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Abstract

The neuronal code arising from the coordinated activity of grid cells in the rodent entorhinal

cortex can uniquely represent space across a large range of distances, but the precise con-

ditions for optimal coding capacity are known only for environments with finite size. Here we

consider a coding scheme that is suitable for unbounded environments, and present a

novel, number theoretic approach to derive the grid parameters that maximise the coding

range in the presence of noise. We derive an analytic upper bound on the coding range and

provide examples for grid scales that achieve this bound and hence are optimal for encoding

in unbounded environments. We show that in the absence of neuronal noise, the capacity of

the system is extremely sensitive to the choice of the grid periods. However, when the accu-

racy of the representation is limited by neuronal noise, the capacity quickly becomes more

robust against the choice of grid scales as the number of modules increases. Importantly,

we found that the capacity of the system is near optimal even for random scale choices

already for a realistic number of grid modules. Our study demonstrates that robust and effi-

cient coding can be achieved without parameter tuning in the case of grid cell representation

and provides a solid theoretical explanation for the large diversity of the grid scales observed

in experimental studies. Moreover, we suggest that having multiple grid modules in the ento-

rhinal cortex is not only required for the exponentially large coding capacity, but is also a pre-

requisite for the robustness of the system.

Author summary

Navigation in natural, open environments poses serious challenges to animals as the dis-

tances to be represented may span several orders of magnitudes and are potentially

unbounded. The recently discovered grid cells in the rodent brain are though to play a

crucial role in generating unique representations for a large number of spatial locations.

However, it is unknown how to choose the parameters of the grid cells to achieve maximal

capacity, i.e., to uniquely encode the utmost locations in an open environment. In our

manuscript, we demonstrate the surprising robustness of the grid cell coding system: The

population code realised by grid cells is close to optimal for unique space representation

irrespective of the choices of grid parameters. Thus, our study reveals a remarkable
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robustness of the grid cell coding scheme and provides a solid theoretical explanation for

the large diversity of the grid scales observed in experimental studies.

Introduction

Optimising neuronal systems for efficient processing and representation of information is a

key principle for both understanding and designing neuronal circuits [1], but deciding

whether a particular neuronal phenomenon reflects an optimisation process is often difficult.

Grid cells in the medial entorhinal cortex have been suggested to efficiently represent spatial

location of the animal by their spatially periodic firing fields near optimally [2, 3, 4, 5]. How-

ever, it remained controversial whether the efficiency of the grid cell code is the result of the

precise tuning of the grid parameters [6, 7, 8] or the performance of the system is relatively

insensitive to the actual parameter settings [4, 5, 9].

Grid cells are spatially tuned neurons with multiple firing fields organised along the vertices

of a triangular grid (Fig 1a; [10, 11]). Grid cells of any particular animal are organised into

functional modules [12, 13] cells within a module share the same grid scale and orientation,

but differ in the location of their firing fields, i.e., their preferred firing phase within the grid

Fig 1. Coding with grid cells. (a) Schematic firing fields (circles) of two-dimensional grid cells as function of spatial

position. Grid cells are organised into modules: Cells from the same module share the orientation and scale parameter

but differ in their spatial phase (top, shades of purple). Different modules have different scale and orientation (top to

bottom). (b) Grid cell spikes encodes the phase of a module. Spiking of grid cells (black ticks, each spike is shown three

times, at the maxima of the cells’ firing rate) from a single module represents the movement of the animal (light-blue

line) in a 1 dimensional environment. Since the firing rate of the cells (right, olive) is periodic, the position (left:

colormap, right: black) which is represented by the phase of the module is also periodic. The uncertainty of the

representation fluctuates over time around a typical value, δ (right). (c) Grid cell coding schemes. The location of the

animal (origin, filled arrow) is jointly encoded by the phases of the different modules in both nested (top) and modulo

arithmetic (bottom) codes. Grey and empty arrowheads indicate locations with large or catastrophic interference

between the modules, respectively.

https://doi.org/10.1371/journal.pcbi.1005922.g001
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period (Fig 1a). Modules form the functional units of the grid representation: The joint activity

of all (possibly hundreds of) cells within each module is captured by the (two dimensional)

phase of the given module (Fig 1b; [14, 15]) and the relationship between different cells from

the same module remains stable across different environments [16], during sleep [17, 18] or

after environmental distortions [13]. A given spatial location is represented by the phases of

the different modules (‘phase vector’). The representations are unique up to a critical distance

above which the coding becomes ambiguous: the phase vectors, and hence the firing rates of

all grid cells, become (nearly) identical at two separate physical locations (Fig 1c).

Depending on the magnitude of the critical distance compared to the largest grid scale, two

complementary coding schemes have been proposed for grid cells (Fig 1c): In nested coding

[4, 6, 8] smaller grid modules iteratively refine the position coding of larger modules and the

modules span a wide range of scales. The capacity of nested codes, defined as the ratio of the

coding range and the resolution, is exponential in the number of modules. Maximal capacity

can be achieved by setting the coding range equal to the maximal grid period and then opti-

mising the resolution by a geometric progression of the grid scales [6]. When the total capacity

is utilised to encode locations within the maximal grid scale, catastrophic interference will

cause ambiguity in the grid code beyond this distance (Fig 1c).

When the coding is not optimised for a fixed range, the unique combination of the activity

of grid modules can encode a potentially unbounded range that can be substantially larger

than the scale of the largest module using a modulo arithmetic (MA) code [2, 3, 14] (Fig 1c).

In this case the grid periods can be similar in magnitude (e.g., co-prime integers or a geometric

progression with a relatively small ratio). However, it is not known under what conditions the

MA coding system can achieve exponential capacity [3, 14], and how robust is the capacity

against the choice of the grid periods or neuronal noise.

Here we develop a novel approach to study the capacity of the grid coding system that is

based on Diophantine approximations, i.e., approximation of real numbers by rational num-

bers. First, we apply the technique to study coding with two grid modules. We show that the

capacity of the system is extremely sensitive to the number theoretic properties of the scale

ratio between the modules. Next, we generalise our approach to the case of multiple modules,

and show both analytically and numerically that the exponential capacity of the grid cell cod-

ing system can be achieved using the MA coding scheme. Finally, we demonstrate that when

the coding range is constrained by neuronal noise, the capacity of the system is extremely

robust against the choices of the scaling of the modules.

Results

In the first section of the Results we briefly introduce the terminology and define the concepts

used throughout the paper. We include this section for completeness, although several ideas

presented in this section have been described before, e.g., in [3, 4].

We investigate grid cell population codes along a linear trajectory as the one dimensional

results extend to two (or higher) dimensions without difficulty, at least for axis aligned grid

modules (Methods) [3, 4]. The periodic population activity of module i can be summarised by

its spatial phase

ciðxÞ ≔ ðx mod aiÞ=ai 2 ½0; 1Þ;

which depends on the position (x) and the scale of the module (αi, Methods) with α0 = 1,

which means that distances are expressed in the unit of the smallest grid period. We assume,

that, without loss of generality, at the spatial origin all modules are in their 0 phase. Spikes

of the neurons in module i, represent the spatial location of the animal with a maximum error
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δ αi (i.e., with the same 0.01� δ� 0.2 phase error for all modules; Methods; [8]). Ambiguity

occurs if the phase difference � between the modules is smaller than δ at integer distance ℓ
from the origin (Figs 1c and 2b, inset, Methods):

�ð‘Þ ¼ jjc1ð‘Þ � c0ð‘Þjj ¼ jjc1ð‘Þjj; ð1Þ

where ||ψ|| means distance from the nearest integer.

To analyse the coding properties of the grid cell system, we follow the same three logical

steps both in the two module and in the multi-module case (Fig 3). First, we show the existence

of an upper bound on how the maximal phase difference �(ℓ) between the modules decreases

with the distance. Intuitively, this upper bound expresses the fact that interference between the

modules necessarily becomes stronger at larger distances. Second, we demonstrate that for

appropriately chosen scale ratios a lower bound on the phase difference also exists and is paral-

lel with the upper bound (Fig 3). For these scale choices catastrophic interference is avoided

until a critical distance, that depends on the noise level in the system. Importantly, the slope of

the bounds depends only on the number of modules, but not on the choice of the scale param-

eters. Therefore the efficiency of the scale choices (the magnitude of the critical distance) can

be characterised by the offset parameter, cα (defined below), associated with the lower bound.

Thus, our third step is to estimate cα for various choices of the scale parameter α.

Our analytic derivations provide an estimate for the asymptotic performance of the system

that is valid in the low-noise limit. The main advantage of our approach is that it provides strict

bounds on the achievable coding efficiency that can be used as a metric to evaluate the effi-

ciency of different scale choices at realistic noise levels, two or more modules alike. As we

found using numerical simulations, these bounds can be approached with random scale

choices at realistic levels of noise and number of modules.

Fig 2. Interference depends on the choice of the scales. (a) Interference with rational scale ratio. Left: Representative

posteriors (P(x|s)) for two modules with scale 1 and α = 3/2. Encoding becomes ambiguous at distance 3 from the

origin where perfect interference occurs (3 = 2α). Right: Phase plot of the two modules, with the colour (red to blue)

encoding the distance from the origin (see the coloured line below the left panel). Perfect interference occurs when the

phase-curve overlaps with itself. (b) Interference with α = 1.76 . . ., which is close to 7/4 and therefore leads to strong

interference at distance 7. Right: Interference occurs when the distance between two neighbouring segments of the

phase curve becomes smaller than the limit set by the neuronal noise (grey squares of side δ around the origin,

see inset). Note, that both grids are around phase 0.3 at the distance 2.3 without interference. (c) Interference with

α = σ� 1.618, which is the golden ratio. Interference still becomes stronger at larger distances, (e.g. at distance 5, since

s � 5

3
). Interference in grid codes is related to the approximation of irrationals with rational numbers having small

denominators (see text for further details). Right: Interference is inevitable since the phase space has a limited volume.

https://doi.org/10.1371/journal.pcbi.1005922.g002
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Coding is extremely sensitive to the scale ratio with two modules

We can formalise the problem of interference between two modules as having a pair of integers

k and ℓ with ℓ� kα, meaning that module 2 (with scale α) is close to being in phase 0 at dis-

tance ℓ, which would cause ambiguity between the coding of the spatial point ℓ and the origin.

This is formally identical to the number theoretic question of the approximability of the scale

α� ℓ/k with rationals having numerator ℓ, also known as Diophantine approximations (Fig 2b

and 2c).

Hurwitz’s theorem [19, 20] states that for all irrational numbers α> 1 there are infinitely

many relative primes k, ℓ such that the error of the approximation, defined as

�ð‘Þ ¼ jk � ‘=aj; ð2Þ

is smaller than the upper bound:

�ð‘Þ <
1
ffiffiffi
5
p

1

‘
: ð3Þ

Note that the approximation error �(ℓ) (Eq 2) is the same as the phase difference between the

modules, defined in Eq 1, since ψ2(ℓ) = [ℓ/α] mod 1 = |k − ℓ/α| for an appropriately chosen

integer k (Fig 2b and 2c). We call �(ℓ) ‘approximation error’ only when we are talking about

approximating irrationals with integer ratios while in the context of grid cells we will call �(ℓ)
the ‘phase difference’.

Applied to the grid cells, Hurwitz’s theorem provides an upper bound on how the phase

difference between the modules shrinks with the distance. Specifically, the theorem states

that there are infinitely many integer distances ℓ, where the phase difference is smaller than

�(ℓ)/ 1/ℓ (Fig 4a–4c, dashed lines), implying that on the long run interference can not be

avoided no matter how carefully we choose α. This is a fundamental upper bound on the effi-

ciency of coding with grid cells.

The critical distance where the phase difference �(ℓ) leads to interference, and the represen-

tation of the position becomes ambiguous, depends on the noisiness of the two modules, δ and

αδ. Interference occurs if there is a spatial point x for which both |x − kα|< αδ and |x − ℓ|< δ
for integers k, ℓ, or equivalently, if |kα − ℓ|< (1 + α)δ. Hence, by the definition of �(ℓ) (Eq 2)

the coding is ambiguous near ℓ if and only if

�ð‘Þ <
1

a
ð1þ aÞd: ð4Þ

Therefore, no matter how we chose α, we can expect ambiguity at distances ℓ from the origin if

Fig 3. Logical steps of the argument. First, we provide an absolute upper bound on the phase difference in the

function of the distance, that is linear in log-log scale (left). Second, we show, that for certain scales a lower bound also

exists (middle). Third, we characterise the efficiency of the scales (α) by their offset, cα (right).

https://doi.org/10.1371/journal.pcbi.1005922.g003
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the noise in the system is larger than the upper bound on efficiency provided by Eq 3, i.e.

‘ >
a

ffiffiffi
5
p
ð1þ aÞ

1

d
; ð5Þ

that is, at distance of order 1/δ. Consequently, it is impossible to code position with two mod-

ules better than this bound.

The question arises then whether the above theoretical bound is achievable, at least for

some appropriately chosen α. The answer is yes, namely the upper bound in Eq 3 is sharp for

the golden ratio a ¼ s ≔
ffiffi
5
p
þ1

2
� 1:618. Practically, this also introduces a limit on �(ℓ), saying

that the phase difference between the modules remains always larger than a specific lower

bound:

�ð‘Þ >
1
ffiffiffi
5
p � ε
� �

1

‘
ð6Þ

except for a couple of small distances, even for arbitrary small ε> 0 [19] (Fig 4b).

It may sound strange that there are finitely many exceptions, but in our simulations we

found only a few instances with ℓ being small (Fig 4e). Therefore, if the ratio of the two grid

modules equals the golden ratio then the phase difference between the two modules is guaran-

teed to be larger than the lower bound defined by Eq 6. Since ε can be arbitrarily small, the

lower bound for the golden ratio approaches the theoretical upper bound (Eq 3) and σ is an

optimal choice for the scale ratio to avoid interference in case of two modules. To give a geo-

metric picture, the golden ratio guarantees approximately uniform coverage of the phase space

for both short and arbitrarily long distances (Fig 2c, right).

However, it turns out that there are many good choices [20]: for any algebraic integer α of

order 2 (i.e. irrational which is a root of a polynomial of degree 2 with integer coefficients, see

Fig 4. Coding efficiency in two modules. (a-c) The phase difference in the function of distance for different values of

α. The zigzag line indicates the phase difference (PD) at all integer distances, circles indicate record low PD. Dashed

line shows the theoretical upper bound of the PD, solid line shows the numerical fit on the lower bound (allowing

finitely few exceptions at low ℓ). Note, that the lower and the upper bound coincides in b. Also note the 1/ℓ scaling of

PD for algebraic scale ratios (b-c). Grey shading indicates the range of PD smaller than the neuronal noise, (1 + α)δ.

(d)-(f) The scaled phase difference (�̂að‘Þ, Eq 7) for different distances and scale ratios. The highest constant under

which there are only finitely few values of �̂að‘Þ at small distances estimates ĉa. The value of ĉa is slightly higher for the

golden ratio (e) than for
ffiffiffi
2
p

(f), and much larger than for non-algebraic numbers (d, a ¼
ffiffi
e
p

, ĉa ¼ 0:04).

https://doi.org/10.1371/journal.pcbi.1005922.g004
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Methods) there exists a maximal positive constant cα> 0 such that

�ð‘Þ � ca

1þ a

a

1

‘
ð7Þ

holds except for a couple of small distances (Fig 4c–4f, [21]). Hence, from Eqs 4 and 7 we see

that the representation is unambiguous whenever cα(1 + α)/(α ℓ)> δ(1 + α)/α, that is up to

‘ � Lmax ≔
ca

d
ð8Þ

for all δ which is small enough. This last condition on the magnitude of the noise is only

needed to exclude the possible exceptionally small ℓ distances in Eq 6, which in practice is not

a crucial condition (Fig 4d and 4e).

The constant cα is the single parameter that determines the critical distance up to which

encoding is unique (coding range) as well as the information rate of the system (Methods).

Therefore, we use cα to compare the efficiency of different choices of α (Fig 4d–4f). We have

already noted that for the golden ratio the lower and the upper bounds (Eqs 3 and 7) coincide

(Fig 4b), but the critical distance may be larger for some α even if the corresponding lower

bound on the phase difference is weaker, since the upper bound also depends on α (Eq 5).

We estimated the value of cα for various scale ratios at different noise levels (Methods).

Unlike for algebraic numbers, ĉa of real numbers depends on the distance range used for the

estimation, which we controlled by setting different intervals for δ in the simulations.

Our simulations confirmed that σ is the best scale ratio choice in case of two modules with

ĉa ¼ 0:28 � sffiffi
5
p
ð1þsÞ

, but also showed that, on both short and long run, ĉa is extremely sensitive

to the choice of α (Fig 5): in case of a small error in the tuning of α, the efficiency can drop sub-

stantially and ĉa becomes practically 0, implying that in the immediate neighbourhood of the

optimal α, there are close to pessimal grid cell configurations. This is because the lower bound

on the phase difference (Eq 7) requires α to be an algebraic number, and in an arbitrary small

neighbourhood of any algebraic number there are (infinitely) many non-algebraic numbers,

i.e., transcendental numbers (a ¼
ffiffi
e
p

, Fig 4a) or rational numbers (α = 3/2, cα! 0, Fig 2a). As

non-algebraic irrational numbers can be much better approximated with rationals than alge-

braic numbers, non-algebraic grid scale ratios will lead to much stronger interference between

the two modules, but only at distances moderately large compared to the scale of the modules

(Fig 5).

The extremely rough landscape of cα renders optimisation for α an especially difficult prob-

lem: it is very unlikely that a biological system would be able to find the global optimum for

Fig 5. Approximate cα values as a function of α. The values are shown for 1000 α randomly selected from the

interval (1, 2). The cα of algebraic (
ffiffiffi
2
p

,
ffiffiffi
3
p

, σ, σ − 1/2) and non-algebraic (
ffiffi
e
p

) irrationals are also shown in red and

black, respectively. We estimated cα, based on Eq 8, as cα� inf{Lmax δ j δmin < δ< δmax}, for different noise ranges

[δmin, δmax] in the three panels: (a) 0.05< δ< 0.2, (b) 0.005< δ< 0.05, (c) 0.001< δ< 0.01. Approximate Lmax values

are indicated on the top of the panels for α = σ.

https://doi.org/10.1371/journal.pcbi.1005922.g005
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the scale ratio of two grid modules and a relatively small mistuning from a local optimum

could significantly deteriorate the efficiency of the system. Therefore, at least in the case of two

modules, it seems to be impossible to achieve asymptotically optimal scale ratio for the grid

cells.

Generalisation to multiple modules

To derive the general solution for M grid modules, we focus on a set of 1-dimensional grids

with scales α0 = 1< α1 < � � �< αM−1. Spatial representation is unambiguous up to a distance L
from the origin if there is at least one module for which the phase is significantly different

from 0 (Fig 6). Interestingly, avoiding interference between adjacent modules (giving α = σ) is

not a good solution, since it leads to interference between the distant modules wherever the

adjacent modules are in close apposition (Methods). The logic of the general solution for mul-

tiple modules is the same as in the case of two modules. Here we only state the main results

and the technical details of the analysis can be found in the Methods.

First, we show that a similar upper bound exists for the maximal phase difference between

the modules. Compared to the two-module case, the bound is weaker when M> 2 as the

Fig 6. Interference of M = 3 modules with different choice of scales. (a) Top: Posterior densities for three modules

with rational scale ratios. The overlap between the modules is shown in black, its height indicates the interference of

the three modules as a function of distance from the origin. The representation becomes ambiguous only if all 3

modules interfere, as at distance 6. Bottom: Ambiguity in position coding quantified by the multi-modality of the

combined posterior. (b) Posterior densities for three modules with pairwise optimal scale ratios. The scales are 1 (blue),

σ (red), and σ2 (olive), where σ is the golden ratio. As we have more modules (3) than the order of σ (2), wherever any

two modules interfere with each other, then they interfere with the third as well: at distance 8 the three peaks almost

coincide. (c) The same as in (b) for scales 1, 21/3, 22/3, powers of a third order algebraic number. Although pairwise

interference can be very strong between any pairs (e.g. at distances 5, 6.2 and 8), the total interference is substantially

lower than in panel b (bottom).

https://doi.org/10.1371/journal.pcbi.1005922.g006
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phase difference scales only with 1/ℓ1/(M−1)� 1/ℓ meaning that it ensures simultaneous inter-

ference between all modules only at much larger distances.

Second, we found that the upper bound can be satisfied, up to a constant multiplier, cA, for

algebraic scale ratios (Methods). Specifically, if the scales of Mmodules form a geometric series

with common ratio α being an algebraic number of degree M, the upper bound is tight, mean-

ing that the phase difference does not shrink faster than 1/ℓ1/(M−1). Intuitively, this scaling indi-

cates that there is always at least one pair of modules for which the phase difference at the

integer distance ℓ from the origin is larger than the lower bound.

The critical distance Lmax up to which coding is unambiguous can be expressed as (cf.

Eq 8):

Lmax ≔
cA
d

� �M� 1

; ð9Þ

for all δ which is small enough, where cA and its estimate ĉA are defined analogously as in the

two modules case (see Methods for the definition). Intuitively, Eq 9 expresses an exponential

scaling of the maximal distance uniquely represented by a population of grid cells with the

number of grid modules, M. The coding range of a particular set of the grid scales,

A ¼ ða1; . . . ; aM� 1Þ, depends on both the noise in the system and on the basis of the exponen-

tial cA.

Interestingly, the above described geometric sequence of algebraic numbers are the only

known explicit examples of badly approximable vectors (to the best of our knowledge). How-

ever, it is known that there are much more such vectors which do not form geometric

sequences [22], therefore the scale ratio of a well-tuned MA grid cell system does not have to

be constant.

The expression about the exponential scaling (Eq 9) is similar to the capacity estimates of

Fiete et al. [3] (see their Eq 6) obtained using a combinatorial upper bound and numerical sim-

ulations. Importantly, our analytic derivation also provides insight about why certain grid sys-

tems are more efficient than others and give examples for efficient grid scales. Moreover, when

cA ¼ 0:5 our formula for the capacity of the grid code becomes identical to the theoretically

maximum capacity found in the case of nested coding [4, 6].

In the next sections we first numerically estimate the value of cA for various choices of the

grid scales A and then we show that with sufficiently large number of modules cA is guaranteed

to approach its theoretical maximum cA ¼ 0:5 for randomly chosen grid periods.

Numerical estimation of the cA

We developed an efficient method to numerically estimate the value of cA for various parame-

ter settings that is based on the simultaneous Diophantine approximations of a set of irrational

numbers (Methods). Using realistic noise levels we found that, in contrast to the case of two

modules, the sensitivity of the coding efficiency to the choice of α gradually vanishes when

the number of grid modules is increased (Fig 7a and 7b). In particular, with M = 10 modules

ĉA 2 ½0:2; 0:4� for almost all choices of the grid scales (Fig 7b), both when the scales follow

a geometric series with a common scale ratio α (Fig 7b) and when all the M scales are

chosen from the bounded interval (1, 2). We also found that ĉA vanishes only for

pathological examples such as rational numbers or powers of the second order algebraic num-

ber α = σ − 1/2� 1.118 (Fig 7a and 7b, red). The only random scale choice that significantly

degrades the performance is when α� 1 (Fig 7a and 7b) in which case all grid modules have

nearly identical spatial scale.
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To quantify the sensitivity of the grid system against the choice of the scale parameters we

calculated the mean and the coefficient of variation of ĉA with random choices of α (Fig 7c and

7d). We found, that the average ĉA increased monotonically with the number of grid modules

indicating that the system’s performance becomes closer to the ideal cA ¼ 0:5 value as the

number of modules increased (Fig 7c). Moreover, the variability of ĉA consistently decreased

with the number of modules reflecting the improved robustness of the system to the choice of

grid periods (Fig 7d). Therefore not only the maximal coding distance increases exponentially

with the number of modules, but the basis of the exponential, cA, also increases.

To further investigate the mechanisms responsible for the robustness of the system, we

numerically evaluated the minimal phase difference between the modules, �(ℓ), in the function

of the distance (Fig 7e and 7f). In line with the predictions of the theory (Eq 25), we found that

the phase difference decreased with ℓ−1/(M−1), i.e., with a small negative power of the distance

for α being an order M algebraic number (Fig 7e, black). For suboptimal α-s, the scaling of the

phase difference was nearly optimal up to a critical point beyond which the scaling followed

the algebraic rank of α (i.e., second order α scales with 1/ ℓ, Fig 7e, yellow). Importantly, this

critical point, where the transition occurs between ideal and number theoretical scaling is

located at increasingly larger distances when the number of modules is increased (Fig 7f).

Therefore, the asymptotic, number theoretical properties of the grid periods have a gradually

lower impact on the performance of the system in the distance range limited by the intrinsic

variability on neuronal spiking (Fig 7e and 7f, background shading).

These observations suggest that even random scale choices might achieve optimal perfor-

mance as the number of modules grow. In the next section we make this statement mathemati-

cally precise and demonstrate that indeed, ĉA approaches its theoretical maximum, 0.5, when

the number of modules grow and the scales are chosen uniformly at random from a bounded

interval.

Fig 7. Robustness of the grid code with multiple modules. (a)-(b): Values of ĉA estimated for 100 α randomly

selected from the interval (1, 2) with M = 5 (a) and M = 10 (b) (see also Fig 5a for M = 2). The scales form a geometric

series, i.e., A ¼ faigMi¼1
. Red circle indicates ĉA for a second order algebraic number α = σ − 1/2� 1.118. Green (cyan)

shows ĉA for 5th (10th) order algebraic numbers, respectively. Noise level is the same as in Fig 5a (0.05< δ< 0.2).

(c)-(d): Mean (c) and coefficient of variation (d) of ĉA evaluated on the range α = {1.1, 1.9}. For M = 10 the ĉA is also

shown for two alternative selection of the scales: if all 10 scales are selected randomly from the interval [1, 2] (olive)

and when αs form a geometric series perturbed as A ¼ fð1þ εiÞaig
10

i¼1
, where εi are i.i.d. uniform random variables on

the range [−0.01, 0.01] (purple). (e)-(f) Phase difference (�̂Að‘Þ, Eq 25) in the function of the distance, ℓ. (e) Effect of

number theoretic properties with M = 10. When α is the root of the 10th order polynomial x10 − x7 − 1, α� 1.12725,

�(ℓ) decays as 1/ℓ1/9 (black). When α is second order, α = σ − 1/2� 1.11803, the initial decay is similar, but after a

critical distance at ℓ� 106 the decay becomes 1/ℓ (yellow). (f) The critical distance grows with the number of modules

(αi = (σ − 1/2)i). Grey shading in (e-f) indicates the range of phase difference smaller than noise (Eq 26).

https://doi.org/10.1371/journal.pcbi.1005922.g007
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Capacity of non-geometric grid scales

Our number theoretic argument (Eq 9) alone does not imply exponential capacity, since it

does not exclude the possibility that the base of the exponential, cA, converges to 0 as M
increases (although we observed the opposite trend, see Fig 7c). In this section we investigate

the asymptotic properties of the grid code when the number of modules increases and the rela-

tive uncertainty δ of the modules remains fixed. Here we only state these results informally,

and leave the precise statements and the slightly technical mathematical proof to the Methods.

The main idea behind the proof is that the phase of a given module at particular distance x
from the origin depends only on the scale of that module, α. If the scale is randomly chosen

from a bounded interval [1, αmax], then the phase is also a random variable with probability

distribution approaching the uniform distribution as the distance increases. Then, the proba-

bility of simultaneous interference between M modules, that is, the probability of all modules

being near phase 0 at some distance x, is proportional to the volume of an M-dimensional

hypercube, which is V = (2δ)M, where the side of the cube is 2δ. The ratio of the volume of the

hypercube and the unit cube (the number of distinguishable phases) diminishes exponentially

with M, and the total distance (expressed in units of α0 = 1) covered without ambiguity is

2d

V /
1

2d

� �M� 1
. Specifically, our statement is, roughly speaking, that if 0< δ< 1/2 is fixed, M is

large enough, and the module scales are drawn uniformly at random from a not too narrow

bounded interval, e.g. from (1, 2), then the representation is unambiguous up to the exponen-

tial distance

‘ <
cA
d

� �M� 1

ð10Þ

with probability approaching 1, and cA approaching 1/2. Although the above statement applies

only for M!1, and it does not provide examples for efficient scale choices for finite M, we

emphasise that this result is stronger than our previous derivation (Eq 9) in four aspects: First,

our previous derivation (Eq 9) allowed cA to tend to 0 as M increased. Now we showed that

this does not happen for random scale choices, rather the value of the constant tends to its the-

oretical maximum, cA ¼ 0:5 [6] for large M with high probability, confirming our previous

numerical results (Fig 7c). Second, one can achieve this nearly optimal performance without

increasing the scales exponentially, with the scales chosen from a bounded interval. Third, this

almost optimal efficiency is not only reached for some appropriately chosen scales, but for

almost all choices. Fourth, near-optimal performance is guaranteed for 2 or higher dimen-

sional grid codes even if the modules are randomly rotated relative to each other or in the

absence of long-range coherence within the modules.

Thus, our results demonstrate that no meticulous tuning of the grid scales is required for

close to optimal grid system performance.

Discussion

In this paper we developed a novel analytic technique to investigate the coding properties of

grid cells. Using this technique, which is based on Diophantine approximation of real numbers

by fractions of integers, we were able to derive several novel and non-trivial properties of the

grid cell code. First, we demonstrated that on the long run, the capacity of the system depends

heavily and chaotically on the number theoretic properties of the scale ratio between the suc-

cessive modules. To achieve optimal performance in a system with M modules the scale ratio

has to be an algebraic number of order M. Second, we showed that in the presence of neuronal

noise the capacity of the grid code becomes increasingly more robust to the choice of the scale

parameters when the number of modules is increased: when M> 2, randomly chosen scales
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perform nearly as well as the optimal scales. Finally, we demonstrated that the capacity of MA

and nested grid codes are asymptotically identical (in the large M limit), even for randomly

chosen scale parameters for the MA codes.

Exponential coding range

Previous works used specific assumptions to derive exponential coding range for the grid cell

coding system: they assumed either a nested coding scheme [5, 6] or presumed that the phase

space is covered evenly and that the readout noise in a given module decreases when the num-

ber of modules increases [3, 14]. Here we generalised these findings and demonstrated that

nested and MA codes have asymptotically equal capacity.

When we studied the capacity of MA codes we realised that achieving uniform coverage of

the phase space is not trivial in the case of two modules, but can only be attained with appro-

priately chosen scales. Specifically, we recognised that approximately uniform coverage of the

phase space by the phase curve at arbitrary distances is guaranteed if the scale ratio between

the two modules is an algebraic number of order 2. Using our formalism allowed us to general-

ise this intuition for arbitrary number of grid modules and to demonstrate that even a random

choice of grid scales guarantees uniform coverage of the phase space when the number of

modules is high.

We also relaxed the assumption of an earlier study [14] that the total amount of the noise

remains constant in the grid system even when the number of modules is increased, i.e., the

readout error of each module decreases with M. Here we derived these results using the more

general assumption that the coding precision of each module is independent of M and propor-

tional to the scale of the module.

We confirmed our analytical results by extensive numerical simulations regarding the

simultaneous interference between grid systems with various choices of the scale parameters.

In line with previous results [3, 9], our simulations supported that the grid system is robust to

the choice of the scale parameter and that the coding range is exponential in the number of

modules.

Nested coding versus MA code

Although the efficiency of the coding investigated in this paper is slightly worse than that of

the optimal nested coding [5, 6], MA codes also have several advantages. First it uses orders of

magnitude smaller scale lengths than the maximal distance up to which the coding works

properly. The largest grid scales measured experimentally are *3 m [23, 24] and extrapola-

tions based on the dorso-ventral location of the recording electrodes within the entorhinal cor-

tex extend to *10 m [13], a period still substantially smaller than the typical distances

travelled daily by rodents (several hundreds of meters [25]) or bats (several kilometres, [26];

see also [27]).

Second, while the consequence of a module failure simple decreases the capacity of the sys-

tem in the case of MA coding, it can have more dramatic effect in nested codes: Although mal-

function of the largest or smallest module reduces either the capacity or the resolution of

nested codes, respectively, the lack of intermediate modules functionally breaks the interaction

between the remaining modules decreasing both the resolution and the capacity of the system

in a disproportionate manner.

Third, once the scales are optimised for a given noise level, the coding range of nested grid

codes does not depend on δ. Therefore, contrary to MA codes, it is not possible to increase the

capacity by inserting more neurons into the same modules or by observing more grid cells

from the same set of modules. Conversely, the functioning of the nested codes critically
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depends on accurate decoding of each module: If the readout neuron does not have access to

enough presynaptic neurons from a given module, then the corresponding posterior becomes

too wide leading to interference between the modules. This has similar consequences as the

absence of the given module in nested codes. In contrast, in MA codes the coding properties

remain similar for postsynaptic neurons receiving different number of synapses from different

modules, although the coding range is the function of the precision available for the observer

(Eq 9).

When encoding dynamic trajectories instead of static locations, the number of neurons

required to participate in a given module decreases quadratically with the scale of the module,

i.e., ni � 1=a2
i [8]. For example, if representing the position in the 2D space with some fixed

accuracy with αi = 0.2 m requires * 4000 neurons then αj = 2 m needs only * 40 neurons.

This scaling implies that the coding range of the nested grid system can be easily and parsimo-

niously extended by adding a new module with larger scale but containing only relatively few

neurons. Although the relationship between the number of neurons in a module and its scale

holds also for MA codes, the total number of neurons required to achieve similar coding range

can be substantially smaller in nested codes.

Another consequence of dynamical coding is that the time constant of the readout has to be

matched to the scale of the grid modules [8]. As the grid scale varies over a large range in the

case of nested codes, the postsynaptic neuron has to integrate inputs from different grid cells

with time constants ranging from 1 ms to 1 second [8]. In MA codes, the modules have similar

scales and their outputs can be integrated with similar time constants.

Finally we note that nested coding and MA coding are not mutually exclusive: although

they imply fundamentally different way of decoding the same positional information [7, 14],

but both can be present in the same system. The MA code has a larger coding range if cA > ad

so it is favoured by small α (small differences between scales) and small δ (high accuracy).

Even in this case locations within the largest grid scale can be decoded as in nested coding,

while MA decoder is required beyond this distance.

Planar grid cells

In the Methods we show that the coding capacity of two or higher dimensional grid cells

depend on the same number theoretic properties, and therefore the results obtained in dimen-

sion one extend to planar or cubic grid cells as well [28], provided that the main axes of the dif-

ferent modules remain aligned with each other.

If the two dimensional grid modules are rotated compared to each other, then the scale

choices which perform well will be different from the scales that are optimal for axis aligned

modules. Consider for example that a ¼
ffiffiffi
3
p

, which is a relatively good choice for M = 2 (right-

most red circle in Fig 5a–5c), leads to cathastrophic interference at ℓ = α when the grids are

rotated by 30˚. Consequently, the incoherent reorientation of the grid modules during global

remapping [13] renders the optimisation of the grid scales unfeasible. However, the main

point of this paper is that we have shown analytically that almost all scale choices perform near

optimally if the number of modules is high enough, which also applies for grid cells rotated

uniformly at random relative to each other (Methods).

Moreover, the 2D grids does not need to show perfect triangular symmetry to achieve high

capacity: environmental boundaries [29, 24] or non-euclidean geometry [30, 31] can distort

the grid pattern, but as long as the distortion is coherent among modules, our theory applies

unchanged. If the scales slightly vary on the long range, then our derivation based on the Dio-

phantine approximations does not apply. However, our derivation stating exponential capacity

for grid systems with many random scales (Methods) remains still valid.
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Optimization and robustness

The highly organised, regular patterns formed by the firing fields of grid cells suggest that the

characteristics of the grids must be closely related to the computational function of these neu-

rons: optimally representing and processing information about the spatial location of the ani-

mal [32, 33, 14, 4, 11]. Besides the general optimality of triangular grid-like firing fields for

representing unbounded 2D space [28], recent theoretical work derived optimal scale ratio of

successive grid modules in the case of nested coding [6, 7, 8].

These studies, using different assumptions, arrived at slightly different conclusions regard-

ing the optimal value of α. Stemmler et al., [7] fixed both the coding range to Lmax = 3 for a

pair of grid modules with scales {1, α} and found that α = 3/2 minimises the ambiguity errors

within that range. Mathis et al., [4] and Wei et al., [6] also fixed the coding range and mini-

mised the number of neurons required to achieve a given resolution and provided both esti-

mates for the maximal capacity of the grid cell coding system and a specific architecture (i.e.,

optimised nested codes) that achieves maximal efficiency. The optimal scale ratio for nested

codes was found to depend both on the magnitude of the noise in the system and on the type

of decoder [4, 6]. Rather than fixing the coding range, we were interested in grid codes that

work for potentially unbounded environments and found a similar asymptotic capacity for

MA codes using random grid scales. Although predictions derived from nested coding roughly

agree with the average scale ratio observed in the entorhinal cortex [12, 13, 29], they do not

explain the substantial amount of variability which characterises the data.

In our derivations we assumed that the decoding error of a given grid module is larger than

δ with some small probability. Inaccurate decoding of a single grid module can lead to dispro-

portionally high error in the position representation if the subsequent time frames are decoded

independently [14, 9]. However, the chance of catastrophic ambiguity errors can be substan-

tially reduced if a dynamical decoder combines prior information representing the predicted

spatial position with the location encoded by the incoming grid cell spikes [34, 14, 8].

Our results based on the Diophantine approximations requires that the scale of the modules

are set precisely, so that the phase of the different modules does not drift relative to each other

(i.e., ai
d�i
dx ¼ aj

d�j
dx ). Although theoretical considerations suggest that drift can not be completely

suppressed in a noisy neuronal system [35, 36], whether different grid modules respond coher-

ently to distortions caused by environmental manipulations is not known [15, 29, 24]. The

remarkable robustness of the grid system’s efficiency against the choice of the scale ratio sug-

gests that grids with loosely set scale parameters could also obtain a similar performance.

Indeed, our derivation using randomly selected grid scales does not require precisely set scale

parameters yet it provides the asymptotically exponential capacity for the grid system.

The optimization principle assumes that substantial improvement in the performance of

the system can be achieved with precise tuning of its parameters. In the present study we dem-

onstrated that this is indeed the case in the absence of noise. However, even in this case, opti-

mization would be almost unfeasible for three reasons. First, the coding range is an extremely

irregular, discontinuous function of the scale parameter, making optimisation essentially a

trial and error game. Second, a scale parameter that is optimal for a given number of modules

is guaranteed to be inefficient when the number of modules is increased precluding the possi-

bility of pairwise or modular optimization. Finally, the optimal grid scales depend on the rota-

tion of the modules relative to each other, which can change independently during changes in

the environment [13].

However, taking the variability of neuronal firing into account changes the picture dramati-

cally. We demonstrated that when the coding accuracy of grid modules is limited by neuronal

noise, the capacity of the system becomes surprisingly robust to the choice of the scale
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parameters making its optimization unnecessary. Note, that even if the grid periods are not

optimized across modules, generating the regular, periodic firing fields of grid cells demands

accurate integration of velocity inputs [37, 36] and repeated error correction [38, 35], both

requiring the precise tuning of single neuron and network parameters within a given module.

In conclusion, our study demonstrates that the capacity of the grid cell system is nearly optimal

with randomly chosen grid scales, and, instead of accurate parameter tuning, the experimen-

tally observed scales could reflect the combined effect of random fluctuations and a gradient in

the cellular properties along the dorso-ventral axis of the entorhinal cortex [39, 40].

Predictions

Our finding, that grid cells have an exponentially large coding range even with randomly cho-

sen grid scales of similar magnitudes makes several important predictions. First, MA coding

predicts that the coding range is substantially larger than the largest grid period. Since grid

cells are likely to be involved in path integration [32, 41] this prediction could be tested by

probing path integration abilities of rodents beyond distances of the largest grid period [42].

Second, in the case of MA coding, different modules have similar contributions to the cod-

ing range of the system. Therefore, the effect of targeted dMEC lesion (inactivating a single

module, as in [43]) on the rat’s navigation behaviour would be largely independent of the

actual location of the lesion (i.e., which module is inactivated).

Third, since the performance of the system is independent of the precise choice of the

grid scales, we expect a large variability in the scale ratio of successive grid modules both

within and across animals. This prediction is consistent with the experimental data available

[12, 13, 29], although further statistical analysis would be required to specifically determine the

distribution of scale ratios.

Finally, we predict that the performance of the system is not particularly sensitive to inco-

herent changes in the scale parameter of a subset of modules during e.g., global remapping

induced by environmental changes [16]. It has been shown that under certain conditions

simultaneously recorded grid cells respond coherently within a module and independently

across modules to environmental distortions [13]. To test the prediction of our theory, the

behavioural consequences of incoherent realignment across modules should be assessed and

compared with the effects of environmental manipulations inducing coherent realignment

[29] or coherent distortion in the shape of the grid pattern [24, 29, 30, 31].

Methods

Grid cells in the 2D plane

Consider a system G2 of planar grid cells with a set of scales A. Suppose that the axis of all

modules are aligned and use the coordinate system

B ¼ f½1; 0�; ½ cos ð60
�

Þ; sin ð60
�

Þ�g; ð11Þ

which is naturally generated by the triangular lattice. To compare with consider the one

dimensional grid cell system G1 which has the same number of modules with the same set of

scales, and for which each module represents the position of the animal with the same relative

precision. To achieve this, the two dimensional modules need squared as many cells, neverthe-

less they also able to distinguish between squared as many spatial positions within one period

of the scale.

If G2 represents a planar position ðx; yÞB ambiguously, i.e., cðx; yÞB � cð0; 0ÞB ¼ 0, then

clearly planar positions ðx; 0ÞB and ð0; yÞB are also represented ambiguously. Therefore, the
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corresponding one dimensional positions x and y are represented ambiguously by G1 as well.

Conversely, if z is represented ambiguously by G1, then ðz; 0ÞB, ð0; zÞB will be ambiguous in

G2. Therefore, an ambiguity of position at a given distance from the origin in case of planar

cells can be matched to an ambiguity at the same order of magnitude of distance in the one

dimensional grid system, and vica versa. The above argument also shows that the same scale

choices perform best for both one dimensional grid cells and two or higher dimensional ones

when the axes are aligned with each other.

Estimating the precision of a single module

We chose α0 = 1 and fix the resolution of the system to δ< α0 (defined below) and investigate

its coding range. A formally identical system with a fixed coding range and optimised resolu-

tion can be achieved by appropriately rescaling the grid scales.

We numerically estimated the precision of position coding by a single module by first simu-

lating the motion of the animal as a one dimensional Gaussian random walk:

Pðxtþ1jxtÞ ¼ N ðxt;Dt DÞ ð12Þ

with Δt = 1 ms temporal resolution and D = 0.005 m2/s, which gives� 5 cm displacement in

0.5 s [8]. We simulated the activity of N = [10, 300] grid cells from a single module. Grid cells

had a circular tuning curve:

rkðxÞ ¼ rmax sin
2px
2l
� �

k
� �� �n

þ r0 ð13Þ

with the following parameters: rmax = 15 Hz, r0 = 0.1 Hz, λ = 0.25 m and ϕk chosen to uni-

formly cover the interval [0, 2π]. The power n = 22 was set to match the mean firing rate of the

grid cells, hr(x)i = 2.5 Hz, to experimental data [16]. Larger (λ = 2.5 m) grid spacing was mod-

elled by decreasing the speed of the animal by a factor of 10 (D = 0.00005 m2/s). The firing rate

is shown in Fig 1b, right (olive).

Spike trains were generated as an inhomogeneous Poisson process with neurons condition-

ally independent given the simulated location:

Pðskt jxtÞ ¼ PoissonðDt rkðxtÞÞ ð14Þ

Spikes of the neurons in module i, s0:t,i, represent the spatial location of the animal with

error δ αi (i.e., with the same δ phase error for all modules) which can be interpreted as the

width of the (periodic) posterior probability distribution P(x|s0:t,i). For an ideal observer this

posterior distribution quantifies how much a given spatial location is consistent with the

observed spike pattern. The posterior distribution of the position was numerically calculated

by recursive Bayesian filtering:

Pðxtjs0:tÞ /
Y

k

Pðskt jxtÞ
Z

Pðxt� 1js0:t� 1ÞPðxtjxt� 1Þ dxt� 1 ð15Þ

The colormap in Fig 1b shows this posterior distribution with N = 50 cells and λ = 0.25 m.

Naturally, the width of the posterior depends on several factors, most importantly on the

number of neurons observed in a given module and on the scale of the modules relative to the

typical speed of the animal [8]. At each timestep the posterior distribution was fitted with a

von Mises distribution with a location μt and a concentration parameter κt. The width of the
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posterior relative to the grid scale was estimated as:

dt ¼
l

2p
ffiffiffiffi
kt
p ð16Þ

For analytic tractability, we use a bounded noise model in the derivations assuming that the

location decoded from the spikes of a module is within δ αi distance from the true location. To

be conservative, we chose δ to be the 99% of the empirical CDF of δt. The largest δ = 0.12 was

found with λ = 0.25 m and N = 10 cells. The smallest δ = 0.01 corresponds to the parameters

λ = 2.5 m and N = 300 cells.

We assume that the modules are conditionally independent given the location of the ani-

mal, and hence position decoding, or representation, can be implemented by an ideal observer

independently reading out the spikes, si, emitted by the different modules: P(x|s) = ∏i P(x|si).

When loosely talking about interference between the grid modules at a spatial point we refer

to the interference between these periodic posterior distributions P(x|si), i.e., all module poste-

riors being larger than 0 at a location different from the origin (Fig 1c).

Interference at integer distances

Since we measure the distance in units of the smallest grid scale (α0 = 1), avoiding interference

at integer distances from the origin also guarantees the absence of interference elsewhere, i.e.,

all positions in the interval [0, L] will be distinguishable by the grid code. Hence we loosely call

�(ℓ) defined in Eq 1 the phase difference, but note that it is the phase difference at integer dis-

tance ℓ. Indeed, if the grid code was ambiguous confusing spatial locations x1 and x2, then it

would also confuse the origin with |x1 − x2| as well, since the phase differences of each module

are the same between 0 and |x1 − x2| and between x1 and x2 (Fig 2b and 2c, right). But |x1 − x2|

can be confused with the origin only if |x1 − x2| is an integer, that is a multiple of the smallest

scale, 1. Note that this argument is correct only if the phase representation ambiguity of each

module is independent of the actual position, which holds if we suppose that firing fields of

cells from the same module are spaced evenly, which we do assume.

Graphically, interference between locations occurs when two segments of the phase curve

come close to each other. Since the segments of the phase curve are parallel (Fig 2), and we

started the phase curve in the origin, interference first occurs in the origin. Avoiding interfer-

ence at the origin as much as possible at arbitrary distances thus also guarantees that the seg-

ments of the phase curve are separated from each other as much as possible, leading to a

uniform coverage of the phase space [14].

Definition of algebraic numbers

We call a real number α algebraic of order n (positive integer), if n is the least integer such that

α is the root of a polynomial of degree n with integer coefficients. Algebraic numbers of order

one are exactly the rational numbers. Another example is the golden ratio, σ, which is irratio-

nal, and is the root of x2 − x − 1, a integer polinomial of degree two. Therefore, σ is an algebraic

number of order two.

Information rate

Since we fixed the resolution, the capacity of the code is proportional to the coding range.

Moreover, as the coding precision of the modules was the same, we assume that the population

size of each module is approximately N for grid scales chosen randomly from a bounded inter-

val. The information rate of the grid system, defined as the ratio of the logarithm of the
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capacity and the total number of conveyed bits [14] is

r /
1

�rNM
log

ca

d

� �M
ð17Þ

/
1

�rN
log

ca

d
ð18Þ

/
1

�rN
log

ca logN
k

ð19Þ

where �r is the average firing rate of a grid cell and in the third line we used that δ = k/log(N)

[14]. Thus, the information rate is independent of the number of modules and increases with

log cα.
For a geometric code with scale ratio α the optimal population size for dynamical decoding

and constant δ decreases as ni ¼ n0=l
2

i ¼ n0=a2i where λi = αi is the scale of module i and n0 is

the number of neurons in the first module [8]. In this case the total number of neurons in the

population is

N ¼
XM

i¼0

n0=a2i ¼
n0 a2

a2 � 1
ð20Þ

Since the total number of neurons does not grow linearly with the number of modules, the

information rate becomes proportional to M:

r / M
a2 � 1

n0 a2 �r
log

ca

d
ð21Þ

Although a constraint on the minimal number of cells per module will limit the finite informa-

tion rate to remain finite, Eq 21 emphasises that adding further modules with larger periods

increases the efficiency of the grid system if the number of cells per module is set optimally for

dynamical decoding [8]. Although a geometric progression of scales is consistent with both

nested and MA codes, the information rate is higher for optimal nested codes since they maxi-

mise α.

Interference with M modules I: Golden ratio is suboptimal

In this section we demonstrate that a set of grid cells with scale ratio (α) optimally chosen

between pairs of successive grid modules is close to being pessimal for efficient space represen-

tation for M> 2. Such pairwise optimisation leads to a set of scales showing geometric pro-

gression with the scale ratio being α, i.e., [1, α, α2, . . .], which is consistent with the

experimental data [10, 12, 23, 13]. The representation of the position becomes ambiguous if all

modules show interference at the same location, i.e., the phase of all modules are very close to

0 at distance ℓ from the origin.

Consider for example the golden ratio α = σ, which is a second order algebraic

number, i.e., it is the root of the integer coefficient polynomial x2 − x − 1. Therefore, the phase

ψ2(x) = (x mod σ2)/σ2 of any spatial point x according to the third module can be simply

expressed with the phase of the first two modules as

c2ðxÞ ¼ ½c0ðxÞ � c1ðxÞ� mod 1: ð22Þ

To see this, consider that by the definition of the phases ψi(x) when the animal is at distance x
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from the origin there are some integers ℓ, k1, k2 so that

x ¼ ‘þ c0ðxÞ ¼ sðk1 þ c1ðxÞÞ ¼ s2ðk2 þ c2ðxÞÞ:

Using that σ2 − σ − 1 = 0 we get that

s2ð‘þ c0ðxÞÞ � s2ðk1 þ c1ðxÞÞ � s2ðk2 þ c2ðxÞÞ ¼ 0:

Rearranging terms yields

c2ðxÞ ¼ ‘ � k1 � k2 þ c0ðxÞ � c1ðxÞ

¼ ½c0ðxÞ � c1ðxÞ� mod 1:

In other words, the phase of the third module provides no additional information given the

phase of the other two modules. In particular, if both ψ0(x) and ψ1(x) are close to 0 (Fig 6b),

then so is ψ2(x) and hence the third module fails to resolve the ambiguity when the two first

modules interfere. Similarly, if we have n grid cell modules with scales 1, α, . . ., αn−1 with α
being an algebraic number of order k< n, then all of the n phases can be expressed by any k of

them, leading to redundant and inefficient representation.

Clearly the same argument works not only for the powers of the golden ratio, but for pow-

ers of any algebraic number of order lower than the number of modules.

Interference with M modules II

To derive the general solution for M grid modules, we consider a set of 1-dimensional grids

with scales α0 = 1< α1 < � � �< αM −1. Again, the interference between the modules can be

expressed by the simultaneous Diophantine approximation of the vector A ¼ ða1; . . . ; aM� 1Þ

using fractions of integers with the common numerator ℓ, i.e., αi� ℓ/ki. Importantly, a theo-

rem by Dirichlet provides an upper bound on the efficiency of the approximation. Namely, for

all (M − 1)-tuple of irrational numbers α1, . . ., αM −1 we have infinitely many collections of

integers k0, k1, . . ., kM −1 (with k0 = ℓ), such that the approximation error defined as

~�ijð‘Þ ¼ jkiai � kjajj ð23Þ

is simultaneously smaller than the upper bound for all items in the tuple:

~� ijð‘Þ <
ai þ aj

‘
1=ðM� 1Þ

ð8i; j ¼ 0; . . . ;M � 1; i 6¼ jÞ: ð24Þ

Note, that ~�ij differs from � defined for two modules (Eq 2) as it is not normalised with α.

Proof of Eq 24. First we prove that any vector of irrationals can be approximated to the

claimed order with rationals having the same denominator. Let A ¼ ða1; . . . ; an� 1Þ. To

approximate A with rationals of denominator at most Q let us define the vectors

aj ¼ jA � bjAc, j = 0, . . ., Q, where floor is understood coordinate-wise. Let us partition the

unit cube [0, 1]n−1 into small cubes of side length Q−1/(n−1), so that altogether we have Q of

them. Since we have Q + 1 many aj-s each falling into [0, 1]n−1, hence there will be (at least) 2

of them falling into the same small cube, ak and al, say. Then

jjk � ljA � jbkAc � blAcjj � jak � alj � Q� 1=ðn� 1Þ;

with the inequalities holding coordinate-wise. Therefore, because of |k − l|� Q, A is approx-

imable with denominator |k − l| and numerator (vector) jbkAc � blAcj with error not exceed-

ing |k − l|−(1+1/(n−1)). The desired statement follows then by simultaneously approximating the
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numbers 1/αi with common denominator, which is also a simultaneous approximation of αi
with common numerator, which completes the proof.

For a set of grid scales αi = αi (i = 0, . . ., M − 1) where α is an algebraic number of degree M,

there exists a maximal positive constant cA, such that

~�ð‘Þ ¼ max
i;j

1

ai þ aj
~� ijð‘Þ

( )

>
cA

‘
1=ðM� 1Þ

ð25Þ

holds, except for at most finitely many integers ℓ.
To see that Eq 25 holds, we start from the work of [44] (see also [45]) stating that powers of

an algebraic number are badly simultaneously approximable with common denominator in

the following sense. Let β be an algebraic number of order M. There exists cβ> 0 such that for

all integer ℓ, ki there is i 2 {1, . . ., M − 1} for which

jb
i
‘ � kij >

cb

‘
1=ðM� 1Þ

:

Derivation of Eq 25. Our goal is to give a lower bound on |αi ki − αj kj|, where α is algebraic

of order M, 0� i, j�M − 1. Without loss of generality suppose that i< j.

jaiki � ajkjj ¼ jai� jki � kjjaj > aj
cA

k1=ðM� 1Þ

i

:

Now the fact that ki * ℓ/αi implies Eq 25 if cA > 0 is chosen appropriately.

The position representation is unambiguous if there is at least one pair of modules for

which the phase difference is larger than the threshold set by the noise, i.e., ~� i;jð‘Þ > dðai þ ajÞ

which holds if

d <
cA

‘
1=ðM� 1Þ ð26Þ

From here, the critical distance Lmax up to which coding is unambiguous can be expressed as

(cf. Eq 9):

Lmax ≔
cA
d

� �M� 1

; ð27Þ

for all δ which is small enough.

To directly compare the capacity of the MA grid cell system derived in Eq 9 with previous

estimates for nested coding [4, 6], we also calculate Nmax, the number of distinguishable spatial

phases:

Nmax ≔
Lmax

2d
¼

1

2cA

cA
d

� �M
ð28Þ

Efficient coding with nested modules requires that αi = ri with 0� i�M − 1 and r being the

scale ratio with fixed relative uncertainty of modules 2δ = 1/r [6]. The position of the animal

can be determined at precision 1/r without ambiguity if the animal is restricted to move in an

environment with the size identical to the scale of the largest module, rM−1. In this case the

number of distinguishable spatial phases is rM ¼ 1=2

d

� �M
, which is identical to the capacity we

found for non-nested coding when cA ¼ 0:5 (Eq 28).
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Coding is unambiguous up to exponential distance in the number of

modules

To derive Eq 27 we first show that interference of the grid representation is equivalent to pair-

wise interference between all pairs of modules. To test unambiguity of coding note that the

place at distance x from the origin is confusable with 0 if for all i = 0, . . ., M − 1 there exists an

integer ki such that

jkiai � xj < aid; ð29Þ

where δ is the relative uncertainty of modules. It turns out that, as for M = 2, there is no need

to consider all x 2 [0, Lmax], it is enough to care with integers:

Claim. There exists x 2 [0, Lmax] for which Eq 29 holds for all i exactly when the following
pairwise interference occurs between all modules:

jkiai � kjajj < ðai þ ajÞd ð30Þ

for all i, j with some integers ki (i = 0, . . ., M − 1) such that 0< ki αi� Lmax.

Proof. Let us fix ki, i = 0, . . ., M − 1. Pairwise interference means that there is a point xi,j in

the intersection of (ki αi − αi δ, ki αi + αi δ) = (ai, bi) and (kj αj − αj δ, kj αj + αj δ) = (aj, bj). Due

to the topology of the line, it is easy to see by induction that the intersection of all such intervals

is nonempty and hence one can chose xi,j = x. The statement is obvious for M = 2. Now sup-

pose that the intersection \ni¼0
ðai; biÞ 6¼ ;. Then it is the interval (a, b) with

a ¼ max
i¼0;...;n

ai and b ¼ min
i¼0;...;n

bi:

If (an+1, bn+1) intersects (ai, bi), then both an+1 < bi and bn+1 > ai, and therefore an+1 < b and

bn+1 > a, which completes the induction. Therefore Eq 29 implies Eq 30. The other direction is

immediate.

Now using the above Claim Equation Eq 27 easily follows by rearranging Eq 25.

Asymptotic capacity of the random grid cell system

Let us fix the relative uncertainty of modules δ< 1/2 and a number αmax > (1 + δ)/(1 − δ).

We show that if scales α1, α2, . . . are drawn uniformly at random from [1, αmax], indepen-

dently of each other, then for any δ< z< 1/2 the representation with M modules having scales

α1, α2, . . ., αM is unambiguous in every spatial position x> 0 up to

Xmax ≔
z

d

� �M� 1

ð31Þ

with probability of order 1 − (2z)M as M!1.

Here z is the analog of cA which characterises the capacity of a particular grid cell system.

As we will see, the convergence holds for any z< 1/2, but the speed of the convergence

depends on z: higher efficiency is guaranteed to be achieved only for larger number of

modules.

Proof: Let α1, α2, . . . be independent random variables distributed uniformly on [1, αmax].

Let x be a spatial point and let ~ci ¼
~ciðx; aiÞ denote the phase of module i (with scale αi) at x,

that is

~c i ≔ ðx mod aiÞ=ai ¼ x=ai mod 1 ¼ x=ai �
x
ai

� �

2 ½0; 1�:
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Note that for fixed x the distribution of phases ~c i are independent of each other since the α-s

are independent. We also use the notation p1(x) for the probability that the phase ~ci is (almost)

indistinguishable from 0, defined in the following way:

p1ðxÞ ¼ Pai
ð~ci 2 ½0; ð1þ εÞd� [ ½ð1 � ð1þ εÞdÞ; 1� j x�:

where ε> 0 is determined later. It is easy to see that p1(x) does not depend on i, i.e., it is the

same for all modules. Moreover, the distribution of ~c i converges to uniform as the distance

increases, in particular limx!1 p1(x) = 2(1 + ε)δ. The convergence of this distribution to the

uniform is a key observation that remains true even in higher dimensions with uniform ran-

dom rotations or in case of slight variation of the grid scales on the long range. Hence there

exists a critical distance, x0 = x0(δ, ε) for which all x> x0 we have |p1(x) − 2(1 + ε)δ|� δε.

Therefore, for x> x0 we have

p1ðxÞ � ð2þ 3εÞd: ð32Þ

It also implies a bound on the probability of interference of many modules at a given point

x. If we consider M modules with scales drawn uniformly at random from [1, αmax] and inde-

pendently of each other, then by Eq 32 for x> x0 the probability of all phases being close to 0

is

pMðxÞ ¼ Pðð8i � MÞ ~c i 2 ð0; ð1þ εÞdÞ [ ðð1 � ð1þ εÞdÞ; 1Þ j xÞ

¼ p1ðxÞ
M
� ðð2þ 3εÞdÞM;

ð33Þ

that is, pM(x) is exponentially small in M.

There remains to estimate the probability of interference of many modules anywhere up to

a maximally allowed spatial distance. Our goal is to show that

Pðð9x < XmaxÞð8i � MÞ ~ciðxÞ 2 ð0; dÞ [ ðð1 � dÞ; 1ÞÞ ! 0 ð34Þ

as M!1, where Xmax ¼
z

d

� �M� 1
, as in Eq 31. Note, that satisfying Eq 34 is not trivial, since

Xmax increases exponentially with M.

There is no need to investigate all x< Xmax, it is enough to show, that there is no interfer-

ence on a set which is dense enough in [0, Xmax] in the stronger sense of Eq 33. Indeed, let Y be

an ε dense set in [0, Xmax] with at most 2Xmax/ε elements. Then

fð9x < XmaxÞð8i � MÞ ~ciðxÞ 2 ð0; dÞ [ ðð1 � dÞ; 1Þg

) fð9x 2 YÞð8i � MÞ ~c iðxÞ 2 ð0; ð1þ εÞdÞ [ ðð1 � ð1þ εÞdÞ; 1Þg

where we used the fact that the d
dx

~ci ¼
1

ai
< 1 since αi was chosen from the interval [1, αmax].

The corresponding inequality for the probabilities of these events is

Pðð9x < XmaxÞð8i � MÞ ~ciðxÞ 2 ð0; dÞ [ ðð1 � dÞ; 1ÞÞ

� Pðð9x 2 YÞð8i � MÞ ~ciðxÞ 2 ð0; ð1þ εÞdÞ [ ðð1 � ð1þ εÞdÞ; 1ÞÞ:
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Now for these finitely many points x 2 Y we can use Eq 33 one by one, if x> x0:

Pðð9x0 < x 2 YÞð8i � MÞ ~c iðxÞ 2 ð0; ð1þ εÞdÞ [ ðð1 � ð1þ εÞdÞ; 1ÞÞ

� ðð2þ 3εÞdÞM2Xmax=ε

¼
2

ε
ðð2þ 3εÞdÞM

z

d

� �M� 1

<
1

εz
ðzð2þ 3εÞÞM ! 0

if ε < 1� 2z

3z
, which we assume, where in the first inequality we used Eq 33 and union bound,

and then in the second one that Xmax ¼
z

d

� �M� 1
. We have to remark that interference in differ-

ent spatial points is not independent of each other, but union bound works even in that case.

There remains to show that the grid cell representation works up to x0. Clearly there is no

ambiguity up to x = 1 + δ. To estimate the probability

Pðð9x0 � x 2 YÞð8i � MÞ ~c iðxÞ 2 ð0; ð1þ εÞdÞ [ ðð1 � ð1þ εÞdÞ; 1ÞÞ ð35Þ

we first have to observe that the cardinality of Y \ [1 + δ, x0] is independent of M. Therefore to

guarantee that the probability in Eq 35 goes to 0 we need to show that for all 1 + δ� x� x0

there is a scale α 2 [1, A] which is able to distinguish x from the origin, that is α such that

~cðaÞ ¼ ðx=a mod 1Þ 2 ½d; 1 � d�:

This is so because x/α is monotonically decreasing in α and because

x=1 � x=A � xð2d=ð1þ dÞÞ � 2d;

where we used that αmax > (1 + δ)/(1 − δ) and x> 1 + δ. Therefore ~cðaÞ can not lay

in [0, δ] [ [1 − δ, 1] for all α 2 [1, αmax].

Numerical estimation of the cA with M modules

The constant cA (and cα) is well defined only for algebraic numbers, but can also be estimated

for real numbers from the scaling of the phase difference with distance using numerical simu-

lations. As cA is defined asymptotically (Eq 25), in order to estimate it numerically we need an

approximation of it for finite distances. An alternative definition of cA (equivalent with Eq 25)

is

cA ¼ lim inf
‘!1

�̂Að‘Þ; ð36Þ

where �̂Að‘Þ is defined by

�̂Að‘Þ ¼ min
K;k0¼‘

max
i;j
fjaiki � ajkjj=ðai þ ajÞg‘

1=ðM� 1Þ
; ð37Þ

where K ¼ ðk1; . . . ; kM� 1Þ. Intuitively, to find the magnitude of interference at location ℓ, for

all possible values of K we first select the maximum phase difference in the set and then choose

the set with the smallest maximum. From the plots Figs 4 and 7 it is clear that the naive way of

approximating cA with cAð‘Þ for some large ℓ is not a good idea, as cAð‘Þmay vary heavily with

ℓ, especially for non-algebraic scale ratios. Note, that the calculation of ĉa is a special case of ĉA

with M = 2.

To estimate coding efficiency in the presence of noise we are mostly interested in the above

infemum when ℓ is such that the phase difference �̂Að‘Þ=‘
1=ðM� 1Þ

is close to the precision δ of
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the modules. It motivates to investigate the (numerically computable) minimum

ĉAðd1; d2Þ ¼ minf�̂Að‘Þ j ‘2ðd2Þ � ‘ � ‘1ðd1Þg

for some pair δ1 < δ2, where ℓ2 is so that for all ℓ� ℓ2 we have �̂Að‘Þ=‘
1=ðM� 1Þ

< d2 and ℓ1 is the

smallest ℓ so that �̂Að‘Þ=‘
1=ðM� 1Þ

< d1.

Tools for the numerical investigation of Diophantine approximation

A common and natural way to numerically investigate Diophantine approximation is using

lattice reduction [46]. By lattice we mean a subset L of Rd defined by some vectors

v1; . . . ; vm 2 R
d, m� d so that

L ¼
�

w ¼
Xm

i¼1

bivi j bi 2 Z
�

:

Given a lattice L, a classical computational problem is to find the shortest non-zero

vector of it (Fig 8). In the followings we show how Diophantine approximation of a vector

(α1, . . ., αn) can be investigated with the help of finding shortest vectors of appropriately cho-

sen lattices.

Let us first consider a simple example. Let the lattice L be defined by the rows of the matrix

V ¼

v1

..

.

vnþ1

2

6
6
6
6
4

3

7
7
7
7
5
≔

a1 0 . . . 0 0

0 a2 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . an 0

� 1 � 1 . . . � 1 ε

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

;

where ε> 0. For all ε which is small enough the shortest vector w0 ¼
Pnþ1

i¼1
bivi of L corre-

sponds to a simultaneous Diophantine approximation of (α1, . . ., αn) with the common

numerator bn+1 and denominators bi, i = 1, . . ., n. The parameter ε can be considered as a pen-

alty term: the smaller this term the bigger the numerator can be.

Fig 8. Which element of the lattice generated by the above two blue headed vectors is closest to the origin? Or in other

words, what is the shortest nonzero vector which can be obtained as an integer coefficient linear combination of the

above vectors?

https://doi.org/10.1371/journal.pcbi.1005922.g008
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When speaking about shortest vectors we need to specify the norm with respect to which

vectors are compared. Here we are looking for the largest phase difference between the mod-

ules so we use supremum norm (Eq 25). The shortest vector in supremum norm of the lattice

defined by V is an approximation so that

maxfbnþ1ε; max
i
fjbnþ1 � biaijg

is as small as possible. By this we can compute what is the maximal phase difference between

the module with scale 1 and all other modules up to distance bn+1.

Remember that according to Eq 25 we are searching for an approximation minimizing

maxfbnþ1ε; max
i;j
fjaiki � ajkjj=ðai þ ajÞg‘

1=ðM� 1Þ
g: ð38Þ

Similarly to the previous example, it can be done simply by dividing columns i, i = 1, . . ., n of

V by (1 + αi), and by adding some more columns of similar form which refer to interference

between modules i and j. For example, for n = 3 the shortest (in sup norm) element of the lat-

tice generated by the rows of the following matrix gives an approximation minimizing Eq 38:

a1

1þ a1

0 0
a1=a3

a1 þ a3

0
a1=a2

a1 þ a2

0

0
a2

1þ a2

0 0
a2=a3

a2 þ a3

� 1

a1 þ a2

0

0 0
a3

1þ a3

� 1

a1 þ a3

� 1

a2 þ a3

0 0

� 1

1þ a1

� 1

1þ a2

� 1

1þ a3

0 0 0 ε

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

In this way maximal interference in the grid cell system can be computed numerically as

shortest vectors of some lattices in supremum norm. Finding this shortest vector is an integer

linear programming (ILP) problem, which in general is an NP-hard computational problem,

and can be solved by e.g. a branch and bound algorithm [47]. There are also efficient methods

which find approximation solutions in polynomial time, such as the LLL algorithm due to Len-

stra, Lenstra and Lovász [46].

The LLL algorithm finds not only a short vector of a lattice, but also another basis of it

which consists of short and nearly orthogonal vectors in the L2 norm, a so called LLL reduced

basis. The error made by the LLL algorithm is too high to precisely compute the constant

terms in Eq 27, and therefore we could not rely only on this algorithm. Nevertheless, compared

to the ILP solution, we could significantly speed up our computations by first applying the LLL

algorithm to find an approximate solution (and a reduced lattice), and then an ILP solver on

this LLL reduced basis, which could find nontrivial optimal solutions very efficiently if started

from this input.
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20. Perron O. Die Lehre von den Kettenbrüchen [The Theory of Continued Fractions] (in German), Chapter

2. Leipzig: B. G. Teubner; 1913.

21. Oxtoby JC. Measure and Category. New York-Berlin: Springer-Verlag; 1980.

Robust and efficient coding with grid cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005922 January 8, 2018 26 / 28

https://doi.org/10.1523/JNEUROSCI.5684-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18596161
https://doi.org/10.1162/NECO_a_00319
http://www.ncbi.nlm.nih.gov/pubmed/22594833
https://doi.org/10.1103/PhysRevLett.109.018103
https://doi.org/10.1103/PhysRevLett.109.018103
http://www.ncbi.nlm.nih.gov/pubmed/23031134
https://doi.org/10.7554/eLife.08362
http://www.ncbi.nlm.nih.gov/pubmed/26335200
https://doi.org/10.1126/science.1500816
http://www.ncbi.nlm.nih.gov/pubmed/26824061
https://doi.org/10.1371/journal.pcbi.1005597
http://www.ncbi.nlm.nih.gov/pubmed/28628647
https://doi.org/10.1098/rstb.2013.0290
https://doi.org/10.1098/rstb.2013.0290
http://www.ncbi.nlm.nih.gov/pubmed/24366144
https://doi.org/10.1038/nature03721
http://www.ncbi.nlm.nih.gov/pubmed/15965463
https://doi.org/10.1038/nrn3766
http://www.ncbi.nlm.nih.gov/pubmed/24917300
https://doi.org/10.1038/nn1905
http://www.ncbi.nlm.nih.gov/pubmed/17486102
https://doi.org/10.1038/nature11649
http://www.ncbi.nlm.nih.gov/pubmed/23222610
https://doi.org/10.1038/nn.2901
http://www.ncbi.nlm.nih.gov/pubmed/21909090
https://doi.org/10.1038/nn.3450
https://doi.org/10.1038/nn.3450
http://www.ncbi.nlm.nih.gov/pubmed/23852111
https://doi.org/10.1038/nature05601
http://www.ncbi.nlm.nih.gov/pubmed/17322902
http://dx.doi.org/10.1101/198499
https://doi.org/10.1101/198671
https://doi.org/10.1007/BF01206656
https://doi.org/10.1371/journal.pcbi.1005922


22. Broderick R, Fishman L, Kleinbock D, Reich A, Weiss B. The set of badly approximable vectors is

strongly C1 incompressible. Mathematical Proceedings of the Cambridge Philosophical Society. 2012;

153(2):319–339. https://doi.org/10.1017/S0305004112000242

23. Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, et al. Progressive increase in grid scale

from dorsal to ventral medial entorhinal cortex. Hippocampus. 2008; 18(12):1200–12. https://doi.org/10.

1002/hipo.20504 PMID: 19021257

24. Stensola T, Stensola H, Moser MB, Moser EI. Shearing-induced asymmetry in entorhinal grid cells.

Nature. 2015; 518(7538):207–12. https://doi.org/10.1038/nature14151 PMID: 25673414

25. Taylor KD. Range of Movement and Activity of Common Rats (Rattus norvegicus) on Agricultural Land.

Journal of Applied Ecology. 1978; 15(3):663–677. https://doi.org/10.2307/2402767

26. Tsoar A, Nathan R, Bartan Y, Vyssotski A, Dell’Omo G, Ulanovsky N. Large-scale navigational map in a

mammal. Proc Natl Acad Sci U S A. 2011; 108(37):E718–24. https://doi.org/10.1073/pnas.1107365108

PMID: 21844350

27. Geva-Sagiv M, Las L, Yovel Y, Ulanovsky N. Spatial cognition in bats and rats: from sensory acquisition

to multiscale maps and navigation. Nat Rev Neurosci. 2015; 16(2):94–108. https://doi.org/10.1038/

nrn3888 PMID: 25601780

28. Mathis A, Stemmler MB, Herz AV. Probable nature of higher-dimensional symmetries underlying

mammalian grid-cell activity patterns. Elife. 2015; 4. https://doi.org/10.7554/eLife.05979 PMID:

25910055

29. Krupic J, Bauza M, Burton S, Barry C, O’Keefe J. Grid cell symmetry is shaped by environmental geom-

etry. Nature. 2015; 518(7538):232–5. https://doi.org/10.1038/nature14153 PMID: 25673417

30. Stella F, Si B, Kropff E, Treves A. Grid cells on the ball. Journal of Statistical Mechanics: Theory and

Experiment. 2013; 2013(03):P03013. https://doi.org/10.1088/1742-5468/2013/03/P03013

31. Urdapilleta E, Troiani F, Stella F, Treves A. Can rodents conceive hyperbolic spaces? J R Soc Interface.

2015; 12(107). https://doi.org/10.1098/rsif.2014.1214

32. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of

the”cognitive map”. Nature Reviews Neurosci. 2006; 7(8):663–678. https://doi.org/10.1038/nrn1932

33. Kropff E, Treves A. The emergence of grid cells: Intelligent design or just adaptation? Hippocampus.

2008; 18(12):1256–69. https://doi.org/10.1002/hipo.20520 PMID: 19021261

34. Brown EN, Frank LM, Tang D, Quirk MC, Wilson MA. A statistical paradigm for neural spike train decod-

ing applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neu-

rosci. 1998; 18(18):7411–25. PMID: 9736661

35. Samu D, Eros P, Ujfalussy B, Kiss T. Robust path integration in the entorhinal grid cell system with hip-

pocampal feed-back. Biol Cybern. 2009; 101(1):19–34. https://doi.org/10.1007/s00422-009-0311-z

PMID: 19381679

36. Burak Y, Fiete IR. Fundamental limits on persistent activity in networks of noisy neurons. Proc

Natl Acad Sci U S A. 2012; 109(43):17645–50. https://doi.org/10.1073/pnas.1117386109 PMID:

23047704

37. Issa JB, Zhang K. Universal conditions for exact path integration in neural systems. Proc Natl Acad Sci

U S A. 2012; 109(17):6716–20. https://doi.org/10.1073/pnas.1119880109 PMID: 22493275

38. Burak Y, Fiete IR. Accurate path integration in continuous attractor network models of grid cells. PLoS

Comput Biol. 2009; 5(2):e1000291. https://doi.org/10.1371/journal.pcbi.1000291 PMID: 19229307

39. Giocomo LM, Hussaini SA, Zheng F, Kandel ER, Moser MB, Moser EI. Grid cells use HCN1 channels

for spatial scaling. Cell. 2011; 147(5):1159–70. https://doi.org/10.1016/j.cell.2011.08.051 PMID:

22100643

40. Urdapilleta E, Si B, Treves A. Selforganization of modular activity of grid cells. Hippocampus. 2017;

27(11):1204–1213. https://doi.org/10.1002/hipo.22765 PMID: 28768062

41. Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain’s spatial representation system.

Annu Rev Neurosci. 2008; 31:69–89. https://doi.org/10.1146/annurev.neuro.31.061307.090723 PMID:

18284371

42. Etienne AS, Jeffery KJ. Path integration in mammals. Hippocampus. 2004; 14:180–192. https://doi.org/

10.1002/hipo.10173 PMID: 15098724

43. Ormond J, McNaughton BL. Place field expansion after focal MEC inactivations is consistent with loss

of Fourier components and path integrator gain reduction. Proc Natl Acad Sci U S A. 2015; 112(13):

4116–21. https://doi.org/10.1073/pnas.1421963112 PMID: 25733884

44. Drmota M, Tichy RF. Sequences, Discrepancies and Applications. Lecture Notes in Math, Springer Ver-

lag, Berlin. 1997; no. 1651.

Robust and efficient coding with grid cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005922 January 8, 2018 27 / 28

https://doi.org/10.1017/S0305004112000242
https://doi.org/10.1002/hipo.20504
https://doi.org/10.1002/hipo.20504
http://www.ncbi.nlm.nih.gov/pubmed/19021257
https://doi.org/10.1038/nature14151
http://www.ncbi.nlm.nih.gov/pubmed/25673414
https://doi.org/10.2307/2402767
https://doi.org/10.1073/pnas.1107365108
http://www.ncbi.nlm.nih.gov/pubmed/21844350
https://doi.org/10.1038/nrn3888
https://doi.org/10.1038/nrn3888
http://www.ncbi.nlm.nih.gov/pubmed/25601780
https://doi.org/10.7554/eLife.05979
http://www.ncbi.nlm.nih.gov/pubmed/25910055
https://doi.org/10.1038/nature14153
http://www.ncbi.nlm.nih.gov/pubmed/25673417
https://doi.org/10.1088/1742-5468/2013/03/P03013
https://doi.org/10.1098/rsif.2014.1214
https://doi.org/10.1038/nrn1932
https://doi.org/10.1002/hipo.20520
http://www.ncbi.nlm.nih.gov/pubmed/19021261
http://www.ncbi.nlm.nih.gov/pubmed/9736661
https://doi.org/10.1007/s00422-009-0311-z
http://www.ncbi.nlm.nih.gov/pubmed/19381679
https://doi.org/10.1073/pnas.1117386109
http://www.ncbi.nlm.nih.gov/pubmed/23047704
https://doi.org/10.1073/pnas.1119880109
http://www.ncbi.nlm.nih.gov/pubmed/22493275
https://doi.org/10.1371/journal.pcbi.1000291
http://www.ncbi.nlm.nih.gov/pubmed/19229307
https://doi.org/10.1016/j.cell.2011.08.051
http://www.ncbi.nlm.nih.gov/pubmed/22100643
https://doi.org/10.1002/hipo.22765
http://www.ncbi.nlm.nih.gov/pubmed/28768062
https://doi.org/10.1146/annurev.neuro.31.061307.090723
http://www.ncbi.nlm.nih.gov/pubmed/18284371
https://doi.org/10.1002/hipo.10173
https://doi.org/10.1002/hipo.10173
http://www.ncbi.nlm.nih.gov/pubmed/15098724
https://doi.org/10.1073/pnas.1421963112
http://www.ncbi.nlm.nih.gov/pubmed/25733884
https://doi.org/10.1371/journal.pcbi.1005922


45. Cassels J. Simultaneous Diophantine Approximation II. Proc London Math Soc. 1955;(3), 5:435–448.

https://doi.org/10.1112/plms/s3-5.4.435

46. Lenstra AK, Lenstra HW, Lovász L. Factoring polynomials with rational coefficients. Mathematische

Annalen. 1982; 261(4):515–534. https://doi.org/10.1007/BF01457454

47. Land AH, Doig AG. An Automatic Method of Solving Discrete Programming Problems. Econometrica.

1960; 28(3):497–520. https://doi.org/10.2307/1910129

Robust and efficient coding with grid cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005922 January 8, 2018 28 / 28

https://doi.org/10.1112/plms/s3-5.4.435
https://doi.org/10.1007/BF01457454
https://doi.org/10.2307/1910129
https://doi.org/10.1371/journal.pcbi.1005922

