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Abstract
Species	distribution	models	(SDMs)	are	an	increasingly	important	tool	for	conserva-
tion particularly for difficult- to- study locations and with understudied fauna. Our 
aims	were	to	(1)	use	SDMs	and	ensemble	SDMs	to	predict	the	distribution	of	fresh-
water	mussels	in	the	Pánuco	River	Basin	in	Central	México;	(2)	determine	habitat	fac-
tors	shaping	freshwater	mussel	occurrence;	and	(3)	use	predicted	occupancy	across	a	
range of taxa to identify freshwater mussel biodiversity hotspots to guide conserva-
tion and management. In the Pánuco River Basin, we modeled the distributions of 11 
freshwater	mussel	species	using	an	ensemble	approach,	wherein	multiple	SDM	meth-
odologies were combined to create a single ensemble map of predicted occupancy. 
A	total	of	621	species-	specific	observations	at	87	sites	were	used	to	create	species-	
specific ensembles. These predictive species ensembles were then combined to cre-
ate	local	diversity	hotspot	maps.	Precipitation	during	the	warmest	quarter,	elevation,	
and mean temperature were consistently the most important discriminatory environ-
mental variables among species, whereas land use had limited influence across all 
taxa. To the best of our knowledge, our study is the first freshwater mussel- focused 
research to use an ensemble approach to determine species distribution and predict 
biodiversity hotspots. Our study can be used to guide not only current conservation 
efforts but also prioritize areas for future conservation and study.
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1  |  INTRODUC TION

Understanding processes and constraints influencing the distribu-
tion and abundance of species is a fundamental goal of basic and 
applied	 ecological	 research	 (Austin,	2002; Jones & Lawton, 2012; 
Poff, 1997).	Of	particular	interest	over	the	last	few	decades	has	been	
understanding how the spatial and temporal configuration of habitat 
shapes ecological processes (Newton et al., 2008).	In	lotic	systems,	
habitat is viewed as a hierarchy with stream segments, reaches, 
mesohabitats, and microhabitats nested within a watershed. These 
habitat	 levels	 are	 simultaneously	 parts	 and	wholes	 (Miller,	2008),	
such that each level shapes the environment of all habitat levels 
nested within it (Frissell et al., 1986).

Poff (1997)	recognizing	the	hierarchical	nature	of	environmental	
constraints and the role it plays in shaping the distribution and abun-
dance of lotic species developed a conceptual framework contrast-
ing species traits with multi- scale habitat data after. The resulting 
model acknowledged that each habitat level has its own functional 
and structural properties shaped by the previous level, which served 
as environmental filters of species traits over varying spatiotemporal 
periods. In practice, this idea suggests a species can only be present 
at	 one	 level	 of	 habitat	 (i.e.,	mesohabitat	 scale)	 if	 it	 is	 able	 to	 pass	
through	preceding	habitat	levels,	each	having	its	own	unique	prop-
erties	that	filter	taxa	lacking	certain	prerequisite	traits	(Poff,	1997; 
Southwood, 1977, 1988).	Inoue	et	al.	(2017)	demonstrated	this	point	
by evaluating the distribution of freshwater mussels and fish in cen-
tral and northern Europe, where species occupancy was determined, 
in part, by a suite of nested environmental variables ranging from 
landscape to the mesohabitat scale. Similar findings have been ob-
served	 for	other	 taxa,	 such	 as	 reef	 fish	 assemblages	 (López-	Pérez	
et al., 2013),	forest	plant	communities	(Kolb	&	Diekmann,	2004),	and	
wetland species (Quesnelle et al., 2013).	These	studies	suggested	a	
hierarchical perspective of habitat configuration might be useful to 
inform basic and applied ecological research.

Species	distribution	models	(SDMs)	have	become	an	increasingly	
useful tool for understanding how habitat filters (i.e., land use, to-
pography,	and	climate)	shape	species	distributions.	Because	of	this	
utility,	SDMs	have	been	widely	applied	to	estimate	species	ranges,	
identify environmental factors shaping distribution, abundance 
patterns, determine areas of conservation importance, and predict 
ranges under past and future environmental scenarios (Daniel et al., 
2018; Dormann, 2007; Thuiller, 2003; Wilson et al., 2011).	 SDMs	
are rooted in the concepts presented by Poff (1997),	as	well	as	niche	
theory, which proposes the distribution of a species is related to 
its ability to cope with varying environmental conditions (Grinnell, 
1917; Hutchinson, 1957; Peterson et al., 1999).	SDMs	work	by	re-
lating environmental and biological data to species presence to 
determine	 habitat	 limits,	 which	 are	 subsequently	 used	 to	 predict	
occupancy or environmental suitability across a geographic area 
(Buckley et al., 2010; Guisan & Thuiller, 2005).	Because	SDMs	are	
based on multi- scaled habitat data, predicted ranges for a given spe-
cies represent geographic areas across time and space that permit 
species occurrence.

Ensemble	SDMs	 (ESDMs),	a	 type	of	SDM,	have	become	an	 in-
creasingly popular approach to predicting the occupancy of rare 
species	 (De	 Marco	 &	 Nóbrega,	 2018; Sousa- Silva et al., 2014).	
Ensemble	modeling	works	by	taking	individual	SDMs	(e.g.,	MAXENT,	
Random	Forest,	Boosted	Regression	Trees,	etc.)	and	averaging	their	
output into one final prediction, which greatly reduces the general-
ization	error	of	single	model	approaches	(Araújo	&	New,	2007; Hao 
et al., 2019; Seni & Elder, 2010).	Individual	models	can	be	combined	
in a variety of ways, with the simplest being the mathematical mean 
or median (Hao et al., 2019),	while	more	 complex	 options	 include	
weighted averages, or scaling predictions based on model evalua-
tion	statistics	(Araújo	&	New,	2007; Hao et al., 2019;	Marmion	et	al.,	
2009).	 The	 combined	 predictions,	 regardless	 of	 the	 approach,	 are	
often	better	than	standalone	SMD	methods.	Hao	et	al.	(2019)	found	
through	a	meta-	analysis	of	SDM	studies	that	ensemble	model	per-
formance was generally higher than individual models. Elder and Lee 
(1997)	 comparing	 the	model	 potential	 of	 ensembles	 versus	 single	
model type found predicted occupancy was similar between ensem-
ble and single models, but ensembles had lower out- of- the- bag error 
(mean	prediction	error	of	training	data).	Seni	and	Elder	(2010),	build-
ing off Elder and Lee (1997),	noted	ensemble	models	were	generally	
better than single models because of weighted averages, model se-
lection, and variable pruning to optimize total model performance. 
Additionally,	 ESDMs	 distribute	 individual	 model	 type	 bias	 more	
evenly and reduce overprediction bias based on data types (i.e., con-
tinuous,	binomial,	and	categorical),	which	creates	less	disjointed	and	
abrupt predicted ranges compared to single- model methods.

In	this	study,	we	use	ESDMs	to	predict	distributions	of	an	imper-
iled and understudied group of freshwater bivalves native to central 
and	southern	México.	This	region	harbors	some	of	the	most	biolog-
ically diverse freshwater streams in the world (Graf & Cummings, 
2021a; Smith & Bermingham, 2005).	The	Pánuco	River	Basin	(here-
after	PRB),	 located	 in	East	Central	México,	 is	one	of	these	diverse	
drainages, and contains more than 95 species of fish, dozens of spe-
cies	of	freshwater	mollusks	(gastropods	and	bivalves),	and	a	diverse	
collection	 of	 other	 macroinvertebrates	 (Martínez-	Lendech	 et	 al.,	
2020).	Included	among	the	mollusks	are	14	species	of	native	fresh-
water mussels, eight of which are endemic to the Pánuco River Basin 
and one introduced species. The status and distribution of fresh-
water mussels in the PRB, including factors that contribute to their 
persistence,	remain	unknown.	As	a	result,	it	is	unclear	how	habitat	
at various spatial and temporal scales shapes the distribution and 
abundance of the mussel fauna in the PRB or how species traits fa-
cilitate occupancy at those various scales. It is also unclear if species 
distributions and composition have changed overtime. The lack of 
accurate distribution and composition data can be problematic and 
will likely negatively affect the conservation and management of the 
mussel fauna in this region.

To begin addressing the knowledge gaps for mussels within 
the PRB, we evaluated the role of habitat in shaping mussel occur-
rence across the landscape. We also provide baseline information 
for a fauna that is poorly known in a region considered as one of 
the	25	major	global	biodiversity	hotspots	 in	need	of	conservation,	
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protection,	and	further	study	(Myers	et	al.,	2000).	Additionally,	we	
assess	 the	potential	of	ESDMs	for	predicting	occurrence	with	 lim-
ited environmental and presence data for conservation and manage-
ment	of	species.	The	specific	objectives	of	our	study	were	to	(1)	use	
SDMs	and	ESDMs	to	predict	the	distribution	of	freshwater	mussels	
in	the	PRB;	(2)	determine	habitat	factors	shaping	mussel	occurrence	
in	the	PRB;	and	(3)	use	predicted	occupancy	across	a	range	of	taxa	
to identify mussel biodiversity hotspots to guide conservation and 
management.

2  |  METHODS

2.1  |  Study area, focal taxa, and environmental 
data

The	 PRB	 is	 the	 3rd	 largest	 river	 basin	 by	 size	 (98,227	 km2)	 in	
México	 and	 contains	 three	 major	 sub-	basins,	 the	 Moctezuma	
(42,726	 km2),	 Tamuin	 (also	 called	 the	Tampaón)	 (33,260	 km2),	 and	
Tamesí	 (19,127	km2, Hudson et al., 2005).	The	Pánuco	River	 is	the	
primary stream within the PRB and is considered the 10th longest 
river	in	México	(510	km)	and	the	4th	largest	by	discharge	(20.3	bil-
lion m3/annually, Hudson, 2003. The Pánuco River is formed from 
the	Moctezuma	and	Tamuin	rivers	after	crossing	the	Sierra	Madre	
Oriental	and	joining	with	the	Tamesí	River	north	of	Tampico,	México,	

before	discharging	into	the	Gulf	of	México	(Hudson	et	al.,	2005).	The	
PRB is located primarily in a subtropical climate zone with annual 
precipitation of approximately 30 cm near the headwaters, increas-
ing	 to	 240	 cm	near	 the	 coast	 (Hudson,	2003).	 Rainfall	 is	 typically	
greatest	from	May	to	October,	with	July	and	September	being	the	
wettest months. Temperature varies greatly with elevation, but on 
average	ranges	from	15°C	in	January	to	24°C	in	June	(Hudson,	2003).	
Land use within the PRB is largely farming and ranching with primary 
crops being sugarcane, citrus, and coffee (Hudson et al., 2005).

Occurrence data includes recent and historical observations col-
lected	by	Texas	A&M	University,	the	Illinois	Natural	History	Survey,	
Urbana-	Champaign,	 MUSSELp	 (http://musse	l-	proje	ct.uwsp.edu/),	
and U.S. Geological Survey. Nomenclature for mussels followed Graf 
and Cummings (2021a).	We	focused	on	15	species	found	in	the	PRB	
(Figure 1)	whose	species	 relationships	and	distribution	 remain	un-
resolved (Graf & Cummings, 2021a).	Occurrence	data	for	our	focal	
species	came	from	surveys	conducted	in	2017	and	2018	(Inoue	et	al.,	
2020)	 and	 from	data	aggregated	by	MUSSELp	 (Graf	&	Cummings,	
2021b).	 In	 total,	 we	 obtained	 621	 records	 across	 87	 sites	 within	
the PRB of the following species: Utterbackia imbecillis, Actinonaias 
coyensis, Actinonaias medellina, Actinonaias signata, Disconaias 
disca, Disconaias fimbriata, Cyrtonaias tampicoensis, Friersonia iri-
della, Nephronaias aztecorum, Popenaias berezai, Popenaias semirasa, 
Psoronaias semigranosa, Megalonaias nickliniana, Anodontites cylind-
racea, and Anodonta impura (Table 1).	 Duplicate	 observations	 of	

F I G U R E  1 Map	of	the	Pánuco	River	
Basin. Black circles denote presence 
records for the following focal species: 
Actinonaias coyensis, Actinonaias 
medellina, Actinonaias signata, Disconaias 
disca, Disconaias fimbriata, Cyrtonaias 
tampicoensis, Friersonia iridella, 
Nephronaias aztecorum, Popenaias berezai, 
Popenaias semirasa, and Anodontites 
cylindracea. Presence data includes recent 
and historical observations collected 
by	Texas	A&M,	Illinois	Natural	History	
Survey,	Urbana-	Champaign,	MUSSELp,	
and U.S. Geological Survey. Denoted 
presence may represent multiple species 
within the same locale

http://mussel-project.uwsp.edu/
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the same species at the same location and those species with <10 
unique	observations	were	omitted	due	to	poor	model	success.

To model the distribution of our focal species, we used climate, 
elevation, and land use data. We chose these variables because pre-
vious studies have shown all three are important determinants of 
mussel occupancy (Gama et al., 2016; Hopkins, 2009; Santos et al., 
2015)	and	because	these	data	were	readily	available	within	our	re-
mote study area. Climate data were obtained from the Worldclim 
bioclimatic	database	(Fick	&	Hijmans,	2017)	and	include	data	on	the	
minimum	and	maximum	 levels,	mean	values	and	ranges,	and	quar-
terly summaries for temperature and precipitation on a global scale 
(Hijmans	et	al.,	2005;	Maria	&	Udo,	2017; Nix, 1986).	We	also	used	
air temperature as a proxy for water temperature (Caissie, 2006; 
Mohseni	&	Stefan,	1999).	Elevation	data	were	taken	from	WorldClim,	
and	 land	cover	data	were	obtained	from	DIVA-	GIS	 (Hijmans	et	al.,	
2004),	 both	 of	 which	 were	 taken	 at	 the	 same	 resolution	 and	 ex-
tent as the Worldclim bioclimatic data. Percent slope changes were 
calculated from the elevation data set using the terrain function 
in	 the	 “raster”	package	of	R	 (Hijmans,	2020).	Multicollinearity	was	
evaluated using Pearson correlation and covariates with values 
greater than 0.8 were excluded from further analysis (Dormann 
et al., 2013).	The	resulting	covariates	were	selected	with	a	grid	cell	
resolution	 size	 of	 30	 arc	 seconds	 (roughly	 0.9	 km):	 BIO2	=	Mean	
Diurnal Range, BIO3 = Isothermality, BIO8 =	 Mean	 Temperature	
of Wettest Quarter, BIO9 =	Mean	Temperature	of	Driest	Quarter,	
BIO15 = Precipitation seasonality, BIO18 = Precipitation of Warmest 
Quarter, BIO19 =	Precipitation	of	Coldest	Quarter,	Alt	= Elevation, 
Layer = Landcover and use, and Percent Slope Change.

2.2  |  Modeling protocol

To predict mussel occurrence in the PRB, we used an ensemble mod-
eling approach. In our analysis, we used the following models, which 
are	 all	 available	 within	 the	 “SDM”	 package	 in	 R	 (Naimi	 &	 Araújo,	
2016):	General	Linear	Model	 (GLM),	Support-	Vector	Model	 (SVM),	
Random	 Forest	 (RF),	 Boosted	 Regression	 Tree	 (BRT),	Multivariate	
Adaptive	Regression	Splines	(MARS),	Maximum	Entropy	(MAXENT),	
Classification	 and	 Regression	 Trees	 (CART),	 Flexile	 Discriminate	
Analysis	 (FDA),	 and	 Mixture	 Discriminant	 Analysis	 (MDA).	 Other	
models	available	within	the	“SDM”	package	were	evaluated	and	re-
moved due to insufficient data or poor overall performance com-
pared	to	other	model	types	(AUC	< 0.8, TSS <	0.7,	see	below).	The	
combined dataset with historical and contemporary records was 
used	 to	populate	presence	 records	 for	our	 focal	 species.	Absence	
data were unavailable due to the exploratory nature of the sur-
veys conducted within the PRB. Because of this, following Liu et al. 
(2013),	we	randomly	generated	pseudo-	absences	at	two	times	the	
number of known presence observations of each species within the 
extent of the PRB.

To train the individual models, we used 80% of the occurrence 
records for a given species to develop predictions, which were then 
tested against the remaining 20% of data. To improve parameter 

estimates, each training and testing group was randomly resampled 
using 100 bootstrap replicates. Both individual model methods that 
were used to create the final ensemble model and the ensemble 
model for each species were assessed using the true skill statistic 
(TSS)	and	area	under	the	curve	(AUC)	of	the	receiver	operating	char-
acteristic	(ROC).	TSS	takes	into	consideration	both	omission	(false	
absences)	and	commission	(false	presences)	errors	and	is	unaffected	
by	prevalence	(Allouche	et	al.,	2006).	TSS	ranges	from	0	to	1,	and	
values from 0.2 to 0.5 indicate poor model fit, those values from 
0.6	to	0.8	denote	adequate	model	fit,	and	values	greater	than	0.8	
are considered excellent model fit (Coetzee et al., 2009).	The	ROC	
shows the classifying performance based on a threshold parameter 
(Fielding & Bell, 1997; Phillips et al., 2004).	It	plots	the	true	positive	
rate against the false- positive rate relative to each threshold, cre-
ating a curve of expected outcomes. The area under the ROC, or 
AUC	is	the	probability	of	a	model	classification	correctly	predicting	
the	outcome	(i.e.,	presence	vs.	absence).	Models	with	AUC	values	
<0.5	are	considered	worse	than	random,	values	from	0.5	to	0.7	are	
considered	poor,	 0.7–	0.9	 are	 considered	 fair,	 and	values	>0.9 are 
considered excellent fit (Swets, 1988).	In	addition	to	model	perfor-
mance, the variable of importance, which identifies the variable that 
contributes the most to model accuracy, was also assessed using 
AUC	and	Pearson	Rank	Correlation	 (PRC).	PRC	measures	 the	cor-
relation between the predicted value and error of a model when a 
random variable is permutated, and all other variables are held at 
their mean. The decline in model accuracy from a variable permuta-
tion while all other variables are held at their mean can then be used 
to determine the variable importance to overall model accuracy and 
to determine key factors affecting species presence and absence 
(Thuiller et al., 2009).

To map the predicted presence of a given species within a cell 
(30	arc-	second	grid),	optimum	threshold	(OT)	values	for	the	species	
were created from the weighted average based on the maximum 
(sensitivity +	 specificity)	 of	 all	 species-	specific	 models.	 Predicted	
values of a cell greater than the OT of a species were given a value 
of 1 to indicate predicted presence, and 0 for predicted absence. 
These binomial presence/absence ensemble maps for each species 
were then stacked by summing the collected outputs to create local 
richness maps which denote the number of predicted species within 
a	given	 cell.	All	 statistical	 analysis	was	performed	using	R	version	
4.1.1	(R	Core	Team,	2021).

3  |  RESULTS

A	 total	of	11	 species	with	621	 species-	specific	observations	at	87	
unique	sites	were	used	in	our	ensemble	modeling	after	removing	spe-
cies with small sample sizes (i.e., n	≤	10:	U. imbecillis	(2),	P. semigranosa 
(5),	M. nickliniana	 (3),	 and	A. impura	 (5))	 and	duplicate	occurrences.	
F. iridella	 (43),	had	the	greatest	number	of	occurrences	followed	by	
P. berezai	 (39),	D. fimbriata	 (28),	A. signata	 (24),	A. coyensis	 (23),	C. 
tampicoensis	 (20),	D. disca	 (15),	N. aztecorum	 (13),	A. medellina	 (10),	
Popenaias s.	(10),	and	A. cylindracea	(10).	Model	completion	was	100%	
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for all model types except the BRT model which would not consist-
ently run for species with less than 20 observations consistently.

For all individual type model outputs (Figure 2),	model	perfor-
mance was fair to excellent based on testing parameters (Table 2).	
For TSS, model accuracy for 8 out of 11 species indicated excellent 
fit (TSS >	0.8)	across	all	models.	For	AUC,	8	of	11	species	specific	
model methods were greater than 0.9, indicating excellent fit. D. disca 
had	the	lowest	overall	model	performance	(mean	0.829	AUC	±	0.06,	
0.700	TSS	±	0.08)	but	is	still	in	the	good	fit	range	for	model	accuracy	
(AUC	> 0.8, TSS >	0.7).	The	model	type	that	performed	best	over-
all	across	all	species	was	RF	(0.962	AUC	± 0.03, TSS 0.908 ±	0.05),	
followed	by	MAXENT	(0.936	AUC	±	0.03,	TSS	0.867	±	0.06),	SVM	
(0.933	AUC	±	0.05,	TSS	0.86	±	0.07),	BRT	(0.928	AUC	± 0.02, TSS 
0.813 ±	 0.02),	MDA	 (0.905	AUC	± 0.03, TSS 0.805 ±	 0.04),	 FDA	
(0.9	AUC	± 0.05, TSS 0.81 ±	0.07),	MARS	(0.885	AUC	± 0.05, TSS 
0.823 ±	 0.08),	 CART	 (0.877	AUC	±	 0.04,	 TSS	 0.731	±	 0.07),	 and	
lastly	the	lowest	performing	model	was	the	GLM	model	GLM	(0.872	
AUC	±	0.04,	TSS	0.79	±	0.07).	Based	on	our	assessment	statistics,	all	
models performed in the good to excellent range.

All	species	ensemble	models	had	an	AUC	> 0.85 and TSS >	0.86,	
indicating good to excellent predictive fit (Table 3).	Sensitivity	(cor-
rectly	predicted	presence)	was	>0.84	and	specificity	(correctly	pre-
dicted	absences)	was	>0.84	for	all	species,	indicating	accurate	model	
prediction power. The variables of importance were similar across 
species	 with	 elevation,	 precipitation	 in	 the	 warmest	 quarter,	 and	
mean	temperature	during	the	driest	quarter	were	the	most	influen-
tial variables (Table 4),	although	the	order	and	degree	of	importance	
varied among species. For most species, the land cover was unin-
formative (Table 4),	that	is,	predictive	power	was	unaffected	by	its	
removal,	which	is	likely	due	to	the	coarse-	scale	(30	arc-	seconds),	or	
the	homogeneity	of	landscape	(agriculture)	within	the	region.

The stacked predictive map illustrated a high likelihood of mul-
tiple species within the PRB (Figure 3).	Locations	with	the	greatest	
number of species (n =	10)	were	in	the	central	and	eastern	portions	
of the basin along the steppe region transitioning from the Central 
México	Plateau	to	the	coastal	plain.	Specifically,	west	of	the	Ciudad	
Valles	 region	 and	north	 of	Ciudad	Mante	 all	 had	 a	 high	 predicted	
diversity	 of	more	 than	 eight	 species.	Many	 of	 these	 hotspots	 co-
incided with locations where mussels were known to occur, which 
indicates	 an	 accurate	model	 fit	 (AUC	> 0.9, TSS >	 0.8).	However,	
there were also instances where predicted diversity was shown to 
be high (>8)	in	locations	that	had	not	been	sampled.	The	tributaries	
to	 the	Pánuco	River,	 around	 the	 villages	 of	 Loma	Alta	 and	 La	 Isla	
de Ocampo in the northern portion of the basin in Tamaulipas are 
one of these locations and showed a high probability of harboring 
multiple species (n =	8)	with	limited	sampling	in	the	area,	making	this	
region a high priority for future sampling.

4  |  DISCUSSION

In this study, we modeled distributions of some of the mussel 
species found in the PRB, understudied drainage in East Central O
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México,	 using	 a	 limited	 suite	 of	 available	 environmental	 and	 cli-
matic variables. We accomplished this using an ensemble ap-
proach,	wherein	multiple	SDM	methodologies	were	 combined	 to	
create a single ensemble map of predicted occupancy. To the best 
of our knowledge, this is the first study to use an ensemble ap-
proach to determine the species distribution of freshwater mus-
sels and predict biodiversity hotspots. Of the variables assessed 
in	our	study,	precipitation	during	the	warmest	quarter,	elevation,	
and	mean	temperature	during	the	driest	quarter	were	consistently	
the most important discriminatory environmental variables among 
species, whereas land use had limited influence across all taxa. We 
suggest these findings can be used to guide current conservation 
efforts	and	prioritize	objectives	 for	 future	conservation	planning	
for freshwater mussels in the PRB.

4.1  |  Ensemble species distribution models

SDMs	 are	 an	 important	 component	 of	 conservation	 and	 natural	
resource management for the game and non- game species (Elith 
& Leathwick, 2009; Randklev et al., 2015; Sherwood et al., 2018).	
In	the	United	States,	the	U.S.	Fish	&	Wildlife	Service	(USFWS)	has	
used ensemble models to support species conservations status as-
sessments because of its predictive power, accuracy, and ability to 
handle understudied species and/or areas with limited environmen-
tal data (Breiner et al., 2015;	Burnham	&	Anderson,	2002;	Marmion	
et al., 2009).	Hao	et	al.	(2020)	found	ensemble	models	outperformed	
untuned	individual	models	(i.e.,	those	models	unadjusted	to	obtain	
optimal	performance),	and	when	predicting	distant	areas,	tuned	in-
dividual	SDMs	had	similar	performance	to	ensembles.	However,	the	

F I G U R E  2 Species-	specific	ensemble	model	outputs	of	11	focal	species	within	the	Pánuco	River	Basin.	Weighted	averages	of	nine	
individual	species	distribution	model	methodologies	(General	Linear	Model,	Support-	Vector	Model,	Random	Forest,	Boosted	Regression	
Tree,	Multivariate	Adaptive	Regression	Splines,	Maximum	Entropy,	Classification	and	Regression	Trees,	Flexile	Discriminate	Analysis,	and	
Mixture	Discriminant	Analysis)	based	on	maximum	(sensitivity	+	specificity).	Red	indicates	a	higher	probability	of	occurrence	for	a	given	cell	
(30 arc- second grid, ~0.9	km)
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utility	 of	 ESDMs	makes	 them	 a	more	 useful	method	when	 tuning	
cannot be done due to limited data or a lack of understanding of 
the mechanistic effect variables might have on species distributions 
(Hao et al., 2020).	This	 issue	 is	of	particular	note	with	 the	current	
study, where both occurrence data and information on each taxon 
were	limited.	Marini	et	al.	(2010)	found	that	ESDMs	could	be	used	to	
predict the potential distribution of seven tropical bird species with 
as	few	as	10	observations.	Our	results	mirror	those	by	Marini	et	al.	

(2010),	as	we	were	able	to	generate	single	model	SDMs	and	ensem-
ble	models	with	excellent	fit,	that	is,	AUC	(>0.9)	and	TSS	(>0.8),	and	
acceptable accuracy for species with at least 10 occurrence records, 
but not those species with less than five observations (BRT needed 
at	minimum	20	observations	 to	consistently	 run).	Additionally,	our	
results showed the similar model performance to studies with far 
more observations and predictive layers (Hopkins, 2009; Wilson 
et al., 2011).

TA B L E  2 Individual	species	distribution	model	performance	for	each	species	of	freshwater	mussels	found	within	the	Pánuco	River	Basin,	
México

Actinonaias coyensis Actinonaias medellina Actinonaias signata

Model AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance

GLM 0.89 0.82 7.05 0.88 0.85 7.43 0.87 0.76 7.17

SVM 0.95 0.89 0.67 0.96 0.93 0.69 0.94 0.84 0.66

RF 0.98 0.94 0.41 0.97 0.94 0.53 0.97 0.9 0.46

BRT 0.91 0.79 0.87 NA NA NA 0.93 0.82 0.84

MARS 0.93 0.88 3.74 0.91 0.88 5.67 0.89 0.83 5.89

MAXENT 0.96 0.91 0.54 0.95 0.93 0.66 0.95 0.86 0.64

CART 0.91 0.77 1.01 0.87 0.74 1.06 0.9 0.75 1.03

FDA 0.9 0.8 1.13 0.92 0.87 3.32 0.91 0.81 0.99

MDA 0.92 0.84 1.74 0.89 0.79 2.05 0.93 0.84 1.51

Disconaias disca Disconaias fimbriata Cyrtonaias tampicoensis Friersonia iridella

Model AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance

GLM 0.78 0.64 12.42 0.89 0.81 6.76 0.83 0.71 10.06 0.93 0.84 2.75

SVM 0.83 0.71 1.18 0.95 0.88 0.59 0.89 0.81 0.93 0.95 0.84 0.64

RF 0.92 0.83 0.73 0.98 0.94 0.36 0.93 0.87 0.62 0.98 0.9 0.4

BRT NA NA NA 0.95 0.84 0.79 0.91 0.8 0.88 0.95 0.83 0.74

MARS 0.77 0.64 12.85 0.94 0.9 3.56 0.84 0.75 9.16 0.91 0.83 5.38

MAXENT 0.89 0.77 0.94 0.97 0.9 0.54 0.89 0.81 0.7 0.96 0.86 0.55

CART 0.79 0.58 1.76 0.91 0.78 0.96 0.86 0.7 1.47 0.91 0.77 0.9

FDA 0.79 0.66 2.42 0.94 0.84 1.05 0.88 0.77 1.25 0.94 0.84 0.77

MDA 0.86 0.75 5.87 0.96 0.88 1.44 0.89 0.8 2.46 0.95 0.85 0.95

Nephronaias aztecorum Popenaias berezai Popenaias semirasa Anodontites cylindracea

Model AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance AUC TSS Deviance

GLM 0.82 0.74 10.07 0.9 0.79 3.67 0.89 0.85 7.03 0.91 0.88 5.85

SVM 0.89 0.8 0.96 0.94 0.84 0.64 0.98 0.96 0.5 0.98 0.96 0.54

RF 0.91 0.86 0.77 0.97 0.89 0.45 1 0.99 0.31 0.97 0.93 0.53

BRT NA NA NA 0.92 0.8 0.83 NA NA NA NA NA NA

MARS 0.84 0.77 8.58 0.89 0.81 6.64 0.94 0.92 4.57 0.88 0.84 7.13

MAXENT 0.89 0.8 0.91 0.94 0.85 0.58 0.96 0.94 0.75 0.94 0.91 0.71

CART 0.82 0.62 1.47 0.9 0.77 1.04 0.92 0.84 0.72 0.86 0.72 1.37

FDA 0.85 0.77 3.45 0.9 0.78 0.92 0.93 0.89 4.15 0.94 0.88 4.93

MDA 0.86 0.76 8.74 0.91 0.8 1.29 0.9 0.8 3.57 0.88 0.75 4.08

Note: Each	individual	species	distribution	methodology	(General	Linear	Model	(GLM),	Support-	Vector	Model	(SVM),	Random	Forest	(RF),	Boosted	
Regression	Tree	(BRT),	Multivariate	Adaptive	Regression	Splines	(MARS),	Maximum	Entropy	(MAXENT),	Classification	and	Regression	Trees	(CART),	
Flexile	Discriminate	Analysis	(FDA),	and	Mixture	Discriminant	Analysis	(MDA))	were	bootstrapped	100	times.	Performance	metrics	are	based	on	area	
under	the	curve	(AUC),	true	skill	statistics	(TSS),	and	model	deviance.
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Conditions in the landscape are known to affect instream habitat, 
which in turn, can shape species occupancy (Daniel & Brown, 2013; 
Newton et al., 2008; Poff, 1997).	 In	our	study,	precipitation	during	
the	warmest	quarter	or	mean	temperature	during	the	driest	quarter	
was	the	most	important	predictor	of	habitat	suitability	for	6	of	the	
11 species assessed. Specifically, we found areas with higher pre-
cipitation during summer months harbored greater mussel diversity 
compared to areas where summer precipitation was reduced. This re-
lationship likely illustrates the effect of low flows on mussels during 
thermally stressing events such as periods of low precipitation. It 
is well known that elevated water temperatures can affect mussel 
survival	 (Khan	et	al.,	2019, 2020; Pandolfo et al., 2010),	 and	 these	
effects	 often	 occur	 during	 periods	 of	 reduced	 flow	 (Archambault	
et al., 2014).	 Reduced	 flows	 are	 inherent	 to	 a	 rivers	 flow	 regime	
and are biologically important (Biggs et al., 2005; Bovee, 1986; Poff 
et al., 2006),	but	they	can	become	problematic	during	periods	of	re-
duced precipitation and/or overuse by humans (Golladay et al., 2004; 
Randklev et al., 2018).	Golladay	et	 al.	 (2004)	 found	 significant	de-
clines in mussel fauna where a stream reaches ceased to flow, which 
was exacerbated by increased irrigation draws during drought. For 
the PRB, it remains unknown if low precipitation, water consump-
tion, or a combination of both are contributing to mussel distribu-
tion or absence. However, given the role both have played in mussel 
declines	elsewhere	in	North	America,	our	finding	should	serve	as	a	
warning to conservationists and resource managers in this basin.

We also found that elevation was an important determinant of 
occupancy for all 11 species in this study. The elevation is known 
to shape mussel occurrence by affecting stream flows, water 
level, scouring events, and access for larval mussels to host fish 

(Hastie et al., 2001; Wilson et al., 2011).	 The	 latter	 is	 of	 note	be-
cause	 freshwater	mussels	 possess	 a	 unique	 life	 cycle	 involving	 an	
obligate parasitic larval stage (glochidia or lasidia in the case of the 
Mycetopodidae)	 that	must	attach	to	aquatic	vertebrates	 (primarily	
fish)	 to	 develop	 into	 a	 free-	living	 juvenile	 (Barnhart	 et	 al.,	 2008),	
which also means their dispersal is tied to that of their host fish. 
The elevation is rooted in past geological events, which are known 
to	influence	patterns	of	aquatic	biodiversity	(e.g.,	Hoagstrom	et	al.,	
2014).	 In	 our	 study,	 known	observations,	 predicted	presence,	 and	
diversity are situated between the coastal fall line, which represents 
the	maximum	extent	of	the	Gulf	of	México	during	the	Cenozoic	pe-
riod,	and	the	arid	central	plateau.	The	Gulf	of	México	has	slowly	re-
treated since the Cenozoic period (Galloway et al., 2011; Smith & 
Bermingham, 2005),	which	has	likely	isolated	taxa	once	connected	
by fish infected with glochidia or lasidia that migrated along coastal 
inlets or between pirated stream systems. The arid central plateau 
exhibits a marked decrease in precipitation compared to the lower 
coastal reaches of the PRB (Hudson, 2003),	 has	 a	 limited	number	
of spring- fed stream systems, and is characterized by highly vari-
able temperatures with summer temperatures reaching upwards of 
30°C. These factors have likely constrained mussel occurrence and 
expansion by limiting fish infected with glochidia through physical 
barriers such as sharp increases in slope and shifts in geology and 
constraining habitat available for colonization due to reductions in 
water	quantity,	quality,	and	colonization	of	stream	reaches	that	ex-
tend to the plateau.

We found land- use contributed very little to model performance, 
which is interesting given that land- use change is often cited as a 
primary	factor	responsible	for	mussel	declines	(Allan,	2004; Box & 
Mossa,	1999; Randklev et al., 2015).	We	suspect	this	finding	is	due	
to the coarse resolution of our land use data and homogeneity of 
land use across the landscape. We also suspect it could be due to 
differences in scale of land- use changes between regions where 
mussels	have	been	well-	studied	(e.g.,	United	States	and	Europe)	and	
the PRB. In the United States, the landscape has been altered at a 
scale	(i.e.,	time	and	space)	that	is	much	broader	and	more	intensive	
than what we observed in the PRB. In the United States, these al-
terations have left many streams and rivers devoid of any sort of 
significant mussel fauna (Haag & Williams, 2014).	 In	 contrast,	 the	
fauna in the PRB, at least in the zone above the Fall Line, which is 
largely comprised of small- scale farming villages, is largely intact 
with almost all fauna known historically from the basin being found 
during	recent	expeditions	(2017	and	2018).	 In	coastal	areas	within	
the PRB land use is more altered (i.e., sugarcane and citrus; Hudson 
et al., 2005),	 but	 streams	and	 rivers	 in	 these	areas	have	not	been	
well- sampled. Therefore, it is uncertain whether or how the fauna 
has been affected by these activities. These differences in land use 
impacts between the PRB and those of river systems in the United 
States, Europe, or other well- studied regions provide opportunities 
to	better	understand	how	aquatic	communities	are	shaped	and	how	
populations function without the backdrop of intensive, widespread 
human impacts.

TA B L E  3 Summary	of	the	following	ensemble	model	
performance	parameters	by	species:	AUC,	TSS,	sensitivity	and	
specificity, and weighted average optimal threshold values based 
on the maximum (sensitivity +	specificity)

Species AUC TSS Sensitivity Specificity

Actinonaias 
coyensis

0.935 0.939 0.932 0.933

Actinonaias 
medellina

0.932 0.938 0.924 0.932

Actinonaias signata 0.928 0.932 0.927 0.926

Disconaias disca 0.851 0.867 0.843 0.844

Disconaias 
fimbriata

0.947 0.950 0.947 0.946

Cyrtonaias 
tampicoensis

0.888 0.895 0.886 0.886

Friersonia iridella 0.944 0.946 0.944 0.944

Nephronaias 
aztecorum

0.886 0.900 0.879 0.876

Popenaias berezai 0.923 0.926 0.922 0.923

Popenaias semirasa 0.953 0.960 0.946 0.953

Anodontites 
cylindracea

0.934 0.944 0.929 0.935
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4.2  |  Conservation implications

We successfully predicted the occupancy of mussels in a region of 
México	where	 the	 fauna	 is	 largely	unknown.	Future	 studies	 could	
build off these efforts through ground- truthing our predictions uti-
lizing methods laid out in Randklev et al. (2015)	for	model	validation.	

In that study, the authors classified unsampled reaches using proba-
bilities	of	occupancy	into	the	following	classes:	0%–	20%,	20%–	40%,	
40%–	60%,	60%–	80%,	and	80%–	100%.	The	authors	then	randomly	
generated sample points within each probability class and per-
formed surveys at those locations. The new survey data collected by 
Randklev et al. (2015)	was	then	fed	back	into	their	models	to	improve	

TA B L E  4 Variable	of	importance	by	species	for	a	given	ensemble	model

Actinonaias coyensis
Actinonaias 
medellina Actinonaias signata

Variables COR AUC COR AUC COR AUC

Diurnal range 19.4 14.4 20.2 16.1 20.7 13.9

Temp seasonality 21.9 17.4 20 16.2 27.1 22.8

Mean	temp	of	wettest	quarter 25.2 19.6 31.7 26.5 22.3 13.1

Mean	temp	of	driest	quarter 17.6 12.3 19.3 14.5 35.1 30.3

Precip seasonality 7.1 4.9 13.2 8.9 13.9 9.2

Precip	of	warmest	quarter 27.6 20.9 26.1 23 30.3 24.4

Precip	of	coldest	quarter 13.6 8.4 16.8 11.8 17.2 11.3

Elevation 32.1 27.2 32.5 29.6 33.8 28.9

Landcover 6.3 4.1 9.2 5.6 4.5 2.3

Percent slope change 7.1 5.4 8.7 6.2 4.2 2.3

Disconaias disca Disconaias fimbriata Cyrtonaias tampicoensis Friersonia iridella

COR AUC COR AUC COR AUC COR AUC

Diurnal range 24.4 15.4 15.6 9.4 19.1 11.8 16.1 10.2

Temp seasonality 21 13.4 22.5 19.3 23 16.7 25.7 21.6

Mean	temp	of	wettest	quarter 21.5 12.4 17 12 20.3 12.5 16.3 11.4

Mean	temp	of	driest	quarter 21.6 12.7 12.1 8.1 37.3 30.2 10 6.5

Precip seasonality 14.1 7.3 5.4 3.5 15 8.5 4.2 2.5

Precip	of	warmest	quarter 30.2 21.7 45 36.9 19.8 12.8 46.9 37

Precip	of	coldest	quarter 19.3 10 10.7 6.4 18.2 10.3 12.2 7.9

Elevation 31.9 25 33.9 30.5 34.9 27.5 33.4 30.5

Landcover 15.5 11 4.3 2.5 9.9 6.4 3 1.8

Percent slope change 15.2 8.8 3.7 1.9 8.5 5.2 4.1 2.4

Nephronaias aztecorum Popenaias berezai Popenaias semirasa
Anodontites 
cylindracea

COR AUC COR AUC COR AUC COR AUC

Diurnal range 21.9 15.3 13.7 8.2 12.9 9.2 16.1 12.9

Temp seasonality 21.6 15.6 19.8 14 17.6 14.9 14 11.2

Mean	temp	of	wettest	quarter 25.3 18.9 16.7 11.6 18.8 14.9 25.1 22.1

Mean	temp	of	driest	quarter 25.9 20 14.7 10.2 24 21.5 16 12.7

Precip seasonality 16.9 10.6 9.4 6 11.7 7.9 6.6 4.4

Precip	of	warmest	quarter 46.4 39.1 28.5 21.2 46.8 42.1 19.8 16.7

Precip	of	coldest	quarter 23.1 14.4 12.1 6.8 14.2 10.3 12 8.8

Elevation 29.5 23.7 37.9 32.5 20.9 17.7 35.1 33

Landcover 11.1 7.2 4.9 2.3 8.1 4 14.4 9.3

Percent slope change 8.9 5.1 4.2 2.2 6.1 4.5 8.9 6.7

Note: Pearson	Rank	Correlation	(Pearson)	and	area	under	the	curve	(AUC)	were	used	to	evaluate	variable	importance	with	higher	numbers	for	each	
statistic	indicating	an	increasing	level	of	significance	to	model	accuracy.	All	numbers	are	percentages.
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model performance. Given the influence of temperature and rainfall 
in our study, both of which will be affected by changing climates, the 
models and baseline data presented in this study could be used to 
predict the effects of future climate conditions on freshwater biodi-
versity in general, and specifically, freshwater mussels. These efforts 
could be enhanced by including sites and reaching specific variables. 
For example, Wilson et al. (2011)	used	SDMs	to	determine	conserva-
tion and restoration areas for Margaritifera margaritifera (Freshwater 
Pearl	Mussel)	found	that	soil	clay	content	and	carbon	content	were	
important for predicting its occurrence. Similarly, Hopkins (2009)	in	
a study on the effects of landscape metrics and multiscale data on 
Theliderma cylindrica	(Rabbitsfoot	mussel)	in	the	Ohio	River	system	
found that soil composition and geomorphic factors were highly 
correlated with occurrences. These examples, along with our study, 
could guide future modeling efforts in the PRB, and other basins, 
to better understand how habitat at various scales shapes mussel 
occupancy.

Given that species, occupancy is an interplay between species 
traits and selective characteristics of habitat (Poff, 1997),	the	inclu-
sion of species trait information in future modeling efforts will help 
with understanding mechanisms behind species occurrence and 

optimize model prediction. Unfortunately, very little if anything is 
known about the life history of mussels in the PRB, which is a prob-
lem for mussel conservation and management regardless of geo-
graphic location. Because of the lack of data, future studies could 
focus on enumerating demographic traits such as fecundity, longev-
ity, host use, and growth rates known to be useful for explaining 
occupancy	for	other	aquatic	taxa	(Mims	&	Olden,	2012; Winemiller 
et al., 2015).	That	said,	our	study	develops	a	framework	for	future	
research studies in biodiversity research and conservation biology 
planning in this region and provides baseline information for a poorly 
understood mussel fauna considered of high conservation concern 
(e.g.,	Myers	et	al.,	2000).
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