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Early life stress affects limited 
regional brain activity in depression
Lian Du1,*, Jingjie Wang2,*, Ben Meng3, Na Yong4, Xiangying Yang1,5, Qingling Huang6, 
Yan Zhang7, Lingling Yang1, Yuan Qu1, Zhu Chen1, Yongmei Li2, Fajin Lv2 & Hua Hu1

Early life stress (ELS) can alter brain function and increases the risk of major depressive disorder 
(MDD) in later life. This study investigated whether ELS contributes to differences in regional brain 
activity between MDD patients and healthy controls (HC), as measured by amplitude of low-frequency 
fluctuation (ALFF)/fractional (f)ALFF. Eighteen first-episode, treatment-naïve MDD patients and 
HC were assessed with the Childhood Trauma Questionnaire and resting-state functional magnetic 
resonance imaging. We compared ALFF/fALFF between MDD patients and HC, with or without 
controlling for ELS, and determined whether ELS level was correlated with regional brain activity in 
each group. After regressing out ELS, we found that ALFF increased in bilateral amygdala and left 
orbital/cerebellum, while fALFF decreased in left inferior temporal and right middle frontal gyri in MDD 
patients relative to controls. ELS positively correlated with regional activity in the left cerebellum in 
MDD and in the right post-central/inferior temporal/superior frontal cingulate, inferior frontal gyrus 
and bilateral cerebellum in HC. Our findings indicate that there is only very limited region showing 
correlation between ELS and brain activity in MDD, while diverse areas in HC, suggesting ELS has few 
impacts on MDD patients.

Early life stress (ELS) refers to an array of adversities occurring before sexual maturation, including physical, 
sexual, and emotional abuse, physical and emotional neglect, malnourishment, and loss of a parent1,2. ELS is 
highly prevalent and its incidence is higher in psychiatric populations3. It is also a risk factor for the development 
of various disorders such as major depressive disorder (MDD)4,5.

ELS has been suggested to alter brain structure, including the prefrontal cortex, anterior cingulate cortex 
(ACC), hippocampus, amygdala, corpus callosum, and cerebellum6, as well as ACC-amygdala resting-state func-
tional connectivity7 and default mode network (DMN) connectivity8. Previous task-based functional magnetic 
resonance imaging (fMRI) and resting-state blood flow studies have detected abnormal activation of the right 
hemisphere, cerebellum, basal ganglia, and medial temporal lobe in abused subjects9–12. Some studies focused on 
effects of life stress on brain in MDD, found early or recent stress may contribute to differences in fronto-limbic 
structures13, as well as prefrontal response to stimuli in MDD14,15. One fMRI study used a method based on whole 
brain and found that regional homogeneity decreased in the inferior parietal lobule and superior temporal gyrus 
in ELS subjects16, suggesting that ELS not only affects brain connectivity but also regional activity. The ampli-
tude of low-frequency fluctuation (ALFF) is another parameter for analyzing resting-state fMRI data at the voxel 
level17. ALFF encodes physiologically meaningful indicators of blood oxygen level-dependent (BOLD) variation 
over time or dynamic fluctuations in intrinsic brain activity in the absence of explicit input, based on the fact that 
there are coherent low-frequency fluctuating BOLD signals in functionally related brain regions18,19. Fractional (f)
ALFF is defined as the ratio of the power spectrum in the low frequency (0.01–0.08 Hz) range to that of the entire 
frequency range20, and may be regarded as a normalized version of ALFF. The ratio of ALFF/fALFF is a reliable 
and sensitive measure in the study of healthy21, epilepsy22, post-traumatic stress disorder (PTSD), and MDD23.
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Previous ELS-related neuroimaging studies have had various limitations. Firstly, most studies divided par-
ticipants into those with or without ELS, which was determined based on the Childhood Trauma Questionnaire 
(CTQ); however, this excluded subjects that had experienced mild ELS8,16. Other studies did not provide a pre-
cise definition for ELS or used other questionnaires to establish ELS24. Secondly, many studies focused solely on 
healthy subjects, which did not enable an examination of the relationship between ELS and MDD12,25. In addi-
tion, most of the earlier studies investigating the effects of abuse used ROI approaches, which are biased towards 
fronto-limbic systems7 rather than taking into consideration the whole brain. Lastly, studies comparing ALFF/
fALFF in MDD and healthy controls (HC) disregarded the fact that MDD patients typically score higher for ELS, 
which may contribute to the observed alterations.

ELS can lead to aberrations in regional brain function that can heighten the risk of MDD in later life. However, 
not all MDD patients have a history of ELS, and some individuals exposed to ELS are resilient and healthy. It is 
therefore possible that ELS differentially affects MDD and healthy individuals. The present study investigated 
regional differences in brain function between MDD and HC as measured by ALFF/fALFF after regression of 
ELS, and examined the association of ELS with regional cerebral function in MDD and HC to determine differ-
ences in patterns of ELS-induced activity.

Results
Demographic and clinical information.  First-episode, treatment-naïve MDD patients (n =  18, mean 
age ±  SD: 39.28 ±  12.89 years, 13 females, all right-handed), and age-matched HC (n =  18, mean age ±  SD: 
35.33 ±  10.01 years, 8 females, all right-handed) were included in the study. None of the subjects fell asleep during 
the scan or had head motion >2 mm or rotation >1° during scanning. Two patients did not complete the CTQ 
survey; therefore, 16 patients were included in the CTQ correlation analysis. There were no differences between 
MDD and HC groups in terms of age or years of education. MDD patients had higher CTQ scores (including 
emotional abuse (EA), physical abuse (PA), sexual abuse, emotional neglect (EN), physical neglect (PN) subscales 
and total scores; P <  0.05) than HC (Table 1).

Group differences in spontaneous brain activity.  Compared to the HC group, MDD patients showed 
higher ALFF in the right and left amygdalae, left orbital gyrus, and left hypothalamus (Fig. 1A and Table 2). After 
regression of CTQ, MDD patients showed increased ALFF in the right and left amygdalae, left orbital gyrus, and 
left cerebellum anterior lobe (Fig. 1B and Table 2).

Compared to the HC group, MDD patients showed increased fALFF in bilateral post cingulum/thalamus, 
right orbital gyrus, and right inferior frontal gyrus, and decreased fALFF in the left fusiform gyrus and right mid-
dle frontal gyrus (Fig. 1C and Table 2). After controlling for CTQ as a covariate, MDD patients had lower fALFF 
in the left fusiform gyrus and right middle frontal gyrus (Fig. 1D and Table 2).

Correlation analysis.  In the MDD group, a positive correlation was found between EA scores and brain 
activity in the posterior lobe of the left cerebellum (r =  0.86). There was no correlation between the other CTQ 
subscales or total scores and local brain activity. In the HC group, positive correlations were found between EA 
scores and brain activity in the right postcentral gyrus (r =  0.90); between EN scores and brain activity in the 
right inferior temporal gyrus (r =  0.84); between PN scores and brain activity in the right superior frontal gyrus 
(r =  0.79), right cingulate gyrus (r =  0.82), posterior lobe of the left cerebellum (r =  0.78), and right cerebellar 
tonsil (r =  0.79); and between total score and brain activity in the right inferior frontal gyrus (r =  0.86) (Table 3 
and Fig. 2).

Discussion
The results of this study demonstrate that MDD patients had higher CTQ scores (including EA, PA, EN, and PN 
subscales and total scores) and ALFF/fALFF in the frontal-limbic system and lower fALFF in the left fusiform 
gyrus and right middle frontal gyrus relative to HC. However, when CTQ scores were controlled as covariate, 
the bilateral amygdala, and left orbital, left fusiform, and right middle frontal gyri showed the same alterations, 
while other regions—including left hypothalamus, right inferior frontal gyrus, and bilateral post cingulum—did 
not show any more differences. In addition, the left cerebellum showed significant differences between the two 

MDD (n = 16) HC (n = 18) T
P 

value

Age (years) 38.13 ±  13.19 35.33 ±  10.01 0.70 0.49

Education (years) 11.63 ±  3.612 12.83 ±  2.99 1.07 0.29

EA 10.13 ±  3.70 6.44 ±  1.75 3.63 0.002#

PA 7.81 ±  3.12 5.50 ±  0.71 2.90 0.010*

SA 6.44 ±  3.33 5.28 ±  0.70 1.37 0.19

EN 13.13 ±  4.60 9.61 ±  3.36 2.56 0.015*

PN 11.25 ±  4.04 7.89 ±  2.14 3.08 0.004#

Total Scores 48.75 ±  13.14 34.72 ±  5.05 4.02 0.001#

Table 1.   Demographic and Clinical Comparisons. Values are mean ±  s.d. Abbreviations: MDD: Major 
depressive disorder, HC: Healthy control. EA: Emotional Abuse, PA: Physical Abuse, SA: Sexual Abuse, EN: 
Emotional Neglect, PN: Physical Neglect. *P＜ 0.05., #P＜ 0.01.
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groups only after controlling ELS, which also correlated with ELS in both MDD and HC. However, regions that 
were significantly correlated with ELS level in HC were more widely distributed than in MDD.

ELS is a significant risk factor for the development of MDD in later life26,27. Our findings indicate that MDD 
patients scored higher than HC on four of the five ELS subscales; scores for the sexual abuse subscale were also 
higher in MDD, but did not attain statistical significance. Hence, ELS is a confound in imaging data comparing 
differences between MDD and HC.

Figure 1.  The comparison of regional brain activity t-map between MDD and HC. Figure 1A indicates 
ALFF differences before CTQ regression. Figure 1B indicates ALFF differences after CTQ regression. Figure 
1C indicates fALFF differences before CTQ regression. Figure 1D indicates fALFF differences after CTQ 
regression. The color coded t-score bars indicate the regional brain activities in these areas of MDD were higher 
(warm color) and lower (cold color) relative to HC. Left in the figure corresponds to the right side of the brain 
(P <  0.05, AlphaSim corrected).
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A meta-analysis comparing emotional or cognitive task-related and resting-state fMRI data between MDD 
and HC found both overlap and divergence in regions with altered brain activity associated with depression28. 
Those findings consistent with our observations were that there was greater activation in the left medial fron-
tal lobe during the cognitive task; in the left amygdala and left parahippocampus during the emotional task; 
and in the left amygdala during resting state. However, alterations in trends of activation in some other regions 
reported by those authors did not accord with our data, such as increased and decreased activation in the right 
middle frontal and right inferior frontal gyrus, respectively, during the cognitive task and decreased activation 
in the right amygdala during the emotional task. Some of the regions identified in our study were close to those 
reported by others, including bilateral cingulate gyri and anterior lobe of the left cerebellum. A multivariate 

Brian region BA
MNI coordinates  

(x y z) (mm) Voxels T value

ALFF

Before regression

  right amygdale 34 (24, 0, −15) 148 6.20

  left amygdale 28 (−21, 0, −24) 122 5.70

  left orbital gyrus 11 (6, 42, −33) 147 5.94

  left hypothalamus NA (3, −3, −12) 50 4.45

After regression

  Left Orbital Gyrus 11 (6, 39, −33) 38 6.35

  left cerebellum anterior lobe NA (−12, −39, −21) 21 5.60

  right amygdale 34 (24, 0, −15) 37 5.49

  left amygdale 28 (−21, 0, −24) 20 4.82

fALFF

Before regression

  right inferior frontal gyrus 38 (42, 24, −21) 20 5.53

  right orbital gyrus 11 (3, 36, −33) 28 4.41

  right post cingulum/thalamus 26/27 (12, −36, 9) 26 4.67

  left post cingulum/thalamus 26/27 (−18, −33, 12) 21 4.99

  left fusiform gyrus 37 (−42, −42, −24) 99 −6.72

  right middle frontal gyrus/precentral 6 (30, −9, 51) 33 −4.89

After regression

  left inferior temporal/fusiform gyrus 37 (−42, −42, −21) 18 −4.75

  right middle frontal gyrus/precentral 6 (33, −9, 45) 27 −4.74

Table 2.   ALFF/fALFF differences between the MDD and HC group before and after CTQ regression 
(AlphaSim corrected P < 0.05). Abbreviations: MDD: Major depressive disorder, HC: Healthy control. x, y, z: 
coordinates of primary peak locations in the MNI space. MNI: Montreal Neurological Institute. BA: Brodmann 
area. ALFF: amplitude of low-frequency fluctuation. fALFF: fractional amplitude of low-frequency fluctuation.

Brian region BA
MNI coordinates  

(x y z) (mm) Voxels r value Alphasim P
Direction of 
correlation

MDD 

fALFF

  EA left cerebellum posterior Lobe N/A (−27, − 81, −30) 20 0.86 4.47e-005 + 

HC

ALFF

EA right postcentral gyrus 5 (15, −51, 72) 51 0.90 3.13e-007 + 

EN right inferior temporal gyrus 20 (60, −27, −24) 18 0.84 1.62e-005 + 

PN
right superior frontal gyrus 9 (27, 51, 36) 17 0.79 9.60e-005 + 

right cingulate gyrus 31 (12, −27, 42) 17 0.82 3.10e-005 + 

Total scores right inferior frontal gyrus 48 (48, 18, 21) 22 0.86 4.49e-006 + 

fALFF

PN
Left cerebellum posterior 
Lobe NA (−27, −51, −54) 22 0.78 0.0001 + 

right cerebellar tonsil NA (30, −51, −48) 20 0.79 8.35e-005 + 

Table 3.   Association of ALFF/fALFF with CTQ scores in MDD and HC groups. MDD: Major depressive 
disorder, HC: Healthy control. EA: Emotional Abuse, EN: Emotional Neglect, PN: Physical Neglect. x, y, z: 
coordinates of primary peak locations in the MNI space. MNI: Montreal Neurological Institute. BA: Brodmann 
area. ALFF: amplitude of low-frequency fluctuation. fALFF: fractional amplitude of low-frequency fluctuation.
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pattern analysis of spatial information about alterations in spontaneous brain activity in MDD reported hyperac-
tivity/hyperconnectivity that presumably reflected the interaction of cortical midline structures with lateral pre-
frontal areas29. Indeed, we observed increased activity in the orbital and cingulate gyri, which are located exactly 
at the cortical midline. In addition, there have been studies comparing spontaneous neural activity measured 
with ALFF or fALFF between first-episode, unmedicated MDD patients and HC23,30; the variable findings from 
these investigations may reflect the fact that they did not take ELS into consideration, which is usually higher in 
MDD and may affect brain activity. Most of the regions identified in our study have been previously reported, 
such as the fusiform gyrus, medial frontal lobe, and cerebellum. Nonetheless, data based on larger sample sizes 
are needed to confirm the reliability of changes in ALFF/fALFF in MDD.

When ELS was considered as a covariate, between-groups comparisons of ALFF/fALFF changed slightly. 
There were fewer regions that differed between MDD and HC, suggesting that ELS is a confounding factor affect-
ing neuroimaging findings in MDD. Regional brain activity in the right orbital and bilateral cingulate gyri may 
have been affected more by ELS than by MDD, as differences in these regions disappeared after regressing out 
ELS. Another interesting finding is that ALFF in the left cerebellum was significant only when ELS was excluded. 
Previous studies have indicated that even if the effects of ELS are not excluded, ALFF in cerebellum could be 
increased in MDD patients relative to HC31 and differs between treatment-resistant and -responsive depression32. 
Our data suggest that alterations in the cerebellum in MDD are neither stable nor sensitive, and may be masked 
by ELS. Irrespective of the impact of ELS, activity in the left orbital gyrus and bilateral amygdalae were increased 
and that in left fusiform and right middle frontal gyri were decreased in MDD patients, indicating that these 
regions are the core areas affected in this disorder.

We found that ELS levels were correlated with regional brain activity in MDD and HC, albeit in different 
ways. Although there are few studies that have directly measured ALFF/fALFF to assess the effects of ELS in 
MDD, some have reported that ALFF is altered in various emotion-related brain regions in PTSD7,33,34; a stronger 
connectivity was observed between two core DMN brain regions (posterior cingulate cortex and anterior medial 
prefrontal cortex) in these patients33. However, how different levels of ELS affect the brain remains unclear. Our 
data showed that the more severe the ELS, the higher the activity in the left cerebellum in MDD and in the right 
postcentral, inferior temporal, superior frontal, cingulate, and inferior frontal gyri and cerebellum in HC. Most of 
these regions are components of the prefrontal-limbic-thalamic-cerebellar circuitry, which was linked to ELS35.

Figure 2.  The correlation analysis of regional brain activity with CTQ in MDD and HC respectively. Figure 
2A indicates correlation results of ALFF with CTQ in MDD. Figure 2B indicates correlation results of fALFF 
with CTQ in MDD. Figure 2C indicates correlation results of ALFF with CTQ in HC. Figure 2D indicates 
correlation results of fALFF with CTQ in HC (P <  0.05, AlphaSim corrected).
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The cerebellum may be a key region that is associated with ELS in MDD as well as HC. Indeed, differences in cer-
ebellar activity between MDD and HC appeared only after excluding ELS. One thing needs to pay attention that 
ELS was correlated with fALFF only in the cerebellum in MDD patients, in contrast to ALFF/fALFF correlations 
across many regions in HC. It is possible that ELS affects the brain in different ways in a normal or a depressed 
state. Early life stress could have few impact on those later develop MDD, but more impact on those develop rel-
atively healthy in later life. In addition, although ELS is a high risk factor for later MDD, many other factors con-
tribute to the etiology of depression, such as genetics; the heterogeneity of MDD patients may diminish the effect 
size of ELS. One study found no correlations between ELS and MDD in patients that had not experienced child 
neglect33, support that those MDD patients without ELS might decrease the statistic power of correlation analysis. 
Interestingly, we found that even within the HC group, various types of ELS differentially affected spontaneous 
regional brain activity. Notably, emotional stress had more obvious effects on this activity than physical stress in 
both MDD and HC, as measured by ALFF or fALFF. However, further study is required to determine whether the 
emotional component is the main factor accounting for regional alterations in brain function caused by stress. 
Converging evidence from animal and human studies indicated that ELS could cause persisting changes to hypo-
thalamic–pituitary–adrenal axis (HPA) reactivity with altered cortisol responses to psychosocial stress26,36. One 
study pointed towards a view that the existence of reciprocal monosynaptic cerebello-hypothalamic connections 
and the presence of dense glucocorticoid binding sites the cerebellum plays a functional role in the regulation of 
HPA-axis37. Hence, we can speculate the physiological and pathological meaning of correlation between func-
tional activity and ELS is that, ELS affects brain through HPA reactivity, and cerebellum plays an important role 
in this process. Furthermore, our data indicated most those regions correlated with ELS were contained by those 
with different activity between MDD and HC, which are considered important regions implicated in depressive 
disorder26, supporting a possibility that ELS heightens risk for later MDD through affecting spontaneous cerebral 
activity.

There were some limitations to this study. Although we tried to exclude the effects of ELS, it was only possi-
ble to do so from a methodological standpoint. Secondly, we determined the ELS level of subjects by means of 
a cross-sectional review in adults, and we could not exclude the possibility that known or unknown confounds 
had affected the brain. In addition, MDD patients may tend to recall more negative childhood experiences than 
HC, which would increase their ELS scores and result in a retrospective bias. More accurate information could be 
obtained by administering the CTQ and fMRI at different time points during an individual’s life from childhood 
to adulthood, in both depressed and normal states. Thirdly, the sample size was small, and therefore our conclu-
sions require validation by additional studies with larger sample sizes.

In sum, our findings provide a neurobiological basis for how different levels of ELS correlates with brain 
activity in MDD and HC. There is only cerebellum showing correlation between ELS and brain activity in MDD, 
suggesting ELS has few impacts on MDD patients. However, when used ELS as an covariate in the group compar-
ison, differences between MDD and HC changed partly, which might be caused by relatively diverse effects of ELS 
on brain in HC group. In addition, we propose that alterations in regional brain activity might be more likely to 
be affected by emotional than by physical ELS.

Methods
Subjects.  First-episode, treatment-naïve MDD patients were recruited at the First Affiliated Hospital of 
Chongqing Medical University. HC were recruited via advertisement. A diagnosis of MDD according to DSM-IV 
criteria38 was confirmed by a structured interview conducted by two certified psychiatrists. The manual was 
also used to exclude other Axis I or II psychiatric disorders. Subjects were excluded from the study if they had 
a history of alcohol or drug abuse, neurological or serious physical diseases (e.g., gastrointestinal, neurological, 
endocrine, or cardiovascular disorders), morphological brain anomalies, or had any electronic or metal implants 
that could interfere with fMRI scanning. Written, informed consent was obtained from all subjects according to 
the principles of the Declaration of Helsinki (1989) and the study protocol was reviewed and approved by the 
Medical Ethics Committee of Chongqing Medical University. The methods were carried out in accordance with 
the approved guidelines.

Assessment of ELS.  ELS was quantified with the 28-item CTQ questionnaire39, which assesses five types 
of adverse childhood experience: emotional abuse (EA), physical abuse (PA), sexual abuse, emotional neglect 
(EN), and physical neglect (PN). Scores ranged from 5 to 25 for each subscale, with high scores indicating strong 
exposure to the stressor.

fMRI data acquisition.  Scans were carried out using a Signa 3.0 Tesla MRI system (GE Medical Systems, 
Waukesha, WI, USA) at the First Affiliated Hospital of Chongqing Medical University. Subjects were instructed 
to relax with their eyes closed and keep their heads still during scanning without falling asleep. At the end of the 
experiment, they were asked if they had fallen asleep inside the scanner during the MRI; if the answer was yes, 
the data were excluded. Resting-state fMRI images were collected using an EPI sequence (TR/TE =  2000/30 ms; 
flip angle =  90°; matrix =  64 ×  64; FOV =  240 ×  240 mm2; slice thickness/gap =  5/0 mm; and 33 axial slices to 
cover the whole brain), which yielded 240 brain volumes and lasted for 480 s. Three-dimensional T1-weighted 
anatomical images were then acquired (TR/TE =  8.35/3.27 ms; flip angle =  12°; FOV =  240 ×  240 mm2; 
matrix =  256 ×  256; slice thickness =  1 mm; and 156 sagittal slices).

Image preprocessing.  Data preprocessing was carried out using Data Processing Assistant for Resting-State 
FMRI40 (http://www.restfmri.net) based on Statistical Parametric Mapping (http://www.fil.ion.ucl.ac.uk/spm) 
and Resting-State fMRI Data Analysis Toolkit (REST)41 (http://www.restfmri.net). After excluding the first 10, 
images were corrected for slice-timing and were realigned. Data from subjects whose head motion exceeded 

http://www.restfmri.net
http://www.fil.ion.ucl.ac.uk/spm
http://www.restfmri.net


www.nature.com/scientificreports/

7Scientific Reports | 6:25338 | DOI: 10.1038/srep25338

2 mm or for whom rotation exceeded 1° during scanning were excluded. Individual 3D T1-weighted anatomical 
images were co-registered to functional images. Normalized data were re-sliced at a resolution of 3 ×  3 ×  3 mm3 
and spatially smoothed with a 6-mm full width at half-maximum Gaussian kernel. Functional images with linear 
trends were removed. Several sources of spurious variance (24 head motion parameters, averaged signals from 
white matter, cerebrospinal fluid, and global signals) were regressed out by multiple linear regression.

ALFF and fALFF analysis.  We computed the ALFF value of each voxel17 as the average square root of a 
given frequency (0.01–0.08 Hz) in the power spectrum. This was normalized by dividing by the global mean 
ALFF value. We also calculated fALFF of each voxel, defined as the ratio of the power spectrum in the low fre-
quency (0.01–0.08 Hz) range to that of the entire frequency range20. The value was normalized by dividing by the 
global mean fALFF value.

Statistics analysis.  To evaluate ELS, a two-sample t test was used to assess differences in CTQ scores 
between MDD and HC. In addition, a two-sample t test (within the gray matter mask) of individual normalized 
ALFF/fALFF maps was used to evaluate differences in regional brain activity between MDD and HC groups, with 
age and sex regressed out to eliminate their respective contributions. REST software was used for the analysis. 
The significance threshold was set at P <  0.05 (AlphaSim corrected; combined height threshold P <  0.001 and a 
minimum cluster size of 17 voxels).

To control for ELS effects, a two-sample t test (within the gray matter mask) was carried out on individual 
normalized ALFF/fALFF maps using REST software, with age and sex regressed out to control their respective 
contributions. In this analysis, total CTQ scores of each subject were used as covariates. The significance threshold 
was set at P <  0.05 (AlphaSim corrected; combined height threshold P <  0.001 and a minimum cluster size of 17 
voxels).

Correlation analysis of regional brain activity and CTQ.  To determine the relationship between 
regional brain activity and CTQ, we calculated Pearson’s correlation coefficients between ALFF/fALFF and CTQ 
scores (including total scores and five subscale scores) in a voxel-wise manner (within the gray matter mask) 
separately in MDD and HC groups using REST software. The statistical threshold was set at P <  0.05 (AlphaSim 
corrected; combined height threshold P <  0.001 and a minimum cluster size of 17 voxels).
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