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Background: Cognitive impairment is one of the most prominent non-motor symptoms

in Parkinson’s disease (PD), due in part to known cerebellar dysfunctions. Furthermore,

previous studies have reported altered cerebellar functional connectivity (FC) in PD

patients. Yet whether these changes are also due to the cognitive deficits in PD

remain unclear.

Methods: A total of 122 non-dementia participants, including 64 patients with

early PD and 58 age- and gender-matched elderly controls were stratified into four

groups based on their cognitive status (normal cognition vs. cognitive impairment).

Cerebellar volumetry and FC were investigated by analyzing, respectively, structural and

resting-state functional MRI data among groups using quality control and quantitative

measures. Correlation analysis between MRI metrics and clinical features (motor and

cognitive scores) were performed.

Results: Compared to healthy control subjects with no cognitive deficits, altered

cerebellar FC were observed in early PD participants with both motor and cognitive

deficits, but not in PD patients with normal cognition, nor elderly subjects showing signs

of a cognitive impairment. Moreover, connectivity between the “motor” cerebellum and

SMA was positively correlated with motor scores, while intracerebellar connectivity was

positively correlated with cognitive scores in PD patients with cognitive impairment. No

cerebellar volumetric difference was observed between groups.

Conclusions: These findings show that altered cerebellar FC during resting state in

early PD patients may be driven not solely by the motor deficits, but by cognitive deficits

as well, hence highlighting the interplay between motor and cognitive functioning, and

possibly reflecting compensatory mechanisms, in the early PD.
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INTRODUCTION

Parkinson’s disease (PD) is the most common neurodegenerative
movement disorder characterized clinically by classical motor
features including bradykinesia, rigidity, tremor, and postural
instability. Yet this disease is also known to lead to a wide range
of non-motor symptoms (1, 2). Indeed, cognitive deficits are
among the most prominent non-motor features in PD (3), as
they are present in as much as 34% of early-stage cases (4, 5) and
are detrimental to patients’ quality of life (6). Traditionally, the
pathophysiological mechanism underlying PD has been linked to
the dysfunction of the striato-thalamo-cortical circuitry arising
from the degeneration of basal ganglia (BG), the latter accounting
partly for the cardinal motor symptoms of PD (7, 8). Driven by
the advances of anatomical and human neuroimaging studies in
the past 2 decades, however, reciprocal basal ganglia-cerebellar
and cerebellar-cortical parcellated networks have been identified,
and the role of the cerebellum in PD has received increasing
interest (9–16).

Numerous studies have repeatedly suggested that the human
cerebellum is not solely processing motor information but also
contributes to cognitive functions (14, 17). The existence of
a “motor” cerebellum including lobules V, VI, VIIb, and VIII
as well as of a “cognitive” cerebellum including crus I and
II supports this functional cerebellar dissociation (9, 12, 15,
18, 19). A recent meta-analysis has also reported cerebellar
hyperactivations in PD patients who were administered cognitive
or motor paradigms with significant cognitive task demands,
hence suggesting that one of the main cerebellar implications
in PD is linked to cognitive functioning (16). Finally, using
structural and resting-state functional magnetic resonance
imaging (rs-fMRI), O’Callaghan et al. (20) revealed gray matter
loss across the “motor” and “cognitive” cerebellar territories
and altered cerebellar functional connectivity (FC) with the
cortex in patients with PD compared to normal controls.
However, whether such alterations in resting-state cerebellar
FC are due to the motor deficits or cognitive deficits in
PD patients remains unclear, especially in the early-stage of
the disease.

In the current study, cerebellar FC was thus investigated in rs-
fMRI data, and both “motor” and “cognitive” cerebellar regions
were defined as seeds to shed light on the contributions of motor
and cognitive function to the cerebellar connectivity in a group of
PD participants in their early phase of disease. We hypothesized
that the change of cerebellar FC in early PD was related to both
the patients’ motor and cognitive deficits. To test this hypothesis,
we restricted our recruitment to the early stage of PD patients
without dementia, and compared their performance and FC
to those of matched elderly control participants. In particular,
we stratified the participants into four groups based on their
cognitive status: (1) matched elderly control subjects with normal
cognition (EC-NC); (2) matched elderly control subjects with
evidence of cognitive impairment (EC-CI); (3) PD patients with
motor deficits but normal cognitive abilities (PD-NC); and (4)
PD patients with both motor and cognitive deficits (PD-CI).
Cerebellar gray matter (GM) volumes and seed-to-whole brain
connectivity were then, respectively, compared between normal

controls and participants with either motor or cognitive deficits
alone, or with both types of deficits.

METHODS

Participants
A total of 122 right-handed subjects, including 64 patients with
PD and 58 matched control subjects were asked to participate in
this study. Patients with PD were recruited from the Parkinson
and Movement Disorder Center at the Xuanwu Hospital of
Capital Medical University in Beijing. Clinically established
diagnoses of idiopathic PD were made based on the Movement
Disorder Society (MDS) clinical diagnostic criteria (1). Scores on
the new MDS Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) and Hoehn and Yahr (H&Y) scale were attributed
to each patient by two separate movement disorder specialists
(21). In order to test patients in the early stage of the disease,
only clinically established PD cases with H&Y stage ≤ 2
were included in this study. By contrast, the matched control
participants were recruited from the “Beijing Longitudinal Study
on Aging” community cohort. None of the elderly control
subjects had a history of neurological/psychiatric disorders, nor
were they taking any psychoactive medications. Participants
with dementia were excluded based on the Diagnostic and
Statistical Manual of Mental Disorders (DSM-V) (22). The
current study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethic Review Committee of
the Xuanwu Hospital of Capital Medical University. Written
informed consent was provided by all participants before being
enrolled in this study.

Clinical and Neuropsychological
Assessment
Demographic information including date of birth, sex,
educational level and cognitive scores, as well as PD clinical
characteristics, was obtained. The total daily levodopa equivalent
dosage was also calculated for each patient. Specifically, 11
patients were newly diagnosed and unmedicated, while the
other 55 patients were either given L-DOPA monotherapy, a
dopaminergic agonist, a monoamine oxidase inhibitor, L-DOPA
plus entacapone, or a combination of these medications. To
minimize the effects of medication on our pattern of results,
all clinical measurements and MRI data in all patients were
assessed or acquired while they were “off” medication (i.e., no
antiparkinsonian medication at least 12 h before examination
or scanning).

Mood was assessed using the 17-item Hamilton Rating Scale
for Depression (HAMD), and thus, no participants with signs
of depression were included in this study (HAMD scores <

13) (23). The participant’s global cognitive functioning was also
measured using the Montreal cognitive assessment (MoCA)
Beijing version. Participants without dementia (based on DSM-V
criteria) were divided into two subgroups: those who presented
mild cognitive impairment (CI group) and those who showed a
normal level of cognitive functioning (NC group). The definition
of CI was based on established criteria by the National Institute
on Aging-Alzheimer’s Association (NIA-AA) workshops and the
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MDS Task Force Level I criteria for mild cognitive impairment
(24, 25). Specifically, we employed the following criteria: (i) a
complaint of cognitive decline (in the context of established PD
for PD-CI); (ii) a deficit in at least one or more cognitive domains
and with a MoCA score < 26; (iii) cognitive deficits that are not
sufficient to interfere with the patient’s independence in day-to-
day functions, as assessed with the activities of the daily living
(ADL) scale (26); and (iv) absence of dementia (based on DSM-V
criteria) (22). As a consequence, the elderly control subjects (EC)
were either classified as EC-CI or EC-NC, while patients with PD
were classified as part of the PD-CI or PD-NC.

Neuroimaging Data Acquisition
MRI scans were performed on a 3T MR scanner (Skyra system;
Siemens Magnetom scanner, Germany) with a standard 12-
channel head coil. The foam padding was used to restrict head
motion. High-resolution anatomic images were acquired with
a 3D T1-weighted magnetization prepared rapid acquisition
gradient echo (MPRAGE) scan [TR = 2,530ms, TE = 2.98ms,
192 sagittal slices, slice thickness = 1.0mm, no gap, field of view
(FOV)= 224× 256mm, voxel size of 1 mm3 isotropic, duration
= 313 s]. By contrast, resting-state fMRI data were acquired using
a standard gradient-echo echo-planar sequence (TR = 2,000ms,
TE = 30ms, 35 axial slices, slice thickness = 3mm, no gap, 176
time points, Flip angle = 90◦, FOV = 256 × 256mm, matrix
size = 64 × 64, duration = 360 s). During the resting-state
scan, individuals were instructed to keep their eyes closed and
relax, but to stay awake. All structural brain MR images were
checked for quality control, and subjects exhibiting abnormal
brain structures were excluded from the study.

Structural MRI Preprocessing and
Volumetric Analysis
Image segmentation of the cerebellum was performed using
the Spatially Unbiased Infratentorial Template toolbox (SUIT
Version 3.3) implemented in Statistical Parametric Mapping,
version 12 (SPM12, http://www.fil.ion.ucl.ac.uk/spm) and
running under MATLAB (R2017a) (The Math-Works Inc.,
Natick, MA, USA). All images were parallel-aligned to the
anterior commissure–posterior commissure line and kept left-
posterior-inferior orientation before segmenting the cerebellum.
These high-resolution T1 images were then used to isolate
the cerebellum from the rest of the brain and normalized
to the SUIT template using a non-linear deformation. The
outputs were visually inspected for accuracy, and manual
edits as well as reprocessing were performed if needed. The
gray matter volume of each cerebellar anatomic subdivision
from the SUIT probabilistic atlas (27) was extracted for all
participants and compared between four different participant
groups. The volumes related to the “motor” cerebellum and
the “cognitive” cerebellum, which were created using cerebellar
subregions from the probabilistic atlas referenced above, were
also compared between groups, respectively (15). Furthermore,
voxel-based morphometry analysis of the cerebellar gray matter
was conducted after being normalized and smoothed using a
Gaussian filter kernel with 8mm full width at half maximum
(FWHM) in SPM12. Both ROI- and voxel-based statistical

analyses were implemented with significance level at a 2-tailed p-
value < 0.05, corrected via false discovery rate (FDR) correction
for multiple comparisons.

Functional MRI Preprocessing and FC
Analysis
A subsample of participants from the study (43 elderly controls
and 50 PD patients) completed an rs-fMRI scan and underwent
resting-state functional connectivity analysis. Preprocessing and
analyses of resting-state data were conducted using REST plus
software (REST plus v1.24_20200725, http://www.restfmri.net)
running under MATLAB (R2014b) (The Math-Works Inc.) (28).
The preprocessing steps were carried out using the standard
pipeline (see Supplementary Methods). Visual inspection was
carried out at each step. Seven subjects (three controls and four
patients) had excessive headmotion (>2mmand/or 2◦) andwere
thus excluded from further data analyses.

To compare the whole brain functional connectivity patterns
of the “motor” and “cognitive” cerebellum between the four
patient and control groups, seed-based FC analyses were
performed. Region of interest (ROI) masks were created based on
the SUIT probabilistic atlas (“motor” cerebellar, CBMm: bilateral
lobules V, VI, VIIb, VIIIa and VIIIb; “cognitive” cerebellum,
CBMc: bilateral Crus I and Crus II) and resampled, respectively
(27). The time series from each cerebellar seed ROI were
extracted by averaging signals of all included voxels, and the
latter were correlated with the other brain voxels. Pearson’s
correlation coefficients between seed region and the entire brain
were converted using the Fisher’s r-to-Z transformation and
then statistically compared among the four different participant
groups. Multiple comparisons were corrected using REST plus
AlphaSim program (REST plus v1.24, http://www.restfmri.net),
and Monte Carlo simulations were performed to control Type I
error (parameters: individual voxel p = 0.01, 10,000 simulations,
an estimate FWHM based on statistical map, with 61 × 73 × 61
brain mask, see Supplementary Table 1 for the adopted minimal
cluster sizes). We used a corrected significance cluster level of
p < 0.01. FC measures in significant clusters were extracted for
additional statistical analyses.

Statistical Analysis
To compare the demographic and clinical characteristics of the
study participants, we performed chi-square test for categorical
variables and two-sample Student t-test and/or analysis of
variance (ANOVA) for continuous variables. The threshold used
for statistical significance was set with Bonferroni corrected p-
value < 0.05 (SPSS for Windows, Version 21.0; SPSS, Chicago,
IL, USA).

Statistical analyses of the imaging data were carried out
using the SPM12 and REST Plus software. One-way ANOVA
was used to compare differences among the four study groups
(EC-NC, EC-CI, PD-NC, PD-CI). Furthermore, stratification
analyses were conducted using two-sample t-test based on
the cognitive (EC-CI vs. EC-NC), motor (PD-NC vs. EC-NC)
or combined status with both cognitive and motor functions
(PD-CI vs. PD-NC/EC-CI/EC-NC, respectively). To control for
the potentially confounding effect of disease severity between
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TABLE 1 | Demographics and clinical characteristics of elderly controls and Parkinson’s disease patients with and without cognitive impairment.

Measures EC-NC (n = 29) EC-CI (n = 29) PD-NC (n = 30) PD-CI (n = 34) P-value

Age (means ± SD) 60.59 ± 8.99 61.45 ± 8.91 57.10 ± 9.67 61.73 ± 8.71 0.172

Gender (M: F) 14:15 11:18 19:11 17:17 0.277

Education (years) 10.76 ± 2.13 9.72 ± 4.58 10.63 ± 3.76 9.62 ± 3.68 0.487

HAMD 2.72 ± 2.63 3.48 ± 2.79 4.80 ± 3.69 3.44 ± 3.69 0.067

MoCA (max, 30) 27.28 ± 1.51 21.83 ± 2.24 27.20 ± 1.77 21.56 ± 3.21 < 0.001

Duration of PD (years) 3.67 ± 2.94 4.26 ± 2.86 0.663

DDE (mg/day) 331.83 ± 332.68 376.76 ± 319.45 0.578

Hoehn and Yahr stage 1.41 ± 0.46 1.56 ± 0.49 0.236

UPDRS I 6.27 ± 3.96 7.35 ± 4.77 0.330

UPDSR II 6.67 ± 3.99 7.94 ± 4.04 0.210

UPDRS III 21.53 ± 9.89 25.03 ± 12.16 0.216

UPDRS IV 0.33 ± 1.02 0.08 ± 0.51 0.224

EC-NC, elderly controls with normal cognition; EC-CI, elderly controls with cognitive impairment; PD-NC, Parkinson disease with normal cognition; PD-CI, Parkinson disease with

cognitive impairment; SD, Standard Deviation; M:F, Male: Female; HAMD, Hamilton Depression scale; MoCA, Montreal Cognitive Assessment; MMSE, Min-Mental State Examination;

DDE, dopaminergic dose equivalence; UPDRS-I, Unified Parkinson’s Disease Rating Scale part I: non-motor experiences of daily living; UPDRS-II, Unified Parkinson’s Disease Rating

Scale part II: motor experiences of daily living; UPDRS-III, Unified Parkinson’s Disease Rating Scale part III: motor examination; UPDRS-IV, Unified Parkinson’s Disease Rating Scale part

IV: motor complications.

PD patients with different levels of cognitive functioning, the
disease duration and UPDRS motor scores were adjusted as
covariables while comparing the cerebellar FC between PD-NC
and PD-CI groups. Multiple comparisons were corrected for
volumetric analyses (FDR correction) and cerebellar FC analyses
(AlphaSim correction).

ROIs/clusters that were significantly different based upon
morphometric and FC analysis were extracted for correlation
analyses with clinical features. Pearson correlations were thus
used to explore the association between the cerebellar GM
volumes and FC with cognitive (MoCA scores) and motor
(UPDRS-III scores) functions. Correlation analyses were carried
out using SPSS version 21 and statistical thresholds were set at
p < 0.05 (two-tailed). The effect size estimate for two-group
comparisons and the correlation analyses were measured by
Cohen’s d, which was implemented in GPower 3.1 (https://www.
psychologie.hhu.de/).

RESULTS

Demographic and Clinical Characteristics
After quality control measurements, structural imaging from 122
participants (29 EC-NC, 29 EC-CI, 30 PD-NC, and 34 PD-CI)
and resting-state functional imaging from 86 participants (19 EC-
NC, 21 EC-CI, 20 PD-NC, and 26 PD-CI) were analyzed. See
Table 1 and Supplementary Table 2 for the demographic and
clinical characteristics of these participants. The groups were
matched in age, gender, educational level, and HAMD scores.
Both groups of PD patients (normal cognition vs. cognitive
impairment) had comparable disease duration, H&Y disease
stage, daily levodopa equivalent dosage, and UPDRS scores.
Finally, with regard to group stratification by cognitive status, the
group of PD patients with normal cognition and that of elderly
controls with normal cognition had similar MoCA scores, so did
the EC-CI and PD-CI groups.

Cerebellar Volumetric Analysis
There was no significant difference in overall cerebellar
lobular gray matter volume between the four different
participant groups after correcting for multiple comparisons
(Supplementary Figure 1). Both the CBMc and CBMm regions
also showed comparable gray matter volume among these
groups (Supplementary Figure 2). Lastly, the results of the
voxel-based morphometry analysis of the entire cerebellum did
not reveal any significant clusters between groups following
FDR corrections.

Cerebellar Resting-State FC Analysis
The results of the “motor” and “cognitive” cerebellum to whole-
brain functional connectivity in the group of elderly controls with
normal cognition are shown in Figure 1 (CBMm; Figures 1A,C;
CBMc; Figures 1B,D, respectively). Specifically, during resting
state, healthy elderly showed positive intracerebellar connectivity
and positive connectivity between CBMc and both superior
frontal gyri. Meanwhile, the pattern of cerebellar FC in healthy
elderly also included that the CBMm was negatively connected
with the middle temporal gyrus, angular gyrus, and precuneus
bilaterally, as well as the CBMc was negatively connected with the
right precentral and bilateral supplementary motor area (SMA)
(Supplementary Table 3). The group’s main effect maps for EC-
CI, PD-NC, and PD-CI as well as the specific information of the
significant clusters are shown in Supplementary Figures 3–5 and
Supplementary Tables 4–6, respectively.

ANOVA analyses on rs-fMRI data among the four groups
of participants showed significant group differences in both
“motor” and “cognitive” cerebellum to whole-brain functional
connectivity (two significant clusters for CBMc FC: 81 voxels,
F = 11.848, df = 3, p < 0.001; 59 voxels, F = 13.305, df =

3, p < 0.001; one significant cluster for CBMm FC: 101 voxels,
F = 11.869, df = 3, p < 0.001). Further stratification analyses
revealed that, compared to the healthy elderly control group, no
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FIGURE 1 | The cerebellar functional connectivity pattern in the elderly controls with normal cognition. (A) The group’s main effect map of the “motor” cerebellar

functional connectivity for elderly controls with normal cognition. (B) The group’s main effect map of the “cognitive” cerebellar functional connectivity for elderly

controls with normal cognition. (C) The mean fisher z(r) value within each significant cluster for the CBMm functional connectivity for individuals in elderly controls with

normal cognition. The minimal cluster size was set at 556 voxels, with cluster level of p < 0.01. (D) The mean fisher z(r) value within each significant cluster for the

CBMc functional connectivity for individuals in elderly controls with normal cognition. The minimal cluster size was set at 638 voxels, with cluster level of p < 0.01.

CBMm, “motor” cerebellum, including bilateral lobules V, VI, VIIb, VIIIa, and VIIIb of the cerebellum; CBMc, “cognitive” cerebellum, including bilateral Crus I and Crus II

of the cerebellum; EC-NC, elderly control with normal cognition.

significant difference in cerebellar FC was observed in groups
with motor deficits alone (PD-NC vs. EC-NC) or with cognitive
deficits alone (EC-CI vs. EC-NC). With combined motor and
cognitive status, the PD-CI group revealed significant cerebellar
functional connectivity compared to the EC-NC, EC-CI, and
PD-NC groups (Supplementary Table 7). Compared to EC-NC
group, patients with PD-CI had significantly greater CBMm
connectivity with bilateral SMA (Figures 2A,B, t = 4.033, df =
43, p < 0.001, d = 1.239) as well as with the right putamen
and right caudate (Figures 2C,D, t = 8.198, df = 43, p <

0.001, d = 2.558). In comparison to the EC-CI group, patients
with PD-CI showed significantly greater CBMm connectivity
with the right putamen and right caudate (Figures 2E,F, t =

6.694, df = 45, p < 0.001, d = 1.993). Finally, when compared
with the PD-NC, patients with PD-CI showed significantly
weaker connectivity between CBMc and left cerebellar VI and
VIIb regions (CBMc-LC) (Figures 2G,H, t = −6.437, df =

44, p < 0.001, d =1.910), and the pattern of the results
remained the same while adjusted by disease duration and the
motor scores.

Correlations Between MRI Metrics and
Clinical Features
The level of CBMm-SMA functional connectivity was positively
correlated with the UPDRS III scores in PD patients who showed
a cognitive impairment (r = 0.397, p = 0.044, d = 0.351,
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FIGURE 2 | The cerebellar functional connectivity of patients with PD-CI compared to EC-NC, EC-CI as well as PD-NC groups. (A,C) The contrast map of CBMm

functional connectivity of patients with PD-CI compared to the EC-NC group. The minimal cluster size was set at 175 voxels, with cluster level of p < 0.01. (B,D) The

mean fisher z(r) value with each significant cluster for the CBMm functional connectivity between PD-CI and EC-NC groups (p < 0.001, Cohen d = 1.239; p < 0.001,

Cohen d = 2.558, respectively). (E) The contrast map of CBMm functional connectivity of patients with PD-CI compared to the EC-CI group. The minimal cluster size

was set at 177 voxels, with cluster level of p < 0.01. (F) The mean fisher z(r) value with each significant cluster for the CBMm functional connectivity between PD-CI

and EC-CI groups (p < 0.001, Cohen d = 1.993). (G) The contrast map of CBMm functional connectivity of patients with PD-CI compared to the PD-NC group. The

minimal cluster size was set at 159 voxels, with cluster level of p < 0.01. (H) The mean fisher z(r) value with each significant cluster for the CBMm functional

connectivity between PD-CI and PD-NC groups (p < 0.001, Cohen d = 1.910). PD-CI, Parkinson disease with cognitive impairment; EC-NC, elderly controls with

normal cognition; EC-CI, elderly controls with cognitive impairment; PD-NC, Parkinson disease with normal cognition.

see Figure 3A). Moreover, the FC of CBMc-LC was positively
correlated with the MoCA scores in PD-CI patients (r = 0.412,
p = 0.036, d = 0.367, see Figure 3B). The cerebellar FC in EC-
CI did not correlate with the MoCA scores. No other significant
correlations between significant FC clusters and clinical features
were observed.

DISCUSSION

The present study investigated relations between both structural
and functional data from the cerebellum and the motor/cognitive
deficits observed in patients with early PD. To do so, we
stratified the group of participants into four subgroups based
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FIGURE 3 | The correlation between functional connectivity and clinical features. (A) “Motor” cerebellum and supplementary motor area connectivity was positively

correlated with the UPDRS motor scores in PD patients with cognitive impairment (effect size of Cohen d = 0.351); UPDRS, Unified Parkinson’s Disease Rating Scale.

(B) Negative intracerebellar connectivity was positively correlated with MoCA scores in PD patients with cognitive impairment (effect size of Cohen d = 0.367); MoCA,

Montreal Cognitive Assessment.

on their motor and cognitive status. Our results did not reveal
any volumetric differences in the cerebellum among groups.
Compared to the healthy elderly control subjects, however,
altered cerebellar FC were observed in patients who showed
both motor and cognitive deficits (i.e., early PD patients with
cognitive impairment), but not those in the groups of early
PD patients with normal cognition, nor elderly controls with
cognitive impairment. These findings indicate that as assessed
through activity at rest, the cerebellar FC may be involved in
coping with both motor and cognitive demands, hence shedding
additional light on our understanding of the pathophysiology of
cognitive deficits in early-stage PD patients.

No significant differences among groups were observed in
cerebellar lobular GM volume, nor in the results based upon
the voxel-based morphometry analysis. Previous studies between
patients with PD and healthy controls have shown inconsistent
results on GM volumes, partly due to factors like disease duration
and clinical stage (29). In line with our results, no cerebellar
atrophy has previously been reported in the early-stage of the
disease (30, 31). Yet, our own findings differ from those of a
study by Piccinin et al. (32) who showed evidence of cerebellar
atrophy in a random sample of PD patients who suffered from a
tremor-dominant form of the disease. Although conjectural, such
difference in pattern of results may be due to the fact, however,
that all patients in the present study were scanned during “OFF”
their medication phase, thus patients with prominent tremor
were excluded in the data analyses due to being unable to
accomplish the MRI scanning or poor data quality.

Compared to healthy controls, other researchers have
reported that PD patients do reveal differences with regard to
their level of cerebellar FC, ranging from no significant changes
(33, 34) to significant abnormalities (20, 35–39) in connectivity
during resting state. Yet such discrepancies can be attributed to
the heterogeneity of PD patients regarding the clinical features

or disease duration, as well as to methodological differences in
MRI data analysis. Altered neural activity in the cerebellum has
been previously found in PD patients with akinesia/rigidity or
with freezing of gait (FOG) (35–38). However, in this study, only
PD patients with H&Y ≤ 2 were included as we focused on the
early stage of the disease, thus patients with FOGor seriousmotor
deficits were not included in the current study. Moreover, recent
data-driven approach studies based on rs-fMRI data showed
that cerebellar FC could discriminate the patients with multiple
system atrophy (MSA), but not PD, from the healthy controls, or
the difference in FC between PD patients and healthy controls
was not located in the cerebellum (40–42). In this study, after
stratifying patients based on their cognitive status, we found that
the “motor” and “cognitive” cerebellar FC changed in PD patients
with cognitive impairment, but not in early PD patients with
normal cognition.

Two previous studies have assessed the “motor” and
“cognitive” cerebellar FC in patients with PD during resting state
(20, 43). One study revealed that the cerebellar FC level changed
in PD patients compared to normal control subjects, while the
other showed greater cerebellar FC alterations in patients with
MSA than in PD patients. However, it is worth noting that
both studies included healthy participants that had a significantly
better level of cognitive functioning than patients with PD.
Taking the cognitive status into consideration, the present study
provides novel information suggesting that the alterations in
cerebellar FC in PD patients do not seem to be solely driven by
motor deficits.

Additionally, a meta-analysis of task-related fMRI studies has
emphasized that the cerebellum plays a significant role in the
level of cognitive functioning in PD (16). Moreover, Gao et al.
(44) has shown that the performance of PD patients and healthy
control subjects do not differ significantly when required to
execute motor and cognitive dual-task paradigms. Yet, compared
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to a single motor task, performance of a motor and cognitive
dual task elicited enhanced cerebellar FC with motor and
cognitive associated networks in PD patients, hence suggesting
that the cerebellar FC resources may be engaged in integrating
motor and cognitive networks when necessary. Furthermore,
a correlation between the cerebellar vermal FC and cognitive
deficits in PD was recently reported (45). Consistent with results
from those previous studies, our group of PD patients with
cognitive impairment showed altered cerebellar FC compared to
PD patients with normal cognition, even when we controlled
for the potential confounding effect of the disease duration and
motor severity. Further correlation analysis showed that the
altered cerebellar FC correlated with the MoCA score in PD
patients with cognitive impairment, but not in elderly controls
with cognitive impairment, thus indicating that such correlation
is exclusive to PD patients with cognitive impairment. Taken
together, we thus propose that cerebellar FC changes may be
an underlying functional mechanism, not only for compensating
for motor deficits but also for cognitive deficits in patients with
early-stage of PD.

We found that the “motor” cerebellar-SMA connectivity
was positively correlated with motor scores, while the negative
intracerebellar connectivity (CBMc-LC) was positively correlated
with the cognitive scores in PD patients with cognitive
impairment. The latter findings suggest that the cerebellar FC
may be implicated in the integration of motor and cognitive
functions in the early-stage PD. However, the major pathological
hallmarks of PD, α-synuclein deposition with Lewy bodies,
are conspicuously absent in the cerebellum. Moreover, no
significant atrophy in the cerebellum was observed in this study.
Hence, we suggest that the altered cerebellar FC in PD-CI
could be secondary to pathophysiology such as neurotransmitter
dysfunction due to the dopaminergic depletion in early PD (46).

Despite the fact that we demonstrate that the cerebellar/brain
FC alterations observed in PD patients are not due to motor
deficits per se, but are also related to cognitive deficits in this
group of patients, our study contains some limitations that
should be considered. First, to focus on the early PD and
minimize the effect of medication, we restricted our patients with
H&Y ≤ 2 and scanned in the “OFF” medication phase. Thus, the
results cannot be generalized to all situations. Second, one may
concern about the sample size of the current study. The Cohen’s d
was provided to estimate the effect size. The results demonstrated
large effect size for the group comparisons and moderate effect
size for the correlation analyses. However, the weak diffuse effects
should also be considered and validation studies are needed in
the future (47, 48). Third, we emphasized the global cognitive
deficits and did not assess the association of the specific cognitive
domain with cerebellar FC in PD patients. Studies investigating
the relations between a specific cognitive domain and cerebellar
FC in early PD patients would help to clarify further the precise
effect of cognition on the role the cerebellum plays in this
disease. Finally, the current investigation is not longitudinal in
nature. Future studies with a large longitudinal early-stage PD
cohort would be needed to replicate the current findings and
further improve our understanding on the cognitive deficits and
cerebellar function in PD patients.

In conclusion, the present study demonstrates the existence of
cerebellar FC changes in the resting state in early PD patients with
cognitive impairment, and that these alterations in cerebellar
FC correlate with both the motor UPDRS and cognitive MoCA
scores. Our findings suggest that these changes in cerebellar
FC may constitute an underlying compensatory mechanism for
cognitive deficits in PD patients, hence indicating the interplay
between motor and cognitive functioning in the early stage of
PD. Yet future investigations focusing of longitudinal changes
in cerebellar functional connectivity during the deterioration
in cognitive functioning in PD patients are needed to provide
additional insights into the interplay of motor and cognitive
deficits in this neurological disorder.
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