,
and the top three male- and female-biased drugs associated with SBAEs were also identified previously
[34–38]. These findings are clinically relevant. For example, the second most common male-biased adverse
event we identified was acute kidney injury (AKI). It is known that drug-induced AKI is a common cause of AKI,
accounting for approximately 19% of AKI in hospital settings [60,61]. We also identified drug hypersensitivity as
female-biased, supported by previous reviews of pharmacovigilance studies [62] and evidence suggesting
multifactorial explanations for why females are more likely to have drug hypersensitivity, including potential
genetic and epigenetic causes [63]. Our results highlight the need for more research investigating causal
relationships between adverse events, drug mechanisms, and sex differences.

In this study, we also expanded upon previous studies examining sex differences in drug metabolism
genes in the liver. CYP3A4 has higher gene expression, protein expression, and activity in females and was
the most common drug metabolism enzyme across the SBAE-associated drugs we identified [64]. We also
found that CYP3A43 was a male core gene. In addition, two of the SBAE-associated drug targets, CYP2D6
and MAOA, were female- and male-biased targeted in the sex-specific liver gene-regulatory networks. While
MAOA was the 24th most common SBAE-associated drug metabolism gene, CYP2D6 was the second most
common SBAE-associated drug metabolism gene, and it was estimated 25% of drugs on the market use the
CYP2D6 enzyme [44]. We identified two common drug metabolism enzymes enriched in SBAE-associated
drugs with sex differences in liver gene-regulatory networks.

We further applied gene-regulatory network methodology to explore if there are predicted sex
differences in gene regulation in the liver. We found that drug metabolism genes in the liver female
gene-regulatory network are targeted more than in the male network via the weighted in-degree difference. On
the other hand, drug metabolism genes in the liver male gene-regulatory network had a higher differential
modularity than in the female gene-regulatory network indicating that they are more important for sex-specific
network community integrity. In addition, the unique male liver network edges were involved in multiple
biological processes, including “T-cell activation,” “nervous system development,” and “glucose homeostasis.”
Our results support a potential female neighborhood structure where drug metabolism genes are more
targeted than in the male liver network, and the transcription factors that regulate drug metabolism genes are
involved in fewer biological programs than in the male network. This network structure further underscores that
the influence of sex is complex for liver drug metabolism gene expression. For example, multiple biological
processes utilize the same transcription factors as drug metabolism genes in the male-specific liver network.
One common parent GO term from our GO semantic similarity analysis of the unique sex-specific edges of the
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drug metabolism genes was “glucose homeostasis.” Male repressor and activator edges were enriched for
“glucose homeostasis,” “carbohydrate homeostasis,” “regulation of hormone levels,” “cellular glucose
homeostasis,” “homeostasis of number of cells,” and “cellular response to glucose stimulus.” A prior study
found that long-term exposure to abnormal glucose levels affected the activity of drug metabolism enzymes in
primary hepatocytes, but unfortunately, it did not state the donor sex of the cells used in the experiment or
discuss the impact of sex [65]. Future studies are needed to delineate the role of gene-regulatory sex
differences in drug metabolism to determine the relative contribution of gene expression, protein expression,
and protein activity to SBAE.

In this study, we sought to evaluate our hypothesis that drugs associated with SBAEs are perturbing
sex-biased gene expression and gene-regulatory networks. The 84 enriched SBAE-associated drug target
genes we identified were more likely to be expressed in a sex-biased manner and to be core genes than other
drug targets across several tissues. In addition, we found that some of the SBAE-associated drug targets with
sex-biased gene expression were associated with a common adverse event and associated sex-biased gene
expression in the tissue manifesting that adverse event. For example, ADRA1A and ADRA2C were both
associated with the male-biased adverse event of aggression. We found that these genes have higher
expression in many brain regions in males than in females. However, we identified other SBAE-associated
drug targets with more complicated expression and network patterns. For example, AR, which codes for the
androgen receptor, is known to be influenced by the sex hormone testosterone, which is dynamically secreted
over hours and decades [66]. AR was among the top three female-biased expressed genes and sex-biased
core genes in all 43 tissues (Figure 5). We found that it had common female-biased adverse events of nervous
system disorders and male-biased adverse events of psychiatric disorders, suggesting AR may contribute to
different SBAEs for each sex.

There are some limitations to the current study. First, these results are associations and not causal
relationships, so future studies are needed to investigate their causality. We have provided our computational
workflows and complete results to facilitate their use as a resource for future studies. Also, we acknowledge
that FAERS is based on case reports susceptible to reporting biases and that GTEx samples are skewed
toward male subjects. Additionally, we found that RIN score and ischemic time are potentially confounding
variables in the GTEx gene expression data. This technical variation could not be incorporated into the PANDA
methodology. Still, the sex-biased gene sets from Oliva et al. included RIN score and ischemic time as
covariates in their analyses [17]. As we previously reviewed [4], other pharmacokinetic, pharmacodynamic,
biological, and environmental factors can influence drug response in combination with sex, such as solubility of
the drug, body fat percentage, age, ancestry, and diet. Another potential complexity of SBAEs could be due to
disruption in one tissue affecting multiple tissues or multiple tissues being disrupted. These potential
complexities were not explored in depth in this study.

Lastly, one critical limitation of this study is that we relied on bulk tissue RNA-Seq profiles from GTEx.
With the invention of single-cell and spatial sequencing technology, the research community has determined
gene expression differences between cell populations within a tissue sample [67–69]. For example, single-cell
technology was recently used to detect sex-biased gene expression and gene-regulatory networks in mouse
brain and heart tissues [70]. Concerning our study, for example, because FCGR2B is associated with the
immune system, which was difficult to investigate with bulk gene expression profiles, other literature sources
were added to help clarify our association of female-biased infections and infestations adverse events and
FCGR2B female-bias expression in immune cells [53–56]. Another limitation of bulk tissue profiles was
highlighted by tissues with multiple tissue regions sequenced by GTEx, like the brain. Because of this, we
could associate more neurological and psychiatric disorder adverse events with drug targets than other tissues
and adverse events. Therefore, future studies using a similar methodology applied to additional tissue
subregions and single-cell profiles, particularly for organs involved in drug metabolism like the kidney and liver,
are critical.
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Perspectives and significance

We conducted this study to investigate the gene regulatory landscape of SBAEs and the drugs that are
associated with them. We identified 32 drug metabolism enzymes and 84 drug targets enriched in the known
drug targets of the drugs associated with SBAEs. We found that these drug targets were enriched for genes
with sex-biased gene expression and network properties, such as being core genes of sex-specific network
communities. While future studies are required to determine the causality of these associations, the
SBAE-associated drug metabolism enzymes and drug targets may also be useful for predicting SBAE or drug
repurposing prioritization. We highlight possible future studies as a consequence of the results of this study,
further emphasizing that improving SBAE is a community effort. We also provide our computational workflows
and unfiltered results as a resource for the community.

Conclusions
Here, we used data mining and network approaches to investigate not only the gene expression of both

drug metabolism genes and drug targets of drugs associated with SBAEs but also examined network
properties of sex- and tissue-specific gene-regulatory networks. While previous studies have focused on drug
metabolism enzymes, we also investigated the known drug targets of SBAE-associated drugs. Overall, we
found supporting evidence that SBAEs could be caused in part by sex differences in drug metabolism enzyme
and drug target gene expression and gene-regulatory network properties. These results are a valuable
resource for future studies determining SBAE mechanisms to predict and prevent SBAEs and for sex-aware
drug development and repurposing.

Abbreviations

● SBAEs - Sex-biased adverse events
● FDA - U.S. Food and Drug Administration
● FAERS - FDA’s Adverse Event Reporting System
● WHO - World Health Organization
● COVID-19 - coronavirus disease of 2019
● GTEx - Genotype-Tissue Expression project
● TCGA - The Cancer Genome Atlas
● GO - Gene Ontology
● KEGG - Kyoto Encyclopedia of Genes and Genomes
● MedDRA - Medical Dictionary for Regulatory Activities
● PANDA - Passing Attributes between Networks for Data Assimilation
● ALPACA - ALtered Partitions Across Community Architectures
● PCA - principal component analysis
● ROR - reporting odds ratio
● BH - Benjamini-Hochberg
● logROR- log reporting odds ratio
● SNPs - Single nucleotide polymorphisms
● AKI - acute kidney injury

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.23.541950doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541950
http://creativecommons.org/licenses/by-nc/4.0/


23
Supplemental Figures

Supplemental Figure 1: Barplot of the top 30 female-biased adverse events based on the number of drugs
with an adverse event.

Supplemental Figure 2: Barplot of the top 30 male-biased adverse events based on the number of drugs with
an adverse event.
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Supplemental Figure 3: Barplot of the top 30 drugs based on the number of female-biased adverse events
associated with the drug.

Supplemental Figure 4: Barplot of the top 30 drugs based on the number of male-biased adverse events
associated with the drug.
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Supplemental Figure 5: Heatmap of the logROR of the 50 most common drugs (x-axis) and adverse events (y-axis) for both sexes. Purple logROR
is female-biased and Teal logROR is male-bias.
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Supplemental Figure 6: Bar plots of the number of drug metabolism genes in the sex-specific communities of
the liver for A) female and B) male.
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Supplemental Figure 7: We performed a one-tailed Wilcoxon test to determine if the number of core genes
selected for drug metabolism was higher than for the randomly selected genes for A) Sex-biased liver core
gene (p-value =1). B) male-specific liver core genes (p-value = 0.9910552) C) female-specific liver core genes
(p-value =1).
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Supplemental Figure 8: Permutation results for the SBAE-associated drug targets’ enrichment of
sex-biased expressed genes. A) Bar plot of the female-biased sex-biased gene expression gene sets by
tissue with the x-axis being the fraction of SBAE-associated drug targets with female-biased gene expression
for the tissue and the number of drug targets with sex-biased gene expression. B) Bar plot of the male-biased
sex-biased gene expression gene sets by tissue with the x-axis being the fraction of SBAE-associated drug
targets with male-biased gene expression for the tissue and the number of drug targets with sex-biased
expression. Permutation testing was conducted by randomly selecting either 84 drug targets genes 1,000
times with a one-tailed Wilcoxon test and with BH-multiple hypothesis test correction (ɑ = 0.05).
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Supplemental Figure 9: Drug target ADRA1A’s drug-adverse event plots. A) A bar plot of the number of male-biased drug-adverse event pairs
with a drug with ADRA1A as drug target for each System Organ Class (SOC) adverse event term. B) A bar plot of the number of male-biased
drug-adverse event pairs with a drug with ADRA1A as drug target for each Preferred Term (PT) adverse event term. C) A bar plot of the number of
female-biased drug-adverse event pairs with a drug with ADRA1A as drug target for each System Organ Class (SOC) adverse event term.
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Supplemental Figure 10: Drug target ADRA1C’s drug-adverse event plots. A) A bar plot of the number of male-biased drug-adverse event
pairs with a drug with ADRA1C as drug target for each System Organ Class (SOC) adverse event term. B) A bar plot of the number of male-biased
drug-adverse event pairs with a drug with ADRA1C as drug target for each Preferred Term (PT) adverse event term. C) A bar plot of the number of
female-biased drug-adverse event pairs with a drug with ADRA1C as drug target for each System Organ Class (SOC) adverse event term.

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.05.23.541950doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.23.541950
http://creativecommons.org/licenses/by-nc/4.0/


31

Supplemental Figure 11: Drug target DRD1’s drug-adverse event plots. A) A bar plot of the number of male-biased drug-adverse event pairs
with a drug with DRD1 as drug target for each System Organ Class (SOC) adverse event term. B) A bar plot of the number of male-biased
drug-adverse event pairs with a drug with DRD1 as drug target for each Perferred Term (PT) adverse event term. C) A bar plot of the number of
female-biased drug-adverse event pairs with a drug with DRD1 as drug target for each System Organ Class (SOC) adverse event term.
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Supplemental Figure 12: A bar plot of the number of female-biased drug-adverse event pairs with a drug with
FCGR3B as drug target for each System Organ Class (SOC) adverse event term.
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Supplemental Figure 13: Drug target AR’s drug-adverse event plots. A) A bar plot of the number of
female-biased drug-adverse event pairs with a drug with AR as drug target for each System Organ Class
(SOC) adverse event term. B) A bar plot of the number of male-biased drug-adverse event pairs with a drug
with AR as drug target for each System Organ Class (SOC) adverse event term.
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Supplemental Figure 14: A bar plot of the number of female-biased drug-adverse event pairs with a drug with
CACNA1S as drug target for each System Organ Class (SOC) adverse event term.
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Supplemental Figure 15: Permutation results for the SBAE-associated drug targets’ enrichment of
sex-specific network core genes. A) Bar plot of the female-specific network core gene gene sets by tissue
with the x-axis being the fraction of SBAE-associated drug targets with female-specific network core genes for
the tissue and the number of drug targets that are female-specific network core genes. B) Bar plot of the
male-specific network core gene gene sets by tissue with the x-axis being the fraction of SBAE-associated
drug targets with male-specific network core genes for the tissue and the number of drug targets that are
male-specific network core genes. Permutation testing was conducted by randomly selecting either 84 drug
targets genes 1,000 times with a one-tailed Wilcoxon test and with BH-multiple hypothesis test correction (ɑ =
0.05).
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Supplemental Information
Supplemental File 1: Computing system and package version information.
File name: FILE1_230512_computer_R_info.pdf

Detailed computer and package version information are included in Supplemental File 1.

Supplemental File 2: Number of samples for each GTEx tissue
File name: FILE2_gtex_tissue_counts.csv

The number of female and male RNA-Seq samples in Recount3 GTEx dataset Supplemental File 2.
The gtex.sex column notes the sex. The gtex.smtsd column indicates the tissue. The Freq column indicates
number of samples.

Supplemental File 3: Fisher’s exact test results
File name: FILE3_drug_ae_res_info.csv
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Supplemental File 3 contains all the the Fisher’s exact test conducted with the MedDRA and

DrugBank mappings.
● Drug - Drug Bank ID
● Adverse_event - MedDRA preferred term id
● a - the number of female patients with target drug-adverse event pairs
● b - the number of female patients with the drug but not the same adverse event,
● c - the number of male patients with target drug-adverse event pairs,
● d - the number of male patients with the drug but not the same adverse event.
● p-value - raw p-values from Fisher's exact test
● ROR- the reporting odds ratio
● conf_1 - lower boundary of the confidence interval 95%
● conf_2- upper boundary of the confidence interval 95%
● BH - BH adjusted p-value from the raw p-values from Fisher's exact test
● comb- Drug Bank ID and MedDRA id
● neg_log_p - negative log BH adjusted p-value
● logROR - log reporting odds ratio
● color - color for plotting
● pt_id - MedDRA preferred term id
● pt_term - MedDRA preferred term
● soc_id - MedDRA system organ class term id
● soc_term - MedDRA system organ class term
● soc_short - MedDRA system organ class short term
● drug_name - drug name
● drug_id - Drug Bank ID

Supplemental File 4: ALPACA pathway results for the core genes of the sex-specific communities
across tissues.
File name: FILE4_all_pathways.csv

Supplemental File 4 contains gprofiler2 functional enrichment of the ALPACA sex-specific network
communities. The set column was added to the gprofiler2 output to note if enriched gene sets were from which
core gene lists: set - the tissue sex-specific community, tissue- tissue, sex- sex, and comm_num- community
number for the tissue sex-specific community gene list. The columns query, significant, p_value, term_size,
query_size, intersection_size, precision, recall, term_id, source, term_name, effective_domain_size, and
source_order are from the gprofiler2 output. Below is the column information from the gprofiler vignette:[25]

● query - the name of the input query which by default is the order of the query with the prefix “query_.”
This can be changed by using a named list input.

● significant - indicator for statistically significant results
● p_value - hypergeometric p-value after correction for multiple testing
● term_size - number of genes that are annotated to the term
● query_size - number of genes that were included in the query. This might be different from the size of

the original list if:
○ any genes were mapped to multiple Ensembl gene IDs
○ any genes failed to be mapped to Ensembl gene IDs

● the parameter ordered_query = TRUE and the optimal cutoff for the term was found before the end of
the query

● the domain_scope was set to “annotated” or “custom”
● intersection_size - the number of genes in the input query that are annotated to the corresponding term
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● precision - the proportion of genes in the input list that are annotated to the function (defined as

intersection_size/query_size)
● recall - the proportion of functionally annotated genes that the query recovers (defined as

intersection_size/term_size)
● term_id - unique term identifier (e.g GO:0005005)
● source - the abbreviation of the data source for the term (e.g. GO:BP)
● term_name - the short name of the function
● effective_domain_size - the total number of genes “in the universe” used for the hypergeometric test
● source_order - numeric order for the term within its data source (this is important for drawing the

results)

Supplemental File 5:
File name: FILE5_liver_edge_differences_pathways.csv

Supplemental File 5 contains the GO semantic similarity analysis results from gprofiler2 functional
enrichment of the unique sex-specific activator and repressor edges.

● go - GO Biological Proccess ID
● cluster - cluster number
● parent - the common parent GO term ID
● parentSimScore - the fraction of genes of the GO term shared with the common parent GO term
● score - The number genes in the GO term (same as size)
● size - The number genes in the GO term (same as score)
● term - the Biological Proccess GO term
● parentTerm - the common parent GO term group
● female_act_list - TRUE or FALSE if the listed GO term is enriched in the female activator targeted

edges
● female_repress_list - TRUE or FALSE if the listed GO term is enriched in the female repressor targeted

edges
● male_act_list - TRUE or FALSE if the listed GO term is enriched in the male activator targeted edges
● male_repress_list - TRUE or FALSE if the listed GO term is enriched in the male repressor targeted

edges

Supplemental File 6:
File name: FILE6_drug_info_sbae_drugs.xls

Supplemental File 6 contains SBAE-associated drugs’ DrugBank ID (drug_id), known drug targets
(targets), drug metabolism enzymes (enzyme), transporters (transporter), and carrier (carrier). This file also
contains the list of SBAE-associated drug targets (SBAE_Drug_Targets) and drug metabolism enzymes
(SBAE_Drug_ENZ).
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