
Reconstructing the temporal progression of

HIV-1 immune response pathways

Siddhartha Jain1, Joel Arrais2, Narasimhan J. Venkatachari3,

Velpandi Ayyavoo3 and Ziv Bar-Joseph4,*

1Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA, 2Department of Computer

Science, University of Coimbra, Coimbra, Portugal, 3Department of Infectious Diseases, University of Pittsburgh,

Pittsburgh, PA, USA and 4Computational Biology and Machine Learning Department, Carnegie Mellon University,

Pittsburgh, PA, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Most methods for reconstructing response networks from high throughput data gener-

ate static models which cannot distinguish between early and late response stages.

Results: We present TimePath, a new method that integrates time series and static datasets to re-

construct dynamic models of host response to stimulus. TimePath uses an Integer Programming

formulation to select a subset of pathways that, together, explain the observed dynamic responses.

Applying TimePath to study human response to HIV-1 led to accurate reconstruction of several

known regulatory and signaling pathways and to novel mechanistic insights. We experimentally

validated several of TimePaths’ predictions highlighting the usefulness of temporal models.

Availability and Implementation: Data, Supplementary text and the TimePath software are avail-

able from http://sb.cs.cmu.edu/timepath

Contact: zivbj@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High throughput data measuring various aspects of several biolo-

gical systems is rapidly accumulating. These include RNA-Seq stud-

ies (Mortazavi et al., 2008), profiling of microRNAs (Vergoulis

et al., 2012), ChIP-Seq, epigenetics studies (Gifford et al., 2013), in-

formation about protein interactions within a cell (Prasad et al.,

2009) and information on interactions between host proteins and

pathogen/environmental factors (Navratil et al., 2009). Such data-

sets provide extensive information about the sets of genes that are

activated, their regulation and their interactions both within a cell

and between cellular proteins and the environment or pathogen.

However, integrating these datasets to reconstruct a unified view of

the networks and pathways that are activated in order to identify

potential interventions that may lead to a desired response remains a

major challenge.

Several methods have been proposed to integrate various biolo-

gical datasets for this task (Huang et al., 2009). However, the vast

majority of these methods are aimed at obtaining static networks

that do not provide temporal information making it hard to deter-

mine the various stages associated with the system being studied (for

example, waves of expression changes (Chang et al., 2013)) or the

optimal time to apply an intervention. Consider the HIV-1 infection.

While the development of highly active antiretroviral therapy has

made it possible to delay the progression of HIV infection, the per-

sistence of the virus, rapid development of resistance and inability to

completely eliminate the virus still pose major challenges for effect-

ive HIV-1 management (Shytaj and Savarino, 2013). HIV-1 infects a

host cell by a sequential process involving several temporal events.

These start with binding of the viral envelope protein to the host cell

receptor followed by reverse transcription and integration of pro-

viral DNA (early infection stage). Next, viral proteins are produced

facilitating viral replication (intermediate stage). Finally, new viruses

are released (late stage). While several studies have experimentally

quantified the large scale changes and host-pathogen interactions

for HIV-1 infection (Salgado et al., 2011), to date no models exist to

fully link these high throughput temporal datasets with the underly-

ing dynamic networks that lead to the observed responses.

A small number of methods have been proposed for reconstruct-

ing dynamic interaction networks from high throughput data. These

methods utilize the (relatively small number of) time series datasets

to determine temporal information for the (mostly) static interaction

datasets either directly (by projecting the time series data on the

known interaction networks (de Lichtenberg et al., 2005)) or indir-

ectly (by looking at targets of transcription factors (TFs) and
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associating temporal information for the interactions based on these

targets (Ernst et al., 2007; Schulz et al., 2012). Since gene expression

is the primary source of time series data these methods use, they

have primarily focused on the reconstruction of regulatory networks

(Bar-Joseph et al., 2012). Signaling networks proved to be more

challenging since much of the activity in these networks is post tran-

scriptional (Filipowicz et al., 2008) and often faster than regulatory

networks which made it hard to use time series gene expression data

to obtain temporal information about the activity of these networks.

Several other methods have been developed and evaluated for re-

constructing regulatory networks using gene expression data (Haury

et al., 2012; Marbach et al., 2012; Margolin et al., 2006; Toepfer

et al., 2007). These methods utilize expression levels to determine

regulatory interactions based on various statistical techniques

including correlation, mutual information, regression, etc. While

such methods can be successfully applied in some cases, they are less

appropriate for modeling immune response dynamics since they can-

not model post-transcriptional events (including the effects of virus–

host and protein–protein interactions) which, as we show, play a

major role in such responses.

To address these issues, two new methods have been proposed

recently to jointly reconstruct dynamic signaling and regulatory net-

works by integrating static and time series data. SDREM (Gitter

et al., 2011) relies on a method for orienting protein interaction net-

works which are then combined with TFs and the networks they

regulate using a separate input–output hidden Markov model

(IOHMM). While SDREM has been successfully applied to study

yeast and human response networks (Gitter and Bar-Joseph, 2013;

Gitter et al., 2013; Jain et al., 2014) it does not provide temporal in-

formation about the pathways it finds. In SDREM, all pathways

from source proteins (protein interacting with the environment/

pathogen) to TFs are assumed to be activated concurrently which

does not explain expression waves and response phases. Further,

SDREM does not optimize a single target function but rather two,

separate, functions for different models (one for the IOHMM and

the other for the combinatorial orientation algorithm) making it

hard to determine optimal parameters for the networks. TimeXnet

(Patil et al., 2013) is another method for reconstructing such net-

works. It uses linear programming to formulate a max-flow problem

imposing a constraint that the flow through expressed genes has to

be greater than 0 so that they are accounted for in the networks

identified. TimeXnet has been applied to study immune response in

mice. However, TimeXnet does not directly consider the (often

post-transcriptionally activated) source of the resulting response

which may lead to missing important pathways. In addition,

TimeXnet does not explain why some genes are activated early

while others are only activated at a later stage.

Here, we present TimePath, a new method for reconstructing

fully dynamic signaling and regulatory networks. TimePath uses a

single Integer Programming (IP) based optimization function to

jointly construct the networks. We initially select a large set of path-

ways that are rooted in source proteins and end in differentially

expressed (DE) genes. This allows us to include sources that are only

post-transcriptionally and/or post-translationally activated.

Pathways for later DE genes are required to contain DE genes or

miRNAs from earlier phases to explain their delayed response.

Next, we use the IP to select a small subset of pathways that, to-

gether, explain the full set of DE genes. These selected pathways are

analyzed to determine phase specific proteins and miRNAs and se-

lect those that are key to the response observed.

We applied TimePath to reconstruct dynamic models for HIV-1

immune response. As we show, the method accurately reconstructed

the response networks identifying several known and novel path-

ways. We have performed experiments based on novel predictions

made by TimePath several of which validated the ability of

TimePath to determine a specific time for targeting a protein in

order to reduce viral loads.

2 Methods

2.1 Cell culture, HIV infection and reagents
Sup-T1 cell lines were obtained through the NIH AIDS Research

and Reference Reagent Program, Division of AIDS, NIAID, NIH (A

Sup-T1 from Dr. James Hoxie (Smith et al., 2008) and were main-

tained in RPMI containing 10% FBS, 1% L-glutamine and 1% peni-

cillin streptomycin (GIBCO). HIV-wt-EGFP reporter virus was

obtained by transfecting HEK293 T cells (2� 106 per plate) with

10 lg of HIV-1 vpr(þ)/EGFP proviral construct by Polyjet following

manufacturers protocol. Forty-eight hours post transfection, the

supernatants were collected, filtered through a 0.4-lm filter to re-

move cellular debris, and centrifuged at 22 000 rpm for 1 h. The

virus pellets were resuspended in PBS and stored in aliquots at 80 �C

for subsequent assays. Multiplicity of infection (MOI) for virus was

calculated by TZM blue assay using the HIV-1 reporter cell line

cMAGI (AIDS Research and Reference Reagent Program [RRRP],

National Institutes of Health [NIH]). The Sup-T1 cells were infected

at a MOI of 0.3 either in the presence or absence of specific inhibitor

at indicated time points. Forty hours post infection, the cells were

washed and fixed with 1% paraformaldehyde and the samples were

analyzed using Fortessa (BD Biosciences) with 10 000 gated events

acquired for each sample, and the results were analyzed using

FlowJo software (Tree Star, Inc., OR). The infected cells were de-

tected by the expression of reporter virus EGFP. Azidothymidine

(AZT) obtained from Sigma–Aldrich was used as positive control.

IKK2 inhibitor V, Dasatinib and Dinaciclib were obtained from

CalBiochem. SP600125 and WP 1066 were obtained from Abcam

Biochemicals and Enzo, respectively. SNS-032, Regorafenib,

Carfilzomib and Veliparib, Olaparib were obtained from selleck-

chem.com. SAHA and 5-Azacytidine were obtained from Sigma–

Aldrich. The viability of cells was estimated by Trypan blue staining.

We conducted the experiments three times with duplicate wells for

each experiment.

2.2 Data description
The overall goal of TimePath is to determine the dynamics of both

the signaling and the regulatory events that take place as part of a

cellular response process. For this, TimePath integrates time series

gene expression data, static protein interaction data (both within

and across species) and protein–DNA interaction data. We con-

structed a weighted, partially directed, protein interaction network

using several databases including BIOGRID (Stark et al., 2006),

HPRD (Prasad et al., 2009) and have also used Post-translational

Modification Annotations from the HPRD. Protein–DNA inter-

actions are based on data from (Schulz et al., 2012). Sources (host

proteins that interact with the HIV-1 proteins) were obtained from

VirHostNet (Navratil et al., 2009). Time series gene expression and

miRNA expression data following HIV-1 infection in Sup-T1 was

obtained from (Mohammadi et al., 2013). See Supplementary

Methods for complete details.

2.3 Candidate pathways
To reconstruct the dynamic set of signaling pathways that are acti-

vated we first divide the time series gene expression data into K
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phases. Initial response is likely driven by host proteins that interact

directly with virus proteins. However, later changes in expression

data (for example, expression changes that only occur 10 h after in-

fection) are likely driven by genes or TFs that have been activated

as part of an earlier expression response. In general we assume

that expression changes in phase i can be partially explained by acti-

vation/repression of a gene(s) in phase i – 1. To guarantee that our

reconstructed pathways satisfy this we impose the constraint

that any pathway that explains differential gene expression for a

gene in phase i>1 has to include at least one gene that was DE in

phase i – 1.

Based on these assumptions we initially select a subset of path-

ways that can be used to explain the DE genes as follows:

1. We divide the time series into k phases each consisting of T/k

time points where T is the total number of points. We use k¼3

for this paper.

2. We extract the top N1 DE genes for each phase (we use

N1 ¼ 200). How the significantly DE genes are extracted and

ranked is explained in Supplementary Methods.

3. We then search for the highest scoring N2 acyclic paths from the

source proteins (host proteins interacting with the virus of drug)

to the targets (DE genes) for each phase (we use N2¼10 million

here). We use the edge weights to compute a score for each path

(Supplementary Methods). We also guarantee that the following

constraints are satisfied for each pathway:

a. The last edge in the path has to be a protein–DNA inter-

action (i.e. we need a TF to activate/repress the gene) (Yeang

et al., 2004).

b. A path to a phase i>1 target has to contain a node that is a

target for phase i – 1.

In general, searching for the top N2 acyclic paths in a graph is a

#P-complete problem which is not considered to be solvable effi-

ciently (Arora and Barak, 2009). We thus use a heuristic to compute

the set of paths. See Supporting Methods for a detailed description

of the above process.

2.4 Integer program to select subset of pathways
Given a set of top paths for each target, our next goal is to combine

them to identify the actual pathways that are activated as part of the

response. Consider two targets g1 and g2 in phase k that are known

to be bound by the same TF A. If we believe that A explains the acti-

vation of g1 in that phase it increases our belief that A is also the TF

activating g2. More generally, our goal is to select a subset of these

pathways that, together, would minimize the number of intermedi-

ate signaling and regulatory proteins that are used across all path-

ways while at the same time maximize the number of targets that

can be explained.

To accomplish this we define a new Integer Programming (IP)

problem which includes three sets of binary variables (bv)

1. bv for a path to indicate whether it is selected or not.

2. bv for a target to indicate whether there is at least one path end-

ing at it.

3. bv for protein to determine whether it is part of a path selected.

Using these variables we maximize the following objective

max
X

p2P

wðpÞ � bP
p þ k1

XK

k¼1

X

g2Tk

fg � k2

X

g2G

bG
g (1)

with the constraints

8p 2 P;8g 2 p;bG
g � bP

p (2)

8p 2 P;
X

g2P

bG
g � jpj � 1þ bP

p (3)

8g 2 G; 8p 2 Pð:; gÞ; fg � bP
p (4)

8g 2 G;
X

p2Pð:;gÞ
bP

p � fg (5)

where K is the number of phases, Tk is the targets for phase k, P is

the set of all paths, G is the set of all genes, Pð:; gÞ is the set of paths

ending at gene g, w(p) is the weight of path p. The score of each a

pathway p is defined as Pe2Ep
PðeÞ where Ep is the set of edges in

pathway p and PðeÞ is the edge score which is defined in

Supplementary Methods, bP
p is whether path p is selected or not, fg is

whether gene g has even one selected path ending at it, bG
g is whether

gene g is selected, k1�2 are the weights for balancing the minimiza-

tion requirements in terms of intermediate nodes and the maximiza-

tion requirements in terms of the number of targets. They are the

parameters that decide in the end, how large of a network in terms

of number of genes and edges will be chosen.

Note that setting bG
g ¼ 0 for a specific gene immediately implies

that bP
p for a path containing that gene is 0 and similarly that fg is 0

for that gene and so these variables are not independent as the con-

straints above imply. We set bP
p ¼ 1 if and only if all the genes in the

path are selected as enforced by constraints 1–2. fg is 1 if and only if

there’s at least one path with bP
p ¼ 1 ending at the gene g as enforced

by constraint 3.

Since this is a problem with linear constraints, a linear objective

and since the bg variables are binary, this is an IP and not an Linear

Program (LP). The IP we are dealing with however is too large for

standard IP solvers and we thus solve it using a greedy approach fol-

lowed by a tabu search heuristic to escape local minimum. Briefly,

we start with all the nodes selected. Then at each step, we search for

a node whose addition or removal from network would increase the

objective the most (this is accomplished by flipping the bn variable

for that gene). Paths that contain a gene that is not in the current

network are removed (i.e. their corresponding bp variable is 0).

Once we find such a node, we add or remove it and keep going until

we can find no node whose addition or removal will improve the ob-

jective. We randomly select nodes if there are ties between them.

Thus the results can differ from one run to another—however, the

actual genes selected by the network change little according to our

experimental results. See Supplementary Results for details.

2.5 Ranking genes
After solving the IP we obtain a subset of the pathways that, com-

bined, explain the observed expression response over time. While

we attempt to minimize the number of proteins in these networks,

we still end up with hundreds of proteins in the set of selected path-

ways. To identify key proteins for follow up analysis, we rank genes

for each phase based on the ‘path flow’ going through them. The

path flow f through a node n for phase i is defined as follows.

f ðnÞ ¼
X

p2P

IðpÞ �wðpÞ

where P is the set of paths ending at a target in phase i and contain-

ing node n. I(p) is 1 when the path p is selected and 0 otherwise. We

further refine the phase specific genes for later phases to remove
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those already identified by earlier phases. See Supporting Results for

details.

3 Results and discussion

3.1 TimePath analysis of expression and

interaction data
To identify the dynamic pathways that are activated by biological

response processes, TimePath uses the time series gene expression to

annotate the static protein–protein and protein–DNA interaction

data (Fig. 1). This is achieved by formulating an Integer

Programming (IP) optimization function that balances the ability to

explain the DE genes at different time points with the requirement

that relatively few of all possible pathways are used in each of the

different responses. Following the application of IP to our modeling

problem we obtain a sparse set of pathways, each associated with a

specific experimental phase (or subset of time points), that together

explain the expression profiles observed as part of the response.

Each of these pathways is rooted at a source protein (a protein that

directly interacts with the infecting agent or with the environment)

allowing us to link the expression observed to its causes. In addition,

to explain the different expression waves we require that pathways

leading to genes that are DE at later time points contain at least one

gene that is DE at an earlier time point. The complete set of path-

ways obtained by TimePath is then analyzed to identify key proteins

and determine potential interventions that can block the response

observed (Section 2).

3.2 TimePath analysis of HIV data
We used TimePath to examine cell response to HIV infection. Time

series expression data for HIV-1 was obtained from Mohammadi

et al. (2013) which profiled genes using SAGEseq every 2 h for 24 h

after transfection with HIV-1 in Sup-T1 cell line. Expression data

was normalized using DESeq (Anders and Huber, 2010). In addition

to HIV expression data we obtained interaction data for HIV-1 pro-

teins and host (human) proteins from VirHostNet (Navratil et al.,

2009). Of the 235 proteins in VirHostNet, 231 are present in our

protein–protein interaction (ppi) network and were used as potential

sources.

TimePath also uses general protein–protein interactions from

BIOGRID (Stark et al., 2006) and HPRD (Prasad et al., 2009), Post-

translational Modification Annotations from HPRD and Protein–

DNA interaction data (Schulz et al., 2012) (Section 2).

To identify pathways for specific response phases we divided the

time series expression into 3 phases (every 8 h) and extracted 200

targets (DE genes) for each phase (Section 2). We next used the static

interaction data to identify a large number of potential pathways

connecting sources and targets constraining potential pathways for

later targets to contain a gene that is DE at an earlier phase. A subset

of these pathways that, together, explain the observed response to

HIV infection are then selected by the IP method. Pathways retained

by the IP for this data included a total of 607 genes of which 319 are

targets. We next ranked proteins in these pathways based on their

importance to each phase (Section 2).

3.3 Pathways and proteins identified for HIV response
The resulting dynamic network is presented in Figure 2. Top ranked

proteins for each of the three phases are presented in Table 1 and

Supplementary Tables S1–S3.

The dynamics observed by TimePath provide important insights

into the mechanisms used by the HIV-1 to proliferate and overcome

host defenses. Several of the proteins identified as controlling the

early phase response are related pathways that either promote viral

replication (e.g. P53) or suppress immune response pathways (e.g.

AP1B1, AP2B1, CALM3) are known to be key participants in HIV

pathways (Greenway et al., 2002). Several of the signaling proteins

and TFs controlling the later phases in the reconstructed TimePath

model are also related to promotion of virus activity. These include

proteins controlling virus elongation (GTF2H1), down regulated

proteins for cell cycle arrest (CDC34, LCK (Strasner et al., 2008))

and several down regulated proteins that are involved in immune re-

sponse (PTPN7, VAV1) and superinfection prevention (ACTB).

However, later phases of the model also contain proteins that are

part of the host defense response (much more than phase 1). These

include immune response factors such as STAT and JUN (Phase 2)

(Mak and Saunders, 2006) and the down regulation of apoptosis in-

hibitors (e.g. DDIT3. Thus, while the network reveals the strategy

utilized by the virus to circumvent initial innate immune response, it

also identifies the key factors of the cellular response networks that

escape viral regulation and are utilize by the cell to respond to the

infection. See Supplementary Tables S8–S10, Supplementary Results

and Discussion below for more details.

3.4 Statistical validation of the reconstructed network

and comparison with other methods
To more globally assess the ability of TimePath to accurately iden-

tify pathways and proteins, and to compare its performance with

prior methods that were developed to reconstruct dynamic signaling

and regulatory networks we used several complementary datasets to

test the reconstructed pathways.

While several methods have been proposed for reconstructing

biological networks [28], relatively few are focused on analyzing dy-

namic response networks. These include SDREM (Gitter and Bar-

Joseph, 2013; Gitter et al., 2011), which combines a HMM method

for modeling dynamic regulatory networks with a combinatorial al-

gorithm for signaling network reconstruction and TimeXnet (Patil

et al., 2013) which uses a linear programming (LP) formulation to

Fig. 1. Overview of TimePath. (Left) Several time series and static datasets

are used as input. (Top right) Based on these inputs an initial set of pathways

is selected such that each starts at a source (a host protein interacting with a

virus protein), ends in a target (a DE gene for one of the time points) and con-

tains PPI and Protein–DNA edges. (Middle right) Next, Integer Programming

(IP) is performed to select a subset of these pathways. (Bottom right) The re-

sulting pathways explain the dynamics of the observed response including

the different expression phases observed for different genes
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find important genes. Note that neither of these methods uses

miRNA expression data and so we constrained our comparison to

TimePath models that do not utilize such data (models using

miRNA expression data are discussed in Section 3.6).

In addition to comparing TimePath with prior methods that con-

struct both signaling and regulatory networks, we have also com-

pared the top ranked genes from TimePath to the top DE genes in

the dataset (Supporting Methods) since several methods for analyz-

ing gene expression data still focus on such DE genes (Rapaport

et al., 2013).

3.4.1 RNAi screen hits

First, we looked at RNAi screen experiments which test the impact

of gene knockdown on HIV viral load. Three such experiments were

conducted though a meta-analysis of the results determined that

only three proteins were detected by all studies (Bushman et al.,

2009). We have filtered the combined list to select a subset of the

hits that are supported by at least two lines of evidence

(Supplementary Results) resulting in 389 supported hits, 364 of

which were present in our initial network.

The results are in Table 2. We find that the pathways obtained

by TimePath are significantly enriched for screen hits (P-value of

1:7� 10�17). This significant overlap also holds separately for each

the subset of proteins identified for the three phases (Supplementary

Tables S1–S3). We next compared these results to results from the

other two network reconstruction methods and to the top DE genes.

For this comparison we ranked the genes using path flow for

TimePath and SDREM (Section 2) and used the TimeXnet output

ranking for that method. The RNAi overlap is presented in Tables 2.

As can be seen, rankings for all network reconstruction methods

greatly outperforms the DE genes rankings highlighting the

importance of post-transcriptional and post-translational events in

the response process. Further, both TimePath and SDREM signifi-

cantly outperform TimeXnet in this analysis with almost a quarter

of the top ranked genes supported by screen hits.

3.4.2 Analysis using GO and Reactome

To further analyze the pathways identified by TimePath we looked

at the agreement between them and two complementary databases:

The Gene Ontology (GO) and the set of HIV curated pathways in

Reactome. GO analysis was performed on the top 100 genes (nodes)

identified based on the path flow metric (Section 2) using

FuncAssociate (Berriz et al., 2003) while Reactome analysis was per-

formed using the set of pathway edges. The results indicate that the

pathways obtained by TimePath agree very well with known path-

ways involved in HIV response. The full list of enriched GO catego-

ries (corrected P-value � 0:001) is presented on the Supporting

Website and includes ‘toll-like receptor signaling pathway’, an im-

portant component of innate immune response (Mak and Saunders,

2006), ‘positive regulation of defense response’, ‘innate immune

response-activating signal transduction’, etc. We also find that

TimePath achieves a higher number and a higher percentage of sig-

nificantly enriched immune related categories compared to SDREM

and TimeXnet 4 using the FuncAssociate (Berriz et al., 2003) tool.

We compared the % of significantly enriched GO categories that

were immune response related (Supporting Methods). TimePath

again has a both a slightly higher number and a higher percentage of

significantly enriched immune related categories compared to

SDREM and TimeXnet (Table 4).

Results for Reactome are presented in Table 2, Supplementary

Figure S4 and Supplementary Table S6. As can be seen, we achieve a

significant overlap between edges in the selected pathways and those

0-8 hours 8-16 hours 16-24 hours

Fig. 2. Dynamic signaling and regulatory network for HIV-1 immune response. The red nodes are the host proteins that interact with the HIV-1 proteins (selected

sources). Blue nodes are intermediate signaling proteins and green nodes are the TFs that are predicted to directly up/down-regulate the differential expression

of target genes (targets not shown in figure, but the average levels of the regulated targets for each TF is presented by the yellow nodes while the size of each of

the yellow nodes indicates how many genes belong to the cluster represented by the node). The figure displays the top predicted nodes for each of the three

phases and also demonstrates is directly linked to the sources via the signaling proteins and DE genes in earlier phases. Diamond shaped nodes were identified

as supported RNAi screen hits (text) and rectangular nodes are targets for the phase they are in. Nodes with bold blue border represent proteins we experimen-

tally tested. Note that some intermediate proteins may also be TFs. The functional role in the network figure is based on the location of the protein in the selected

paths based on the IP
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present in the HIV Reactome pathways. Comparison with the other

methods clearly demonstrates the advantages of TimePath which is

able to identify a much larger number of correct interactions than

the other two network reconstruction methods. Note that Reactome

comparison is not available for the DE gene list since it does not con-

tain interactions.

We have also analyzed the usefulness of the various stages of

TimePath. As can be seen in Table 3, each step in the TimePath

method further improves the overlap with the screen hits. Initially,

only 3.7% of the expressed genes are screen hits. The initial path-

way extraction step increases the overlap to 10% while the overlap

following IP increases to 14%.

Finally, we investigated the impact of the constraint imposed on

later paths in our network to include a DE gene from an earlier

phase. As we show in Table 5, we obtain almost three times as many

edges in the overlap compared to the network without the time con-

straint with correspondingly better P-value.

3.5 Experimental results
To experimentally test the temporal predictions of TimePath we se-

lected top ranking phase proteins for which we could obtain com-

mercial inhibitors and examined the impact of blocking these

proteins at various time points in the response (Fig. 3). Note that the

RNAi knockdown screens discussed above were performed on a dif-

ferent cell type (Hela/TZM-bl and 293T) and so, while they are use-

ful for statistical validation, they may not completely reflect

pathways activated in Sup-T1 cells. More importantly, these screens

Table 1. Phase ranking for top genes

Phase Gene R1 R2 R3 Expression

change direction

1 EP300 1 2 2 Up

1 TP53 2 5 4 Up

1 HDAC1 3 6 6 Up

1 RELA 4 20 10 Up

1 RB1 5 4 3 Up

1 BRCA1 6 8 11 Up

1 PCNA 7 11 9 Up

1 SUMO1 8 9 8 Up

1 HDAC2 9 22 14 Up

1 CEBPB 10 21 12 Up

1 DNMT1 15 23 15 Up

1 STAT1 27 25 33 Up

1 RAF1 28 66 39 Up

1 CDK2 29 59 41 Up

2 JUN NP 1 1 Up

2 ATF2 143 7 5 No change

2 CALM3 127 10 106 Up

2 CD4 136 12 109 Up

2 STAT5B 105 13 86 Up

2 CCND3 91 14 100 Up

2 SMARCB1 92 15 97 Up

2 AP1B1 124 16 114 Up

2 SKI NP 17 147 Up

2 AP2B1 138 18 130 Up

3 FOS NP NP 7 Up

3 PSMA4 NP NP 23 Up

3 DDIT3 NP NP 25 Up

3 GTF2H1 NP NP 26 No change

3 SGTA NP NP 36 Down

3 JUNB 224 148 38 Down

3 JUND 276 NP 40 Down

3 GNB2L1 118 NP 46 No change

3 UBB 113 155 47 Down

3 VAV1 112 170 49 Down

3 LCK NP NP 291 Down

R1/2/3 indicates the rank of the gene in phase 1/2/3. If the rank is ‘NP’,

that means the gene was not found to be present in the phase. Genes tested ex-

perimentally are colored red (see Supplementary Tables S1–S3 for complete

rankings). For later phases we focused on genes that were ranked high for

these phases compared to their rank in an earlier phase. Genes with absolute

log fold change expression <2 are designated as not being differential

expressed.

Table 2. Overlap between RNAi screen hits and top 100 genes for

the different dynamic network reconstruction methods and be-

tween edge list from Reactome (1265 edges in network) and the

edges extracted by the different methods

Method Overlap

with

screen hits

P-value Overlap with

Reactome

edges

P-value

TimePath 23 1:7� 10�17 101/3203 7:9� 10�44

SDREM 21 3:2� 10�16 74/3203 3:9� 10�24

TimeXnet 16 4:9� 10�10 54/2585 3:9� 10�16

DE ranking 5 0.23 NA NA

Comparison with a baseline ranking of the differentially expression (DE)

genes is also presented.

Table 3. Overlap with HIV screen hits at various stages of the

algorithm

Stage Overlap Overlap %

Pre-algorithm 364/16 671 2.1

Unexpressed genes filtered 246/6604 3.7

After pathway search 144/1374 10.4

After IP 85/607 14.0

‘Pre-algorithm’ is the initial overlap for all genes in the network.

‘Unexpressed genes filtered’ is when we remove all genes from our interaction

network that are unexpressed. ‘After pathway search’ is that stage that uses

all genes included in the initial top scoring set of pathways. ‘After IP’ is the

final stage after the IP (and thus the whole algorithm) has run. As can be seen,

the IP step seems to further improve the resulting set of genes indicating that

the selection process indeed identifies HIV response pathways.

Table 4. GO comparison

Method % of immune-related categories P-value

TimePath 11.16 (72/645) 2:074� 10�5

SDREM 8.04 (71/883) 0.077

TimeXnet 10.44 (66/632) 3:18� 10�4

We give the % of immune-related categories as well as the absolute number

of immune related categories and total categories enriched for in parenthesis.

The P-value cutoff for all categories was 0.05. The GO enrichment was per-

formed on the top 100 genes as ranked by path flow (Section 2) using the

FuncAssociate tool (Berriz et al., 2003).

Table 5. Validation for the time constraint.

Method Overlap P-value

TimePath 101/3203 7:9� 10�44

TimePath without time constraint 37/3203 3:6� 10�5

i258 S.Jain et al.

Deleted Text: 3 
Deleted Text: <italic>p</italic>
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw254/-/DC1


do not provide information about the dynamics of the response

while our experiments are aimed at testing not just the predictions

regarding top ranked proteins but also their phase specific assign-

ment. We performed experiments in which we varied the time of

applying the inhibitors w.r.t the infection time. For each of the pro-

teins tested, inhibitors were applied 2 h prior to infection (phase 1),

4 h (phase 2) and 14 h (phase 3) post infection. Amount of infection

was determined at 40 h post infection for all experiments. We con-

currently measured cell viability to test the toxicity of the inhibitor

(Supplementary Fig. S1).

The results are presented in Figure 3. As can be seen, for five of

the inhibitors we tested (targeting 11 of the 22 proteins tested) we

observed a significant impact on viral load as predicted by

TimePath. Note that the screen results indicate that less than 1.5%

of all proteins lead to decreased viral load, and so such a high valid-

ation rate is a strong indication for the accuracy of TimePath.

Importantly, several of the time specific predictions were validated

in these experiments. We expected that inhibiting proteins that are

ranked at the top for all phases or for phase 3, at any time, would

lead to reduction in viral load since even early inhibition prevents

them from being activated at a later stage. We indeed see this effect

for the STAT inhibition (ranked in the top 30 for all phases) and for

PSMA4 (ranked at the top only for phase 3). In contrast, for proteins

ranked high in phase 1 and lower at the next phases we expected to

see a much greater impact for the early treatment vs. later ones since

their impact may have already been exerted by the time of the later

treatments. This is exactly what we see for two of these proteins.

For both NFKB1 (ranked 14 in the first phase but dropping to 50 in

the 2nd) and for Raf1 (dropping from 28 to 66) we see significant

response when treated early but a much lower impact on viral load

when treated at later stages strongly supporting TimePath’s predic-

tions. Published studies suggest that NF-kB has a major role in HIV-

1 transcription due to it is binding sites in HIV-1 LTR and

TAR-RNA (Kwon et al., 1998; Takada et al., 2002; Tareq Hassan

Khan et al., 2012; Williams et al., 2007; Wires et al., 2012). Results

from our analyses predicted a role for NF-kB during the early phase

(phase 1) and blocking this TF inhibited virus replication only in

pretreatment (2 h) and did not affect virus replication when treated

at the later stages and this effect is independent of cellular toxicity.

Similarly, another protein Raf1, predicted as early phase response to

HIV-1 also exhibited similar phase dependent inhibition. Though

Raf1 is known to interact with HIV-1 Nef and perturb T cell signal-

ing and activation pathway (Hodge et al., 1998), the mechanisms by

which Raf1 exerts its effects is unclear. It is possible to predict that

blocking Raf1 might have an effect on the function of HIV-1 early

protein Nef, thus altering T cell signaling and virus infection.

Another phase 1 protein, CDK2 (dropping from 29 to 59) also

showed strong impact when treated at the early time point but un-

like the other phase 1 predictions, later treatments continued to

have a significant impact on viral loads. CDK is known to play a

role in HIV-1 transcription by the viral transactivator, Tat (Cujec

et al., 1997), thus there is a direct correlation predicted by

TimePath. However, blocking CDK using inhibitors blocked both at

the early and late phase suggest that these inhibitors might have dir-

ect and indirect effect on virus replication.

PSMA41 is part of the proteasomal complex and so inhibiting this

protein with Carfilzomib not only blocks the proteasomal pathway, but

could also alter additional cellular processes such as sumoylation, ubiqui-

tination and Cul1 activity. These results are further supported by the early

time points predictions that identified SUMO1, UBE2I and CUL1 in

Phase 1. Sumoylation of HIV-1 integrase is essential for efficient viral rep-

lication (Zamborlini et al., 2011) and cullin ligases are recruited by HIV-

1 viral proteins to overcome host viral restriction factors, HIV-1 Vif de-

grades APOBEC proteins (Goila-Gaur et al., 2008) and HIV-1 Vpr in-

duces degradation of UNG and SMUG uracil-DNA glycosylases

(Schröfelbauer et al., 2005). Also HIV-1 Vpr is known to interact with

damaged DNA binding protein 1 (DDB1) to induce G2/M arrest which

contributes to efficient viral replication (Hakata et al., 2014). Indeed,

many of the factors predicted for the early stage response (Phase 1: 0–8h)

are related to DNA modification and chromatin remodeling (HDAC1,

HDAC2, DNMT1, KAT2B) and cell cycle (CTNNB1, CSNK2A1,

CDK2, E2F1). Also there is an enrichment of transcription factors (P53,

RELA, NFKB1, NR3C1, Stat1, MYC, RAF1, TBP, YY1), which have

binding sites on HIV-1 LTR. These factors may have a role in integration

of proviral DNA and regulation of HIV-1 transcription.

3.5.1 The role of late activated pathways

A key advantage of TimePath is its ability to highlight key pathways

that are only activated later in the response. As we show in

Supplementary Results and in Supplementary Table S12 some of

these pathways also support the ability of the virus to promote its

replication and dissemination by facilitating elongation of viral tran-

scripts, preventing reinfection, promoting survival of infected cells

and by immune evasion. Previous results have shown that viral pro-

teins Nef, Env and Vpu modulate the surface expression of critical

immune molecules such as CD4, CD28, MHC class I and others

through protein–protein interaction (Haller et al., 2014). Our results

show that the virus can also regulate the expression levels of CD4,

AP1 subunits and other related genes. This suggests that the virus

has additional mechanisms to prevent super infection. However,

later phase regulators identified by TimePath also contain several

proteins related to host defense mechanisms which are activated to

suppress virus infection (Supplementary Table S12). Similar to the

pathways discussed above, which were ranked based on the network

scoring technique (Section 2), when we classified the expression

changes of individual genes we observed that the majority of the

changes that occur during early stages tend to facilitate virus infec-

tion, whereas the host defense responses are observed largely at the

later phases. Though multiple HIV-1 repressor genes are down regu-

lated early on, there are certain TF genes, including TP53, RELA,

NR3C1 which can bind sites on HIV LTR, that are also repressed.

Fig. 3. Experimental validations. Relative infection after treatment with inhibi-

tors. Significant changes in infection are highlighted with a *. The inhibitor

names are given on the X axis and the target proteins of the inhibitors are

given in parenthesis. See also supporting Figure S3 for the full list of targets

for each inhibitor
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This suggests that the virus has evolved ways to differentially regu-

late specific TFs to enhance virus production while at the same time

trying to prevent a boost to the immune response, as many of these

TFs are also binding in front of immune response genes. The dy-

namic network also explains how genes that are differentially regu-

lated at later stages of virus infection (Supplementary Table S12)

result from changes observed in earlier Phases. TimePath analysis

underlines the temporal relation of the well-established ability of

virus to exploit the host machinery.

3.6 Incorporating miRNAs to TimePath models
Similar to TFs, miRNAs have also been shown to regulate the ex-

pression of mRNAs. In most cases the effects of this regulation is in-

hibitory including interference with translation (Alberts et al.,

2007), and binding to mRNAs to expedite their degradation

(Eulalio et al., 2009). We can easily extend TimePath to include

miRNAs by incorporating into the analysis pipeline two new types

of edges: (i) Edges representing interactions between from miRNAs

and their targets and (ii) edges representing the regulation of

miRNAs themselves by TFs (Wang et al., 2010). To determine the

set of edges we used the TargetScan database (Grimson et al., 2007)

and ENCODE data (Section 2). Using these new edges miRNAs can

be treated as any other node (genes) in our model with two excep-

tions: (i) Unlike TFs, which can be post-transcriptionally regulated,

miRNAs are only regulated transcriptionally and so we only include

a miRNA in our model if it is DE in at least one of the phases and

(ii) We require that gene targets of miRNAs be anti-correlated with

the expression of the miRNA regulating them (to model the inhibi-

tory impact). See Supplementary Methods for details.

The miRNA genome locations were taken from miRbase

(Griffiths-Jones et al., 2006), release 20 which consists of 4446

miRNAs, 499 of which are present in the RNA-seq expression data-

set we used. The raw sequence counts of the miRNAs are given in

the expression dataset for the same timepoints as the genes and are

normalized in the same fashion as the gene expression counts are.

We re-ran TimePath using these modifications and the additional

miRNA expression data. As can be seen in Supplementary Figure

S2, the resulting network contained most of the proteins/genes that

were included in the original network for the different phases.

However, the network also identified a number of miRNAs as con-

trolling the expression of phase 1 gene expression. Specifically, of

the 499 miRNAs we analyzed 16 were selected for the final network

(5 are shown in Supplementary Figure S2).

To determine the relevance of the selected miRNAs, we eval-

uated the list by using Ingenuity pathway analysis (2015)

(Supporting Methods). Five of the 17 validated HIV miRNAs in

Ingenuity were within the group of 16 miRNAs selected by

TimePath which is almost 10 times more than expected by random

chance (P-value 8:5� 10�5). The full list of 16 is presented in

Supplementary Table S13. These include miR-148a which was

shown to significantly control the HIV virus via its regulation of

HLA-C expression (Kulkarni et al., 2011, 2013), miR-27a and miR-

27b which are part of a class of miRNAs that have been found to af-

fect HIV infection (Chiang et al., 2012) and miR-214 which is

known to exhibit broad antiviral activity (Hayes et al., 2011).

4 Discussion

Since most of the high throughput data used to reconstruct cellular

response networks is static, current models based on these data are

often unable to provide specific temporal hypotheses regarding the

effects of perturbations and drugs on cellular responses. Here, we

formulated a new Integer Programming (IP) optimization function

to connect observed temporal responses (from gene expression data)

with the underlying sources, to further identify the pathways and

transcription factors that activate them. We then use the pathways

and their predicted time to reconstruct the full response network

leading to insights regarding the propagation of cellular responses,

key proteins controlling the responses and testable hypothesis re-

garding the effects of perturbing proteins at various time points fol-

lowing infection.

Applying TimePath to model HIV response networks led to the

identification of known and novel proteins and miRNAs for the

HIV response pathways. The reconstructed network explains the

roles of several HIV screen hits, the function of TFs and miRNA

controlling expression levels and is enriched for functional catego-

ries related to immune and viral responses.

The pathways identified can be divided to those induced by the

virus to promote survival/replication and those induced by the host

to curtail virus infection and promote cellular survival. Our tem-

poral regulatory model indicates that these can also be divided based

on their dynamics.

Follow up experiments using inhibitors confirmed the prediction

of TimePath, where 11 of the 22 predicted proteins (that were eval-

uated in the experiment) were identified to have a role in HIV infec-

tion. NFKB and related genes are exclusively essential for virus

infection in the initial phase as predicted by TimePath, similarly,

RAF1 was also confirmed to have an important role in the initial

phase. As predicted by TimePath, these genes may either be required

for virus infection during the initial phase, or the changes triggered by

these genes in the initial phase can temporally affect downstream

events that are essential for virus infection. It is also noted that CDKs,

STATs and proteasomal machinery are essential during all phases of

HIV infection, and TimePath had predicted a role for these genes

starting with phase 1 (CDKs) and/or a combination of phases—phase

1 and phase 2 (STATs) or phase 3 (proteasomal machinery and

related processes). Though TimePath identifies the role for these genes

or processes in specific phase, it suggests that the event occurs at the

identified phase; however, it does not rule out that the events are con-

tinuing over time and have a role in later stages too.

Unlike other methods that attempt to link treatments to disease

stages (for example, in cancer which uses pathological analysis to

determine tumor grades) TimePath is fully based on the molecular

data, thus could be applied to much shorter time scales. This ap-

proach enables the programme to obtain a more fine resolution of

the disease stage, which cannot be observed by other methods. With

higher resolution, it may be possible to use TimePath to tailor ap-

propriate treatment options to treat infected individuals.

Funding

This work was supported in part by National Institute of Health [grant num-

ber 1 U54 HL127624-01 to Z.B.J.], by the National Science Foundation

[grant number DBI-1356505 to Z.B.J.] and by the James S. McDonnell

Foundation Scholars Award in Studying Complex Systems.

Conflict of Interest: none declared.

References

Alberts,B. et al. (2007) Molecular Biology of the Cell, 5th ed. Garland Science,

New York.

Anders,S. and Huber,W. (2010) Differential expression analysis for sequence

count data. Genome Biol., 11, R106.

i260 S.Jain et al.

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw254/-/DC1
Deleted Text: [2]
Deleted Text: [13]
Deleted Text: a
Deleted Text: b
Deleted Text: [53]
Deleted Text: [22]
Deleted Text: Methods
Deleted Text: 1
Deleted Text: 2
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw254/-/DC1
Deleted Text: [21]
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw254/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw254/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw254/-/DC1
Deleted Text: 5 
Deleted Text: <italic>p</italic>
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw254/-/DC1
Deleted Text: [31, 30]
Deleted Text: [9]
Deleted Text: [26]
Deleted Text:  - 
Deleted Text: Work supported in part 
Deleted Text: e


Arora,S. and Barak,B. (2009) Computational Complexity: A Modern

Approach. Cambridge University Press, Cambridge, UK.

Bar-Joseph,Z. et al. (2012) Studying and modelling dynamic biological proc-

esses using time-series gene expression data. Nat. Rev. Genet., 13, 552–564.

Berriz,G.F. et al. (2003) Characterizing gene sets with FuncAssociate.

Bioinformatics, 19, 2502–2504.

Bushman,F.D. et al. (2009) Host cell factors in HIV replication: meta-analysis

of genome-wide studies. PLoS Pathogens, 5, e1000437.

Chiang,K. et al. (2012) Regulation of cyclin t1 and HIV-1 replication by

micrornas in resting CD4þ t lymphocytes. J. Virol., 86, 3244–3252.

Chang,K.N. et al. (2013) Temporal transcriptional response to ethylene gas

drives growth hormone cross-regulation in arabidopsis. Elife, 2, 00675.

Cujec,T.P. et al. (1997) The HIV transactivator tat binds to the cdk-activating

kinase and activates the phosphorylation of the carboxy-terminal domain of

RNA polymerase II. Genes Devel., 11, 2645–2657.

de Lichtenberg,U. et al. (2005) Dynamic complex formation during the yeast

cell cycle. Science, 307, 724–727.

Ernst,J. et al. (2007) Reconstructing dynamic regulatory maps. Molecular

Systems Biology, 3, 74.

Eulalio,A. et al. (2009) Deadenylation is a widespread effect of miRNA regula-

tion. RNA, 15, 21–32.

Filipowicz,W. et al. (2008) Mechanisms of post-transcriptional regulation by

micrornas: are the answers in sight? Nat. Rev. Genet., 9, 102–114.

Gifford,C.A. et al. (2013) Transcriptional and epigenetic dynamics during spe-

cification of human embryonic stem cells. Cell, 153, 1149–1163.

Gitter,A. and Bar-Joseph,Z. (2013) Identifying proteins controlling key disease

signaling pathways. Bioinformatics, 29, i227–i236.

Gitter,A. et al. (2011) Discovering pathways by orienting edges in protein

interaction networks. Nucleic Acids Res., 39, e22–e22.

Gitter,A. et al. (2013) Linking the signaling cascades and dynamic regulatory

networks controlling stress responses. Genome Res., 23, 365–376.

Goila-Gaur,R. and Strebel,K. (2008) HIV-1 vif, apobec, and intrinsic immun-

ity. Retrovirology, 5, 10–1186.

Greenway,A.L. et al. (2002) Human immunodeficiency virus type 1 nef binds

to tumor suppressor p53 and protects cells against p53-mediated apoptosis.

J. Virol., 76, 2692–2702.

Griffiths-Jones,S. et al. (2006) mirbase: microrna sequences, targets and gene

nomenclature. Nucleic Acids Res., 34, D140–D144.

Grimson,A. et al. (2007) Microrna targeting specificity in mammals: determin-

ants beyond seed pairing. Mol. Cell, 27, 91–105.

Hakata,Y. et al. (2014) Interactions with dcaf1 and ddb1 in the crl4 e3 ubiqui-

tin ligase are required for vpr-mediated g2 arrest. Virol. J., 11, 1–11.

Haller,C. et al. (2014) HIV-1 nef and vpu are functionally redundant broad-

spectrum modulators of cell surface receptors, including tetraspanins. J.

Virol., 88, 14241–14257.

Haury,A.C. et al. (2012) Tigress: trustful inference of gene regulation using

stability selection. BMC Syst. Biol., 6, 145.

Hayes,A.M. et al. (2011) Tat RNA silencing suppressor activity contributes to

perturbation of lymphocyte miRNA by HIV-1. Retrovirology, 8, 36.

Hodge,D.R. et al. (1998) Binding of c-raf1 kinase to a conserved acidic se-

quence within the carboxyl-terminal region of the HIV-1 Nef protein. J.

Biol. Chem., 273, 15727–15733.

Huang,SS, and Fraenkel,E. (2009) Integrating proteomic, transcriptional, and

interactome data reveals hidden components of signaling and regulatory

networks. Sci. Signal., 2, ra40.

Jain,S. et al. (2014) Multitask learning of signaling and regulatory networks

with application to studying human response to flu. PLoS Comput. Biol.,

10, e1003943.

Ingenuity pathway analysis. (2015) http://www.ingenuity.com/products/ipa.

Kulkarni,S. et al. (2011) Differential microRNA regulation of HLA-C expres-

sion and its association with HIV control. Nature, 472, 495–498.

Kulkarni,S. et al. (2013) Genetic interplay between HLA-C and MIR148A in

HIV control and Crohn disease. Proc. Natl. Acad. Sci., 110, 20705–20710.

Kwon,H. et al. (1998) Inducible expression of ijba repressor mutants inter-

feres with nf-jb activity and HIV-1 replication in Jurkat t cells. J. Biol.

Chem., 273, 7431–7440.

Mak,T.W. and Saunders,M.E. (2006) The Immune Response: Basic and

Clinical Principles, vol. 1. Academic Press, Cambridge, MA.

Marbach,D. et al. (2012) Wisdom of crowds for robust gene network infer-

ence. Nat. Methods, 9, 796–804.

Margolin,A.A. et al. (2006) Aracne: an algorithm for the reconstruction of

gene regulatory networks in a mammalian cellular context. BMC

Bioinformatics, 7, S7.

Mohammadi,P. et al. (2013) 24 hours in the life of HIV-1 in a t cell line. PLoS

Pathogens, 9, e1003161.

Mortazavi,A. et al. (2008) Mapping and quantifying mammalian transcrip-

tomes by rna-seq. Nat. Methods, 5, 621–628.

Navratil,V. et al. (2009) Virhostnet: a knowledge base for the management

and the analysis of proteome-wide virus–host interaction networks. Nucleic

Acids Res., 37, suppl 1 D661–D668.

Patil,A. et al. (2013) Linking transcriptional changes over time in stimulated

dendritic cells to identify gene networks activated during the innate immune

response. PLoS Comput. Biol., 9, e1003323.

Prasad,T.K. et al. (2009) Human protein reference database 2009 update.

Nucleic Acids Res., 37, D767–D772.

Rapaport,F. et al. (2013) Comprehensive evaluation of differential gene ex-

pression analysis methods for RNA-seq data. Genome Biol., 14, R95.

Salgado,M. et al. (2011) Characterization of host genetic expression patterns

in HIV-infected individuals with divergent disease progression. Virology,

411, 103–112.
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