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Abstract
Species distribution models (SDMs) are an increasingly important tool for conserva-
tion particularly for difficult-to-study locations and with understudied fauna. Our 
aims were to (1) use SDMs and ensemble SDMs to predict the distribution of fresh-
water mussels in the Pánuco River Basin in Central México; (2) determine habitat fac-
tors shaping freshwater mussel occurrence; and (3) use predicted occupancy across a 
range of taxa to identify freshwater mussel biodiversity hotspots to guide conserva-
tion and management. In the Pánuco River Basin, we modeled the distributions of 11 
freshwater mussel species using an ensemble approach, wherein multiple SDM meth-
odologies were combined to create a single ensemble map of predicted occupancy. 
A total of 621 species-specific observations at 87 sites were used to create species-
specific ensembles. These predictive species ensembles were then combined to cre-
ate local diversity hotspot maps. Precipitation during the warmest quarter, elevation, 
and mean temperature were consistently the most important discriminatory environ-
mental variables among species, whereas land use had limited influence across all 
taxa. To the best of our knowledge, our study is the first freshwater mussel-focused 
research to use an ensemble approach to determine species distribution and predict 
biodiversity hotspots. Our study can be used to guide not only current conservation 
efforts but also prioritize areas for future conservation and study.
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1  |  INTRODUC TION

Understanding processes and constraints influencing the distribu-
tion and abundance of species is a fundamental goal of basic and 
applied ecological research (Austin, 2002; Jones & Lawton, 2012; 
Poff, 1997). Of particular interest over the last few decades has been 
understanding how the spatial and temporal configuration of habitat 
shapes ecological processes (Newton et al., 2008). In lotic systems, 
habitat is viewed as a hierarchy with stream segments, reaches, 
mesohabitats, and microhabitats nested within a watershed. These 
habitat levels are simultaneously parts and wholes (Miller, 2008), 
such that each level shapes the environment of all habitat levels 
nested within it (Frissell et al., 1986).

Poff (1997) recognizing the hierarchical nature of environmental 
constraints and the role it plays in shaping the distribution and abun-
dance of lotic species developed a conceptual framework contrast-
ing species traits with multi-scale habitat data after. The resulting 
model acknowledged that each habitat level has its own functional 
and structural properties shaped by the previous level, which served 
as environmental filters of species traits over varying spatiotemporal 
periods. In practice, this idea suggests a species can only be present 
at one level of habitat (i.e., mesohabitat scale) if it is able to pass 
through preceding habitat levels, each having its own unique prop-
erties that filter taxa lacking certain prerequisite traits (Poff, 1997; 
Southwood, 1977, 1988). Inoue et al. (2017) demonstrated this point 
by evaluating the distribution of freshwater mussels and fish in cen-
tral and northern Europe, where species occupancy was determined, 
in part, by a suite of nested environmental variables ranging from 
landscape to the mesohabitat scale. Similar findings have been ob-
served for other taxa, such as reef fish assemblages (López-Pérez 
et al., 2013), forest plant communities (Kolb & Diekmann, 2004), and 
wetland species (Quesnelle et al., 2013). These studies suggested a 
hierarchical perspective of habitat configuration might be useful to 
inform basic and applied ecological research.

Species distribution models (SDMs) have become an increasingly 
useful tool for understanding how habitat filters (i.e., land use, to-
pography, and climate) shape species distributions. Because of this 
utility, SDMs have been widely applied to estimate species ranges, 
identify environmental factors shaping distribution, abundance 
patterns, determine areas of conservation importance, and predict 
ranges under past and future environmental scenarios (Daniel et al., 
2018; Dormann, 2007; Thuiller, 2003; Wilson et al., 2011). SDMs 
are rooted in the concepts presented by Poff (1997), as well as niche 
theory, which proposes the distribution of a species is related to 
its ability to cope with varying environmental conditions (Grinnell, 
1917; Hutchinson, 1957; Peterson et al., 1999). SDMs work by re-
lating environmental and biological data to species presence to 
determine habitat limits, which are subsequently used to predict 
occupancy or environmental suitability across a geographic area 
(Buckley et al., 2010; Guisan & Thuiller, 2005). Because SDMs are 
based on multi-scaled habitat data, predicted ranges for a given spe-
cies represent geographic areas across time and space that permit 
species occurrence.

Ensemble SDMs (ESDMs), a type of SDM, have become an in-
creasingly popular approach to predicting the occupancy of rare 
species (De Marco & Nóbrega, 2018; Sousa-Silva et al., 2014). 
Ensemble modeling works by taking individual SDMs (e.g., MAXENT, 
Random Forest, Boosted Regression Trees, etc.) and averaging their 
output into one final prediction, which greatly reduces the general-
ization error of single model approaches (Araújo & New, 2007; Hao 
et al., 2019; Seni & Elder, 2010). Individual models can be combined 
in a variety of ways, with the simplest being the mathematical mean 
or median (Hao et al., 2019), while more complex options include 
weighted averages, or scaling predictions based on model evalua-
tion statistics (Araújo & New, 2007; Hao et al., 2019; Marmion et al., 
2009). The combined predictions, regardless of the approach, are 
often better than standalone SMD methods. Hao et al. (2019) found 
through a meta-analysis of SDM studies that ensemble model per-
formance was generally higher than individual models. Elder and Lee 
(1997) comparing the model potential of ensembles versus single 
model type found predicted occupancy was similar between ensem-
ble and single models, but ensembles had lower out-of-the-bag error 
(mean prediction error of training data). Seni and Elder (2010), build-
ing off Elder and Lee (1997), noted ensemble models were generally 
better than single models because of weighted averages, model se-
lection, and variable pruning to optimize total model performance. 
Additionally, ESDMs distribute individual model type bias more 
evenly and reduce overprediction bias based on data types (i.e., con-
tinuous, binomial, and categorical), which creates less disjointed and 
abrupt predicted ranges compared to single-model methods.

In this study, we use ESDMs to predict distributions of an imper-
iled and understudied group of freshwater bivalves native to central 
and southern México. This region harbors some of the most biolog-
ically diverse freshwater streams in the world (Graf & Cummings, 
2021a; Smith & Bermingham, 2005). The Pánuco River Basin (here-
after PRB), located in East Central México, is one of these diverse 
drainages, and contains more than 95 species of fish, dozens of spe-
cies of freshwater mollusks (gastropods and bivalves), and a diverse 
collection of other macroinvertebrates (Martínez-Lendech et al., 
2020). Included among the mollusks are 14 species of native fresh-
water mussels, eight of which are endemic to the Pánuco River Basin 
and one introduced species. The status and distribution of fresh-
water mussels in the PRB, including factors that contribute to their 
persistence, remain unknown. As a result, it is unclear how habitat 
at various spatial and temporal scales shapes the distribution and 
abundance of the mussel fauna in the PRB or how species traits fa-
cilitate occupancy at those various scales. It is also unclear if species 
distributions and composition have changed overtime. The lack of 
accurate distribution and composition data can be problematic and 
will likely negatively affect the conservation and management of the 
mussel fauna in this region.

To begin addressing the knowledge gaps for mussels within 
the PRB, we evaluated the role of habitat in shaping mussel occur-
rence across the landscape. We also provide baseline information 
for a fauna that is poorly known in a region considered as one of 
the 25 major global biodiversity hotspots in need of conservation, 
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protection, and further study (Myers et al., 2000). Additionally, we 
assess the potential of ESDMs for predicting occurrence with lim-
ited environmental and presence data for conservation and manage-
ment of species. The specific objectives of our study were to (1) use 
SDMs and ESDMs to predict the distribution of freshwater mussels 
in the PRB; (2) determine habitat factors shaping mussel occurrence 
in the PRB; and (3) use predicted occupancy across a range of taxa 
to identify mussel biodiversity hotspots to guide conservation and 
management.

2  |  METHODS

2.1  |  Study area, focal taxa, and environmental 
data

The PRB is the 3rd largest river basin by size (98,227  km2) in 
México and contains three major sub-basins, the Moctezuma 
(42,726  km2), Tamuin (also called the Tampaón) (33,260  km2), and 
Tamesí (19,127 km2, Hudson et al., 2005). The Pánuco River is the 
primary stream within the PRB and is considered the 10th longest 
river in México (510 km) and the 4th largest by discharge (20.3 bil-
lion m3/annually, Hudson, 2003. The Pánuco River is formed from 
the Moctezuma and Tamuin rivers after crossing the Sierra Madre 
Oriental and joining with the Tamesí River north of Tampico, México, 

before discharging into the Gulf of México (Hudson et al., 2005). The 
PRB is located primarily in a subtropical climate zone with annual 
precipitation of approximately 30 cm near the headwaters, increas-
ing to 240  cm near the coast (Hudson, 2003). Rainfall is typically 
greatest from May to October, with July and September being the 
wettest months. Temperature varies greatly with elevation, but on 
average ranges from 15°C in January to 24°C in June (Hudson, 2003). 
Land use within the PRB is largely farming and ranching with primary 
crops being sugarcane, citrus, and coffee (Hudson et al., 2005).

Occurrence data includes recent and historical observations col-
lected by Texas A&M University, the Illinois Natural History Survey, 
Urbana-Champaign, MUSSELp (http://musse​l-proje​ct.uwsp.edu/), 
and U.S. Geological Survey. Nomenclature for mussels followed Graf 
and Cummings (2021a). We focused on 15 species found in the PRB 
(Figure 1) whose species relationships and distribution remain un-
resolved (Graf & Cummings, 2021a). Occurrence data for our focal 
species came from surveys conducted in 2017 and 2018 (Inoue et al., 
2020) and from data aggregated by MUSSELp (Graf & Cummings, 
2021b). In total, we obtained 621 records across 87  sites within 
the PRB of the following species: Utterbackia imbecillis, Actinonaias 
coyensis, Actinonaias medellina, Actinonaias signata, Disconaias 
disca, Disconaias fimbriata, Cyrtonaias tampicoensis, Friersonia iri-
della, Nephronaias aztecorum, Popenaias berezai, Popenaias semirasa, 
Psoronaias semigranosa, Megalonaias nickliniana, Anodontites cylind-
racea, and Anodonta impura (Table 1). Duplicate observations of 

F I G U R E  1 Map of the Pánuco River 
Basin. Black circles denote presence 
records for the following focal species: 
Actinonaias coyensis, Actinonaias 
medellina, Actinonaias signata, Disconaias 
disca, Disconaias fimbriata, Cyrtonaias 
tampicoensis, Friersonia iridella, 
Nephronaias aztecorum, Popenaias berezai, 
Popenaias semirasa, and Anodontites 
cylindracea. Presence data includes recent 
and historical observations collected 
by Texas A&M, Illinois Natural History 
Survey, Urbana-Champaign, MUSSELp, 
and U.S. Geological Survey. Denoted 
presence may represent multiple species 
within the same locale

http://mussel-project.uwsp.edu/


4 of 14  |     KISER et al.

the same species at the same location and those species with <10 
unique observations were omitted due to poor model success.

To model the distribution of our focal species, we used climate, 
elevation, and land use data. We chose these variables because pre-
vious studies have shown all three are important determinants of 
mussel occupancy (Gama et al., 2016; Hopkins, 2009; Santos et al., 
2015) and because these data were readily available within our re-
mote study area. Climate data were obtained from the Worldclim 
bioclimatic database (Fick & Hijmans, 2017) and include data on the 
minimum and maximum levels, mean values and ranges, and quar-
terly summaries for temperature and precipitation on a global scale 
(Hijmans et al., 2005; Maria & Udo, 2017; Nix, 1986). We also used 
air temperature as a proxy for water temperature (Caissie, 2006; 
Mohseni & Stefan, 1999). Elevation data were taken from WorldClim, 
and land cover data were obtained from DIVA-GIS (Hijmans et al., 
2004), both of which were taken at the same resolution and ex-
tent as the Worldclim bioclimatic data. Percent slope changes were 
calculated from the elevation data set using the terrain function 
in the “raster” package of R (Hijmans, 2020). Multicollinearity was 
evaluated using Pearson correlation and covariates with values 
greater than 0.8 were excluded from further analysis (Dormann 
et al., 2013). The resulting covariates were selected with a grid cell 
resolution size of 30  arc seconds (roughly 0.9  km): BIO2 = Mean 
Diurnal Range, BIO3  =  Isothermality, BIO8  =  Mean Temperature 
of Wettest Quarter, BIO9 = Mean Temperature of Driest Quarter, 
BIO15 = Precipitation seasonality, BIO18 = Precipitation of Warmest 
Quarter, BIO19 = Precipitation of Coldest Quarter, Alt = Elevation, 
Layer = Landcover and use, and Percent Slope Change.

2.2  |  Modeling protocol

To predict mussel occurrence in the PRB, we used an ensemble mod-
eling approach. In our analysis, we used the following models, which 
are all available within the “SDM” package in R (Naimi & Araújo, 
2016): General Linear Model (GLM), Support-Vector Model (SVM), 
Random Forest (RF), Boosted Regression Tree (BRT), Multivariate 
Adaptive Regression Splines (MARS), Maximum Entropy (MAXENT), 
Classification and Regression Trees (CART), Flexile Discriminate 
Analysis (FDA), and Mixture Discriminant Analysis (MDA). Other 
models available within the “SDM” package were evaluated and re-
moved due to insufficient data or poor overall performance com-
pared to other model types (AUC < 0.8, TSS < 0.7, see below). The 
combined dataset with historical and contemporary records was 
used to populate presence records for our focal species. Absence 
data were unavailable due to the exploratory nature of the sur-
veys conducted within the PRB. Because of this, following Liu et al. 
(2013), we randomly generated pseudo-absences at two times the 
number of known presence observations of each species within the 
extent of the PRB.

To train the individual models, we used 80% of the occurrence 
records for a given species to develop predictions, which were then 
tested against the remaining 20% of data. To improve parameter 

estimates, each training and testing group was randomly resampled 
using 100 bootstrap replicates. Both individual model methods that 
were used to create the final ensemble model and the ensemble 
model for each species were assessed using the true skill statistic 
(TSS) and area under the curve (AUC) of the receiver operating char-
acteristic (ROC). TSS takes into consideration both omission (false 
absences) and commission (false presences) errors and is unaffected 
by prevalence (Allouche et al., 2006). TSS ranges from 0 to 1, and 
values from 0.2 to 0.5 indicate poor model fit, those values from 
0.6 to 0.8 denote adequate model fit, and values greater than 0.8 
are considered excellent model fit (Coetzee et al., 2009). The ROC 
shows the classifying performance based on a threshold parameter 
(Fielding & Bell, 1997; Phillips et al., 2004). It plots the true positive 
rate against the false-positive rate relative to each threshold, cre-
ating a curve of expected outcomes. The area under the ROC, or 
AUC is the probability of a model classification correctly predicting 
the outcome (i.e., presence vs. absence). Models with AUC values 
<0.5 are considered worse than random, values from 0.5 to 0.7 are 
considered poor, 0.7–0.9 are considered fair, and values >0.9 are 
considered excellent fit (Swets, 1988). In addition to model perfor-
mance, the variable of importance, which identifies the variable that 
contributes the most to model accuracy, was also assessed using 
AUC and Pearson Rank Correlation (PRC). PRC measures the cor-
relation between the predicted value and error of a model when a 
random variable is permutated, and all other variables are held at 
their mean. The decline in model accuracy from a variable permuta-
tion while all other variables are held at their mean can then be used 
to determine the variable importance to overall model accuracy and 
to determine key factors affecting species presence and absence 
(Thuiller et al., 2009).

To map the predicted presence of a given species within a cell 
(30 arc-second grid), optimum threshold (OT) values for the species 
were created from the weighted average based on the maximum 
(sensitivity + specificity) of all species-specific models. Predicted 
values of a cell greater than the OT of a species were given a value 
of 1 to indicate predicted presence, and 0 for predicted absence. 
These binomial presence/absence ensemble maps for each species 
were then stacked by summing the collected outputs to create local 
richness maps which denote the number of predicted species within 
a given cell. All statistical analysis was performed using R version 
4.1.1 (R Core Team, 2021).

3  |  RESULTS

A total of 11  species with 621  species-specific observations at 87 
unique sites were used in our ensemble modeling after removing spe-
cies with small sample sizes (i.e., n ≤ 10: U. imbecillis (2), P. semigranosa 
(5), M. nickliniana (3), and A. impura (5)) and duplicate occurrences. 
F. iridella (43), had the greatest number of occurrences followed by 
P. berezai (39), D. fimbriata (28), A. signata (24), A. coyensis (23), C. 
tampicoensis (20), D. disca (15), N. aztecorum (13), A. medellina (10), 
Popenaias s. (10), and A. cylindracea (10). Model completion was 100% 
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for all model types except the BRT model which would not consist-
ently run for species with less than 20 observations consistently.

For all individual type model outputs (Figure 2), model perfor-
mance was fair to excellent based on testing parameters (Table 2). 
For TSS, model accuracy for 8 out of 11 species indicated excellent 
fit (TSS > 0.8) across all models. For AUC, 8 of 11 species specific 
model methods were greater than 0.9, indicating excellent fit. D. disca 
had the lowest overall model performance (mean 0.829 AUC ± 0.06, 
0.700 TSS ± 0.08) but is still in the good fit range for model accuracy 
(AUC > 0.8, TSS > 0.7). The model type that performed best over-
all across all species was RF (0.962 AUC ± 0.03, TSS 0.908 ± 0.05), 
followed by MAXENT (0.936 AUC ± 0.03, TSS 0.867 ± 0.06), SVM 
(0.933 AUC ± 0.05, TSS 0.86 ± 0.07), BRT (0.928 AUC ± 0.02, TSS 
0.813  ±  0.02), MDA (0.905 AUC ±  0.03, TSS 0.805  ±  0.04), FDA 
(0.9 AUC ± 0.05, TSS 0.81 ± 0.07), MARS (0.885 AUC ± 0.05, TSS 
0.823  ±  0.08), CART (0.877 AUC ±  0.04, TSS 0.731 ±  0.07), and 
lastly the lowest performing model was the GLM model GLM (0.872 
AUC ± 0.04, TSS 0.79 ± 0.07). Based on our assessment statistics, all 
models performed in the good to excellent range.

All species ensemble models had an AUC > 0.85 and TSS > 0.86, 
indicating good to excellent predictive fit (Table 3). Sensitivity (cor-
rectly predicted presence) was >0.84 and specificity (correctly pre-
dicted absences) was >0.84 for all species, indicating accurate model 
prediction power. The variables of importance were similar across 
species with elevation, precipitation in the warmest quarter, and 
mean temperature during the driest quarter were the most influen-
tial variables (Table 4), although the order and degree of importance 
varied among species. For most species, the land cover was unin-
formative (Table 4), that is, predictive power was unaffected by its 
removal, which is likely due to the coarse-scale (30 arc-seconds), or 
the homogeneity of landscape (agriculture) within the region.

The stacked predictive map illustrated a high likelihood of mul-
tiple species within the PRB (Figure 3). Locations with the greatest 
number of species (n = 10) were in the central and eastern portions 
of the basin along the steppe region transitioning from the Central 
México Plateau to the coastal plain. Specifically, west of the Ciudad 
Valles region and north of Ciudad Mante all had a high predicted 
diversity of more than eight species. Many of these hotspots co-
incided with locations where mussels were known to occur, which 
indicates an accurate model fit (AUC >  0.9, TSS  >  0.8). However, 
there were also instances where predicted diversity was shown to 
be high (>8) in locations that had not been sampled. The tributaries 
to the Pánuco River, around the villages of Loma Alta and La Isla 
de Ocampo in the northern portion of the basin in Tamaulipas are 
one of these locations and showed a high probability of harboring 
multiple species (n = 8) with limited sampling in the area, making this 
region a high priority for future sampling.

4  |  DISCUSSION

In this study, we modeled distributions of some of the mussel 
species found in the PRB, understudied drainage in East Central O
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México, using a limited suite of available environmental and cli-
matic variables. We accomplished this using an ensemble ap-
proach, wherein multiple SDM methodologies were combined to 
create a single ensemble map of predicted occupancy. To the best 
of our knowledge, this is the first study to use an ensemble ap-
proach to determine the species distribution of freshwater mus-
sels and predict biodiversity hotspots. Of the variables assessed 
in our study, precipitation during the warmest quarter, elevation, 
and mean temperature during the driest quarter were consistently 
the most important discriminatory environmental variables among 
species, whereas land use had limited influence across all taxa. We 
suggest these findings can be used to guide current conservation 
efforts and prioritize objectives for future conservation planning 
for freshwater mussels in the PRB.

4.1  |  Ensemble species distribution models

SDMs are an important component of conservation and natural 
resource management for the game and non-game species (Elith 
& Leathwick, 2009; Randklev et al., 2015; Sherwood et al., 2018). 
In the United States, the U.S. Fish & Wildlife Service (USFWS) has 
used ensemble models to support species conservations status as-
sessments because of its predictive power, accuracy, and ability to 
handle understudied species and/or areas with limited environmen-
tal data (Breiner et al., 2015; Burnham & Anderson, 2002; Marmion 
et al., 2009). Hao et al. (2020) found ensemble models outperformed 
untuned individual models (i.e., those models unadjusted to obtain 
optimal performance), and when predicting distant areas, tuned in-
dividual SDMs had similar performance to ensembles. However, the 

F I G U R E  2 Species-specific ensemble model outputs of 11 focal species within the Pánuco River Basin. Weighted averages of nine 
individual species distribution model methodologies (General Linear Model, Support-Vector Model, Random Forest, Boosted Regression 
Tree, Multivariate Adaptive Regression Splines, Maximum Entropy, Classification and Regression Trees, Flexile Discriminate Analysis, and 
Mixture Discriminant Analysis) based on maximum (sensitivity + specificity). Red indicates a higher probability of occurrence for a given cell 
(30 arc-second grid, ~0.9 km)
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utility of ESDMs makes them a more useful method when tuning 
cannot be done due to limited data or a lack of understanding of 
the mechanistic effect variables might have on species distributions 
(Hao et al., 2020). This issue is of particular note with the current 
study, where both occurrence data and information on each taxon 
were limited. Marini et al. (2010) found that ESDMs could be used to 
predict the potential distribution of seven tropical bird species with 
as few as 10 observations. Our results mirror those by Marini et al. 

(2010), as we were able to generate single model SDMs and ensem-
ble models with excellent fit, that is, AUC (>0.9) and TSS (>0.8), and 
acceptable accuracy for species with at least 10 occurrence records, 
but not those species with less than five observations (BRT needed 
at minimum 20 observations to consistently run). Additionally, our 
results showed the similar model performance to studies with far 
more observations and predictive layers (Hopkins, 2009; Wilson 
et al., 2011).

TA B L E  2 Individual species distribution model performance for each species of freshwater mussels found within the Pánuco River Basin, 
México

Actinonaias coyensis Actinonaias medellina Actinonaias signata

Model AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance

GLM 0.89 0.82 7.05 0.88 0.85 7.43 0.87 0.76 7.17

SVM 0.95 0.89 0.67 0.96 0.93 0.69 0.94 0.84 0.66

RF 0.98 0.94 0.41 0.97 0.94 0.53 0.97 0.9 0.46

BRT 0.91 0.79 0.87 NA NA NA 0.93 0.82 0.84

MARS 0.93 0.88 3.74 0.91 0.88 5.67 0.89 0.83 5.89

MAXENT 0.96 0.91 0.54 0.95 0.93 0.66 0.95 0.86 0.64

CART 0.91 0.77 1.01 0.87 0.74 1.06 0.9 0.75 1.03

FDA 0.9 0.8 1.13 0.92 0.87 3.32 0.91 0.81 0.99

MDA 0.92 0.84 1.74 0.89 0.79 2.05 0.93 0.84 1.51

Disconaias disca Disconaias fimbriata Cyrtonaias tampicoensis Friersonia iridella

Model AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance

GLM 0.78 0.64 12.42 0.89 0.81 6.76 0.83 0.71 10.06 0.93 0.84 2.75

SVM 0.83 0.71 1.18 0.95 0.88 0.59 0.89 0.81 0.93 0.95 0.84 0.64

RF 0.92 0.83 0.73 0.98 0.94 0.36 0.93 0.87 0.62 0.98 0.9 0.4

BRT NA NA NA 0.95 0.84 0.79 0.91 0.8 0.88 0.95 0.83 0.74

MARS 0.77 0.64 12.85 0.94 0.9 3.56 0.84 0.75 9.16 0.91 0.83 5.38

MAXENT 0.89 0.77 0.94 0.97 0.9 0.54 0.89 0.81 0.7 0.96 0.86 0.55

CART 0.79 0.58 1.76 0.91 0.78 0.96 0.86 0.7 1.47 0.91 0.77 0.9

FDA 0.79 0.66 2.42 0.94 0.84 1.05 0.88 0.77 1.25 0.94 0.84 0.77

MDA 0.86 0.75 5.87 0.96 0.88 1.44 0.89 0.8 2.46 0.95 0.85 0.95

Nephronaias aztecorum Popenaias berezai Popenaias semirasa Anodontites cylindracea

Model AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance

GLM 0.82 0.74 10.07 0.9 0.79 3.67 0.89 0.85 7.03 0.91 0.88 5.85

SVM 0.89 0.8 0.96 0.94 0.84 0.64 0.98 0.96 0.5 0.98 0.96 0.54

RF 0.91 0.86 0.77 0.97 0.89 0.45 1 0.99 0.31 0.97 0.93 0.53

BRT NA NA NA 0.92 0.8 0.83 NA NA NA NA NA NA

MARS 0.84 0.77 8.58 0.89 0.81 6.64 0.94 0.92 4.57 0.88 0.84 7.13

MAXENT 0.89 0.8 0.91 0.94 0.85 0.58 0.96 0.94 0.75 0.94 0.91 0.71

CART 0.82 0.62 1.47 0.9 0.77 1.04 0.92 0.84 0.72 0.86 0.72 1.37

FDA 0.85 0.77 3.45 0.9 0.78 0.92 0.93 0.89 4.15 0.94 0.88 4.93

MDA 0.86 0.76 8.74 0.91 0.8 1.29 0.9 0.8 3.57 0.88 0.75 4.08

Note: Each individual species distribution methodology (General Linear Model (GLM), Support-Vector Model (SVM), Random Forest (RF), Boosted 
Regression Tree (BRT), Multivariate Adaptive Regression Splines (MARS), Maximum Entropy (MAXENT), Classification and Regression Trees (CART), 
Flexile Discriminate Analysis (FDA), and Mixture Discriminant Analysis (MDA)) were bootstrapped 100 times. Performance metrics are based on area 
under the curve (AUC), true skill statistics (TSS), and model deviance.
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Conditions in the landscape are known to affect instream habitat, 
which in turn, can shape species occupancy (Daniel & Brown, 2013; 
Newton et al., 2008; Poff, 1997). In our study, precipitation during 
the warmest quarter or mean temperature during the driest quarter 
was the most important predictor of habitat suitability for 6 of the 
11  species assessed. Specifically, we found areas with higher pre-
cipitation during summer months harbored greater mussel diversity 
compared to areas where summer precipitation was reduced. This re-
lationship likely illustrates the effect of low flows on mussels during 
thermally stressing events such as periods of low precipitation. It 
is well known that elevated water temperatures can affect mussel 
survival (Khan et al., 2019, 2020; Pandolfo et al., 2010), and these 
effects often occur during periods of reduced flow (Archambault 
et al., 2014). Reduced flows are inherent to a rivers flow regime 
and are biologically important (Biggs et al., 2005; Bovee, 1986; Poff 
et al., 2006), but they can become problematic during periods of re-
duced precipitation and/or overuse by humans (Golladay et al., 2004; 
Randklev et al., 2018). Golladay et al. (2004) found significant de-
clines in mussel fauna where a stream reaches ceased to flow, which 
was exacerbated by increased irrigation draws during drought. For 
the PRB, it remains unknown if low precipitation, water consump-
tion, or a combination of both are contributing to mussel distribu-
tion or absence. However, given the role both have played in mussel 
declines elsewhere in North America, our finding should serve as a 
warning to conservationists and resource managers in this basin.

We also found that elevation was an important determinant of 
occupancy for all 11 species in this study. The elevation is known 
to shape mussel occurrence by affecting stream flows, water 
level, scouring events, and access for larval mussels to host fish 

(Hastie et al., 2001; Wilson et al., 2011). The latter is of note be-
cause freshwater mussels possess a unique life cycle involving an 
obligate parasitic larval stage (glochidia or lasidia in the case of the 
Mycetopodidae) that must attach to aquatic vertebrates (primarily 
fish) to develop into a free-living juvenile (Barnhart et al., 2008), 
which also means their dispersal is tied to that of their host fish. 
The elevation is rooted in past geological events, which are known 
to influence patterns of aquatic biodiversity (e.g., Hoagstrom et al., 
2014). In our study, known observations, predicted presence, and 
diversity are situated between the coastal fall line, which represents 
the maximum extent of the Gulf of México during the Cenozoic pe-
riod, and the arid central plateau. The Gulf of México has slowly re-
treated since the Cenozoic period (Galloway et al., 2011; Smith & 
Bermingham, 2005), which has likely isolated taxa once connected 
by fish infected with glochidia or lasidia that migrated along coastal 
inlets or between pirated stream systems. The arid central plateau 
exhibits a marked decrease in precipitation compared to the lower 
coastal reaches of the PRB (Hudson, 2003), has a limited number 
of spring-fed stream systems, and is characterized by highly vari-
able temperatures with summer temperatures reaching upwards of 
30°C. These factors have likely constrained mussel occurrence and 
expansion by limiting fish infected with glochidia through physical 
barriers such as sharp increases in slope and shifts in geology and 
constraining habitat available for colonization due to reductions in 
water quantity, quality, and colonization of stream reaches that ex-
tend to the plateau.

We found land-use contributed very little to model performance, 
which is interesting given that land-use change is often cited as a 
primary factor responsible for mussel declines (Allan, 2004; Box & 
Mossa, 1999; Randklev et al., 2015). We suspect this finding is due 
to the coarse resolution of our land use data and homogeneity of 
land use across the landscape. We also suspect it could be due to 
differences in scale of land-use changes between regions where 
mussels have been well-studied (e.g., United States and Europe) and 
the PRB. In the United States, the landscape has been altered at a 
scale (i.e., time and space) that is much broader and more intensive 
than what we observed in the PRB. In the United States, these al-
terations have left many streams and rivers devoid of any sort of 
significant mussel fauna (Haag & Williams, 2014). In contrast, the 
fauna in the PRB, at least in the zone above the Fall Line, which is 
largely comprised of small-scale farming villages, is largely intact 
with almost all fauna known historically from the basin being found 
during recent expeditions (2017 and 2018). In coastal areas within 
the PRB land use is more altered (i.e., sugarcane and citrus; Hudson 
et al., 2005), but streams and rivers in these areas have not been 
well-sampled. Therefore, it is uncertain whether or how the fauna 
has been affected by these activities. These differences in land use 
impacts between the PRB and those of river systems in the United 
States, Europe, or other well-studied regions provide opportunities 
to better understand how aquatic communities are shaped and how 
populations function without the backdrop of intensive, widespread 
human impacts.

TA B L E  3 Summary of the following ensemble model 
performance parameters by species: AUC, TSS, sensitivity and 
specificity, and weighted average optimal threshold values based 
on the maximum (sensitivity + specificity)

Species AUC TSS Sensitivity Specificity

Actinonaias 
coyensis

0.935 0.939 0.932 0.933

Actinonaias 
medellina

0.932 0.938 0.924 0.932

Actinonaias signata 0.928 0.932 0.927 0.926

Disconaias disca 0.851 0.867 0.843 0.844

Disconaias 
fimbriata

0.947 0.950 0.947 0.946

Cyrtonaias 
tampicoensis

0.888 0.895 0.886 0.886

Friersonia iridella 0.944 0.946 0.944 0.944

Nephronaias 
aztecorum

0.886 0.900 0.879 0.876

Popenaias berezai 0.923 0.926 0.922 0.923

Popenaias semirasa 0.953 0.960 0.946 0.953

Anodontites 
cylindracea

0.934 0.944 0.929 0.935
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4.2  |  Conservation implications

We successfully predicted the occupancy of mussels in a region of 
México where the fauna is largely unknown. Future studies could 
build off these efforts through ground-truthing our predictions uti-
lizing methods laid out in Randklev et al. (2015) for model validation. 

In that study, the authors classified unsampled reaches using proba-
bilities of occupancy into the following classes: 0%–20%, 20%–40%, 
40%–60%, 60%–80%, and 80%–100%. The authors then randomly 
generated sample points within each probability class and per-
formed surveys at those locations. The new survey data collected by 
Randklev et al. (2015) was then fed back into their models to improve 

TA B L E  4 Variable of importance by species for a given ensemble model

Actinonaias coyensis
Actinonaias 
medellina Actinonaias signata

Variables COR AUC COR AUC COR AUC

Diurnal range 19.4 14.4 20.2 16.1 20.7 13.9

Temp seasonality 21.9 17.4 20 16.2 27.1 22.8

Mean temp of wettest quarter 25.2 19.6 31.7 26.5 22.3 13.1

Mean temp of driest quarter 17.6 12.3 19.3 14.5 35.1 30.3

Precip seasonality 7.1 4.9 13.2 8.9 13.9 9.2

Precip of warmest quarter 27.6 20.9 26.1 23 30.3 24.4

Precip of coldest quarter 13.6 8.4 16.8 11.8 17.2 11.3

Elevation 32.1 27.2 32.5 29.6 33.8 28.9

Landcover 6.3 4.1 9.2 5.6 4.5 2.3

Percent slope change 7.1 5.4 8.7 6.2 4.2 2.3

Disconaias disca Disconaias fimbriata Cyrtonaias tampicoensis Friersonia iridella

COR AUC COR AUC COR AUC COR AUC

Diurnal range 24.4 15.4 15.6 9.4 19.1 11.8 16.1 10.2

Temp seasonality 21 13.4 22.5 19.3 23 16.7 25.7 21.6

Mean temp of wettest quarter 21.5 12.4 17 12 20.3 12.5 16.3 11.4

Mean temp of driest quarter 21.6 12.7 12.1 8.1 37.3 30.2 10 6.5

Precip seasonality 14.1 7.3 5.4 3.5 15 8.5 4.2 2.5

Precip of warmest quarter 30.2 21.7 45 36.9 19.8 12.8 46.9 37

Precip of coldest quarter 19.3 10 10.7 6.4 18.2 10.3 12.2 7.9

Elevation 31.9 25 33.9 30.5 34.9 27.5 33.4 30.5

Landcover 15.5 11 4.3 2.5 9.9 6.4 3 1.8

Percent slope change 15.2 8.8 3.7 1.9 8.5 5.2 4.1 2.4

Nephronaias aztecorum Popenaias berezai Popenaias semirasa
Anodontites 
cylindracea

COR AUC COR AUC COR AUC COR AUC

Diurnal range 21.9 15.3 13.7 8.2 12.9 9.2 16.1 12.9

Temp seasonality 21.6 15.6 19.8 14 17.6 14.9 14 11.2

Mean temp of wettest quarter 25.3 18.9 16.7 11.6 18.8 14.9 25.1 22.1

Mean temp of driest quarter 25.9 20 14.7 10.2 24 21.5 16 12.7

Precip seasonality 16.9 10.6 9.4 6 11.7 7.9 6.6 4.4

Precip of warmest quarter 46.4 39.1 28.5 21.2 46.8 42.1 19.8 16.7

Precip of coldest quarter 23.1 14.4 12.1 6.8 14.2 10.3 12 8.8

Elevation 29.5 23.7 37.9 32.5 20.9 17.7 35.1 33

Landcover 11.1 7.2 4.9 2.3 8.1 4 14.4 9.3

Percent slope change 8.9 5.1 4.2 2.2 6.1 4.5 8.9 6.7

Note: Pearson Rank Correlation (Pearson) and area under the curve (AUC) were used to evaluate variable importance with higher numbers for each 
statistic indicating an increasing level of significance to model accuracy. All numbers are percentages.
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model performance. Given the influence of temperature and rainfall 
in our study, both of which will be affected by changing climates, the 
models and baseline data presented in this study could be used to 
predict the effects of future climate conditions on freshwater biodi-
versity in general, and specifically, freshwater mussels. These efforts 
could be enhanced by including sites and reaching specific variables. 
For example, Wilson et al. (2011) used SDMs to determine conserva-
tion and restoration areas for Margaritifera margaritifera (Freshwater 
Pearl Mussel) found that soil clay content and carbon content were 
important for predicting its occurrence. Similarly, Hopkins (2009) in 
a study on the effects of landscape metrics and multiscale data on 
Theliderma cylindrica (Rabbitsfoot mussel) in the Ohio River system 
found that soil composition and geomorphic factors were highly 
correlated with occurrences. These examples, along with our study, 
could guide future modeling efforts in the PRB, and other basins, 
to better understand how habitat at various scales shapes mussel 
occupancy.

Given that species, occupancy is an interplay between species 
traits and selective characteristics of habitat (Poff, 1997), the inclu-
sion of species trait information in future modeling efforts will help 
with understanding mechanisms behind species occurrence and 

optimize model prediction. Unfortunately, very little if anything is 
known about the life history of mussels in the PRB, which is a prob-
lem for mussel conservation and management regardless of geo-
graphic location. Because of the lack of data, future studies could 
focus on enumerating demographic traits such as fecundity, longev-
ity, host use, and growth rates known to be useful for explaining 
occupancy for other aquatic taxa (Mims & Olden, 2012; Winemiller 
et al., 2015). That said, our study develops a framework for future 
research studies in biodiversity research and conservation biology 
planning in this region and provides baseline information for a poorly 
understood mussel fauna considered of high conservation concern 
(e.g., Myers et al., 2000).
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