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The Moon likely formed in a giant impact that left behind a fast-
rotating Earth, but the details are still uncertain. Here, we exam-
ine the implications of a constraint that has not been fully
exploited: The component of the Earth–Moon system’s angu-
lar momentum that is perpendicular to the Earth’s orbital plane
is nearly conserved in Earth–Moon history, except for possible
intervals when the lunar orbit is in resonance with the Earth’s
motion about the Sun. This condition sharply constrains the
postimpact Earth orientation and the subsequent lunar orbital
history. In particular, the scenario involving an initial high-
obliquity Earth cannot produce the present Earth–Moon sys-
tem. A low-obliquity postimpact Earth followed by the evection
limit cycle in orbital evolution remains a possible pathway for
producing the present angular momentum and observed lunar
composition.
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Recent giant-impact simulations (1–3) aimed at producing a
Moon with an Earth-like isotopic composition (4–8) would

leave the postimpact Earth rotating too fast. Some subsequent
process must be responsible for draining the excess angular
momentum (AM).

Ćuk and Stewart (1) proposed that the excess AM could be
drained by the lunar orbit’s temporary capture into the evection
resonance (9). Wisdom and Tian (10) found that the evection
limit cycle can also do the job. While ref. 10 used the Darwin–
Kaula constant Q tidal model (SI Appendix, Model Comparison),
Rufu and Canup (11) found similar phenomena using the con-
stant ∆t tidal model. Tian et al. (12) studied the consequences of
tidal heating in these resonance and near-resonance mechanisms
and found that the evection resonance is unstable and therefore
unable to drain enough AM, whereas the evection limit cycle is
stable and continues to drain AM.

Instead of starting the postimpact fast-spinning Earth with
a small obliquity (Ie), C̀uk et al. (13) proposed that the giant
impact left the Earth in a high-obliquity (Ie = 65 to 80◦), fast-
spinning state. They suggested that the subsequent evolution
could not only drain the excess AM through an instability associ-
ated with the Laplace plane transition (LPT), but also solve the
long-standing puzzle of the present-day lunar inclination (ip =
5◦, where i is the lunar inclination, and the p superscript denotes
the present-day value) (9, 14, 15). When the Moon is close to
the Earth, the lunar precessional motion is strongly affected by
the oblateness of the Earth, but when the Moon is far from the
Earth, the precessional motion is more strongly affected by solar
perturbations. The LPT occurs when these two effects are com-
parable. The LPT instability occurs only when Ie reaches large
values during the LPT (16, 17). The high Ie leads to nonzero
orbital eccentricities via Lidov–Kozai-like oscillations and tem-
porary contraction of the lunar orbit, during which substantial
AM is removed from the Earth–Moon.

However, there exists a nearly conserved quantity, which has
so far not been taken into account, that significantly constrains
the possible evolutionary histories of the Earth–Moon system.

A New Constraint: Vertical AM
For a test particle around a central mass with large eccentricity
(e) and inclination (i), nonresonant perturbation from a mas-
sive exterior body moving in a circular orbit induces oscillations
in e and i , the Lidov–Kozai oscillations (18, 19). In the nonti-
dal Lidov–Kozai problem, the Hamiltonian governing the system
evolution is averaged over the orbital periods of both the test
particle and the perturber. This leads to a conservation of the
semimajor axis (a) of the test particle, and the component of the
orbital AM of the test particle that is perpendicular to the orbital
plane of the massive perturber, which we refer to as Lorb

z . Tak-
ing the orbital plane of the massive perturber as the reference
plane for inclination, then Lorb

z ∝
√

a(1− e2) cos i . The conser-
vation of a and Lorb

z implies that as e and i oscillate, the quantity√
1− e2 cos i is conserved (the Lidov–Kozai constant).
The motion of the Earth–Moon system has much richer

dynamics than the three-body problem. Perturbations to the sys-
tem come from not only the Moon–Sun interaction, but also
the Earth’s oblateness, which leads to precession of the Earth’s
spin axis and contributes to lunar-orbit precession; the Moon’s
permanent triaxial figure, which allows the Moon to maintain
synchronous rotation; and the Moon’s oblateness and triaxiality,
which dictates the equilibrium obliquity of the Moon (the Cassini
states)—not to mention the tides on the Earth and Moon. These
processes modify the orbital AM of the Moon and the rotational
AM of the Earth. Nevertheless, there is a quantity analogous
to the Lidov–Kozai constant, the vertical component of the AM
of the Earth–Moon system (Lz ), that is conserved if resonances
between the Sun and the Earth or Moon are not encountered.
For instance, the evection resonance and the evection limit cycle
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(1, 10–12) can modify Lz . Such resonances or near-resonances
are absent in scenarios like the LPT instability, which we term as
nonresonant scenarios. The demonstration of the conservation
of Lz for nonresonant scenarios exactly follows the derivation
for the Lidov–Kozai problem (SI Appendix, SI Text). The Hamil-
tonian is averaged over the orbital period of the Moon and the
orbital period of the motion of the Earth about the Sun. The
average over the lunar period leads to the conservation of the
semimajor axis of the Moon. The average over the motion of
the Earth about the Sun leads to the conservation of Lz . Tides
between the Earth and Moon conserve Lz , but induce long-term
changes in a and the other system parameters.

The AM of the Earth–Moon system ~L is approximately ~L⊕+
~L$, where ~L⊕ is the rotational AM of the Earth and ~L$is the
orbital AM of the Moon. Here, we are neglecting the small rota-
tional AM of the Moon. Taking the ecliptic as the reference
plane, the component of AM perpendicular to this plane is

Lz =L⊕ cos Ie +L$ cos i , [1]

where L⊕ is the magnitude of ~L⊕, and L$is the magnitude of
~L$. We denote the scalar sum L⊕+L$ by Ls .

In our model, which includes the full rotational and orbital
dynamics of the Moon, interacting with an oblate, precessing
Earth on a near circular orbit about the Sun, with tidal interac-
tions between the Moon and Earth, we find that Lz is conserved
to a part in a thousand, as the Moon evolves from 5Re to 50Re

(where we terminate the integrations; Re = 6,371 km). This is
the case, even though the system passes through the instability
associated with the LPT and the Cassini state (lunar spin) tran-
sitions. Touma and Wisdom (20) investigated the evolution in a
model that was, in a number of ways, more complete than that
used here. That model included a fully evolving eccentric and
inclined Earth orbit, perturbed by all of the chaotically evolv-
ing planets, with not only tidal interactions between the Earth
and Moon, but also direct tides from the Sun on the Earth, and
cross-tidal interactions from tides raised on the Earth by the
Sun that affect the Moon. (But it did not include tides raised
on the Moon and the rotational dynamics of the Moon, which
are included here.) A reexamination of those results shows that,
even with all these additional effects, Lz was still conserved to
about 3.5% (Fig. 1). (Note that refs. 16, 20, and 21 already rec-
ognized that Lz is conserved in the averaged e = 0 nontidal case,
and refs. 16 and 20, in addition, stated that Lz is conserved if only
tides between the Earth and Moon are considered. Our deriva-
tion is more general.) We show in SI Appendix, SI Text that even
without averaging, when solar tides are ignored, the amplitude of
oscillation of Lz is at most of order 10−3Lr in Earth–Moon his-
tory (SI Appendix, Eq. S11 and Fig. S2) (Lr =C p

e

√
GMeR

−3
e is

the reference AM, where Ce is Earth’s largest principal moment,
C p

e = 0.3308MeR
2
e is the present-day value, Me is Earth’s mass;

Lp
s = 0.345Lr and Lp

z = 0.339Lr ).
Apart from the dynamical evolution, Lz is also susceptible

to small changes due to collisional processes after the Moon-
forming giant impact, e.g., the stochastic late-accretional impacts
on Earth that are proposed to explain the presence of highly
siderophile elements in the terrestrial mantle (22–26). These
impacts can change the Earth’s rotational AM by up to 4%, with
the Earth rotating with a period between 6 and 8 h (22). Taking
Ce ≈C p

e , the change in L⊕ is ∆L⊕≈C p
e · 2π/(7hr) · 4% = 8×

10−3Lr , i.e., 2.3% of Lp
s . The late impacts on the Moon are much

smaller in volume, and their effects on the system AM can be
ignored. Even if the change in ~L⊕ is perfectly aligned to the verti-
cal direction, this will only cause changes to Lz by up to 2.4% ·Lp

z

(either increase or decrease). So we ignore these possible late
stochastic variations in Lz .

Fig. 1. Lz versus a for a simulation in ref. 20, which evolves the Earth–Moon
system with solar tides, Earth–Moon mutual tides, and Sun–Earth–Moon
cross tides, in the full chaotically evolving planetary system, using the
constant ∆t tidal model. The system begins with a conventional initial
state, instead of a high-AM state. Lz declines by only 3.5% throughout the
evolution.

Therefore, we can take Lz conservation as a strong constraint
on the evolution of the Earth–Moon system. For nonresonant
scenarios of Earth–Moon formation and evolution (e.g., ref. 13),
the postimpact Lz value should be near Lp

z (at most a few per-
cent different). For models of Earth–Moon history that involve
resonances related to Earth’s motion about the Sun (e.g., refs.
1 and 10–12), the postresonance Lz should be near Lp

z in the
same way.

Lz Constraint on the High-Obliquity Scenario

C̀uk et al. (13) argued that following a high-AM, high-obliquity
postimpact Earth, the present-day AM, Ie and i can be pro-
duced through nonresonant orbital evolution. However, the
values of Lz for their initial conditions were much lower than
Lp
z (SI Appendix, Table S1 and Figs. S1 and S4) and therefore

inconsistent with the present Earth–Moon system.∗ We inves-
tigate the high-obliquity Moon-forming scenario with the Lz

constraint taken into account. Our numerical model is exactly
the same as used in ref. 10. It is based on the N-body symplec-
tic mapping algorithm (27) and the conventional Darwin–Kaula
constant Q model (28). We provide a detailed comparison of
our algorithm to that of ref. 13 in the SI Appendix, Model
Comparison. As a check, we did calculations with the same ini-
tial conditions as used in ref. 13. The main features of ref.
13 are reproduced, but some differences are found. We find
smaller final Ls , with larger final Ie and i (SI Appendix, Figs. S1,
S3, and S4).

We sample the Lz -consistent (i.e., Lz =Lp
z ) initial conditions

(postimpact states) in the whole range of successful high-AM
giant impact simulations; Ie , i , and Ls are of key interest. We
assume that the Moon accreted on the Earth’s equatorial plane,
i.e., initially i = Ie . We take the initial a = 3.5Re , just outside the
Earth’s Roche limit. So (Ie , Ls) adequately represents an initial
state. In ref. 1, for successful impacts, Ls ranges in 1.94 to 2.84Lp

s

or 0.67 to 0.98Lr . Candidate impacts in ref. 2 produce Ls from
1.77 to 2.71Lp

s or 0.61 to 0.94Lr . With the constraint of Lz =Lp
z ,

*Even though Ćuk et al. (13) tried to match the present-day AM, Ie, and i, the Lz values
were not Lp

z . They simulated the Earth–Moon history in two steps, first for a≤ 25Re and
then for 25Re < a≤ 60Re. After the first step, AM and Ie get close to the present values,
but i is still much larger than ip = 5◦. Then, in the second step, they concentrated on
reducing i to ip, but did not track Ie. Actually, Ie will increase in the second step, so the
final state will not match the present values of AM, Ie, and i.
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Fig. 2. Details of LPT [(A) angular momentum, (B) lunar eccentricity, (C) the
angle between the ascending node of the lunar orbit and the ascending
node of the Earth’s equator, (D) lunar semimajor axis, (E) lunar inclination,
and (F) Earth’s obliquity], with Lz-consistent initial conditions (in [Ie, Ls]):
(61◦, 0.7Lr [blue]), (65◦, 0.8Lr [red]), (70◦, 0.98Lr [black]). Parameters are
as follows: Qe/k2e = 100, Qm/k2m = 100. In A, the top lines are Ls (=L⊕ +

L$), and the horizontal line is Lz (=L⊕z + L$
z ). The fact that the Lz line is

horizontal indicates that it is conserved by the evolution. Most of the decline
in Ls occurs when both e is nonzero and h oscillates. For the blue curves, a
and d mark the beginning and end of the LPT.

we take four sampling points: (57.6◦, 0.63Lr ), (61◦, 0.7Lr ), (65◦,
0.8Lr ), and (70◦, 0.98Lr ). A larger initial Ie corresponds to a
larger initial Ls . We take Qe/k2e = 100 and Qm/k2m = 100, the
values used in ref. 13, where k2 is the potential Love number, and
Q is the tidal quality factor.

In the case (57.6◦, 0.63Lr ), Ie does not get large enough for
the instability during the LPT (17), so the AM is not decreased.

Results for the (61◦, 0.7Lr ), (65◦, 0.8Lr ), and (70◦, 0.98Lr )
cases are shown in Fig. 2. In the (70◦, 0.98Lr ) case, there are a
lot of sudden, large excursions in eccentricity, and it ends with an
unbound orbit. All of the cases end with a high Ls ∼ 0.5Lr , 45%
larger than the present value of 0.345Lr . The Earth’s obliquity
after the LPT, around 50◦, is too large to produce the present
Ie of 23.4◦ in the later evolution (SI Appendix, Low-e Phases of
Evolution). The post-LPT inclination being high (∼ 34◦) may not
be a problem, since it can be damped during the subsequent
Cassini-state transition, provided that the lunar magma ocean
has not solidified by that point (29). However, conservation of Lz

implies that if the inclination is damped, then the obliquity must
increase, making it even more difficult to produce the present Ie .

Since these initial conditions are representative of all possible
combinations of post-giant-impact Ie and Ls , these results show
that, with Lz =Lp

z , the high-obliquity scenario does not work to
produce the present-day AM and Earth’s obliquity, at least for
the tidal parameters used (Qe/k2e = 100 and Qm/k2m = 100).
Next, we show that this is the case regardless of the tidal model
and tidal parameters.

Characteristics of the High-Ie Scenario
The decrease in Ls (AM scalar sum) occurs predominantly dur-
ing the LPT instability, during which the lunar eccentricity is
nonzero and the semimajor axis, a , stalls. The rate of change of a
(da/dt) is a competition between tides on Earth (which tend to
increase a) and tides on the Moon (which tend to decrease a). At
zero e , da/dt is positive. But da/dt decreases as e is increased
(e.g., ref. 10). There is an e at which da/dt is zero. The value of
e at this point depends on a ratio of the tidal parameters of the
Earth and Moon and the tidal model. Though the expressions in

ref. 10 need to be generalized, they give a rough estimate of the
value of e for da/dt = 0 that is consistent with our simulations
and tidal parameters.

During the phase in which da/dt ≈ 0, Ls declines. We can cal-
culate the rate of decline if we assume da/dt = 0. In this case,
the changing part of Ls is predominantly the rotational AM of
the Earth. The rate of change of AM is the component of the
tidal torque on the spin axis of the Earth. Though the tidal torque
depends on many factors, the leading term, T0, sets the timescale
and depends only on parameters and the semimajor axis. This
term is the same for the constant Q tidal model and the constant
∆t tidal model (20):

T0 =−3

2

k2e
Qe

GM 2
mR5

e

a6
, [2]

where Mm is the mass of the Moon. Using the expression for the
reference AM Lr , we find

d

dt

Ls

Lr
=−3

2

1

λ

k2e
Qe

(
Mm

Me

)2(
Re

a

)9/2
n, [3]

where λ= 0.3308 is the present moment of inertia of the Earth
divided by MeR

2
e , and n is the mean motion of the lunar orbit.

Evaluating this expression for a = 18Re , we find, independent
of tidal models, a decline of about 7.9× 10−3 per million years
(My). The decline found in the simulations is comparable to this,
about 7.8× 10−3 per My. The agreement is excellent. This suc-
cess allows us to generalize our simulation results to other tidal
parameters. The rate of decline of Ls/Lr is simply proportional
to k2e/Qe . With a larger Qe , we can expect that it would take
longer to leave the LPT, but that the ending value of Ls/Lr

would be roughly the same (see below).
Termination of the LPT is marked by a change in the behav-

ior of the angle between the ascending node of the lunar orbit
on the ecliptic (Ω) and the ascending node of the Earth’s equa-
tor on the ecliptic (h0); we denote this angle by h (=Ω− h0).
During the LPT, h oscillates about 0; after exit from the LPT,
h circulates through all angles (Fig. 2). The point of transition
from oscillation to circulation of h is well defined. At this point,

Fig. 3. The stability diagram for a = 18Re plots the color corresponding to
the value of Ls/Lr if the circular orbit is linearly unstable. The black line
marks the boundary between oscillating h and circulating h. Ls/Lr can only
decrease if the system is in the unstable region with h oscillating. There is
a small “disconnected” arc-like unstable region with smaller Ie and i that is
not shown, because it cannot be reached by tidal evolution.

15462 | www.pnas.org/cgi/doi/10.1073/pnas.2003496117 Tian and Wisdom

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003496117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003496117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2003496117


EA
RT

H
,A

TM
O

SP
H

ER
IC

,
A

N
D

PL
A

N
ET

A
RY

SC
IE

N
CE

S

Table 1. Minimum Ls/Lr obtained while the system is
undergoing the LPT instability, at different semimajor axis values

a [Re] Lmin
s [Lr ] Imin

e

16 0.437 29◦

17 0.452 33◦

18 0.472 38◦

19 0.498 43◦

20 0.496 47◦

the semimajor axis resumes its outward evolution. Though there
is a brief interval in which e is still nonzero after this point,
the decline of Ls is small. Once e decays to zero, Ls changes
very little.

We can determine the lowest value of Ls that can be obtained
during the LPT instability by systematically exploring the behav-
ior of the averaged, nontidal Earth–Moon system. For e to be
nonzero, the circular orbit must be unstable; otherwise, the orbit
will stay circular (e = 0) and not get elliptical (0< e < 1). To
be in the LPT instability, h must oscillate. So we can deter-
mine the minimum Ls that can be obtained by systematically
finding all Lz -consistent states that satisfy two conditions: 1)
e = 0 is unstable, and 2) h oscillates. If the minimum Ls deter-
mined in this way is much larger than Lp

s , then the high-Ie
scenario is not consistent with the present Earth–Moon sys-
tem. The conclusion is independent of tidal models and tidal
parameters.

The Hamiltonian describing the evolution of the nontidal
Earth–Moon system, averaged over the orbital timescales of the
Earth and Moon, denoted as HEM , is shown in SI Appendix,
SI Text. HEM is very similar to the Hamiltonian derived
in Touma and Wisdom (20), but is generalized to arbitrary
nonzero eccentricity. For the averaged system, three quanti-
ties are conserved: Lz , a , and Earth’s rotation rate. Then,
HEM has two degrees of freedom (or a four-dimensional phase
space).

Since the Hamiltonian has two degrees of freedom, it is
natural to study the evolution with surfaces of section, which
reveal the phase-space structure and determine the stability of
fixed points (30). The values of the three conserved quanti-
ties must be specified for each section. We set Lz =Lp

z for all
sections. We make a stability diagram for each a . On this sta-
bility diagram, initial values of Ie and i are chosen, for h = 0
and e = 0. From these, we determine the Earth’s rotation rate
and the value of the Hamiltonian. Since HEM has no time
dependence, it is conserved. All points on a section share the
same HEM value.

We take the axes of the surface of section to be x = e cosω
and y = e sinω, where ω is the argument of pericenter of the
lunar orbit. The section condition is h = 0 (restricted to the ḣ < 0
case). The value of the momentum conjugate to h is determined
by requiring that HEM has the chosen value. The return map is
obtained by integrating the evolution until the section condition
h = 0 (ḣ < 0) is again satisfied. The map from the pair (x , y) to
the next (x , y) defines the return map P .

Linear stability analysis of the map P determines the stabil-
ity of the fixed point (0, 0) (at e = 0) (30). We make a stability
diagram for a specified a (e.g., Fig. 3). For the initial values of
Ie and i , if the fixed point (0, 0) is unstable, then a color cor-
responding to the value of Ls/Lr is plotted. A black line marks
the boundary between h oscillating and h circulating. For Ls/Lr

to decline substantially, e = 0 must be unstable, and h must be
oscillating.

The stability diagram for a = 18Re is shown in Fig. 3. The min-
imum value of Ls/Lr satisfying both conditions is 0.47, which is
significantly larger than the present value of 0.34. The minimum

Earth obliquity reached is about 38◦, much larger than the 20◦

post-LPT obliquity that is required for subsequent evolution to
reach the present 23.4◦ (SI Appendix, , Low-e Phases of Evolu-
tion). The results for other values of a are shown in Table 1.
Lmin
s and Imin

e are the minimum Ls and obliquity in the unsta-
ble e , oscillating h regions, such as the colored region in Fig. 3.
Notice that the predicted Lmin

s agrees well with the minimum Ls

obtained in our simulations (Fig. 2). We see that with Lz set at
Lp
z , the high-Ie scenario is not able to produce the present Earth–

Moon system, regardless of tidal parameters and tidal models.
The present-day lunar inclination ip remains a puzzle.

Even though the stability diagrams are for the nontidal aver-
aged system, they suggest what the tidal evolution through the
LPT instability would look like on the Ie–i plane. The system
begins with large Ie and i . As it evolves into the region of the
LPT instability, the system enters the colored tongues of instabil-
ity and develops nonzero eccentricity. At this point, the system
begins to undergo large variations in Ie and i , while maintain-
ing roughly constant a (the system roughly stays on the stability
diagram). These large oscillations in Ie and i are reminiscent
of those found by Atobe and Ida (16) in the e = 0 case. Tidal
torques reduce Ls/Lr , and the system proceeds down the tongue
of instability (diagonally toward the lower left). But once the
boundary between h oscillation and circulation is reached, the
system changes course and soon leaves the LPT instability. There
is no further significant reduction in Ls/Lr .

Examination of the simulations confirms this picture (Fig. 4).
Whenever |h|< 0.03 radians, with ḣ < 0, we plot a point on
the i − Ie plane. The semimajor axis is not constant in the
simulations, so we indicate the value of a by a color. The evo-
lution begins in the upper right. Once the system enters the
LPT instability, the semimajor axis a is roughly constant. Dur-
ing this phase, the colors are orange to yellow. The system
evolves down diagonally to the left until the boundary between
h oscillation and circulation is reached. At this point, the tra-
jectory on the plot changes direction. The semimajor axis then
resumes its outward evolution, as indicated by the change of

Fig. 4. i versus Ie whenever |h|< 0.03 radians and ḣ < 0 for the simulations
shown in Fig. 2, with initial conditions (in [Ie, Ls]): (61◦, 0.7Lr [circle]), (65◦,
0.8Lr [square]), and (70◦, 0.98Lr [diamond]). The color indicates the value
of a. Note that the three simulations, though started with different initial
conditions, merge onto a common track. The black line marks the bound-
ary between h oscillating (to the right) and h circulating for a = 18Re. For
the simulation with initial Ie = 61◦, the arrows show the direction of time
evolution, and the marks a–d correspond to the points in Fig. 2 with the
same labels.

Tian and Wisdom PNAS | July 7, 2020 | vol. 117 | no. 27 | 15463

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003496117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003496117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003496117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003496117/-/DCSupplemental


color to red. In this final phase, the stability diagram at fixed a no
longer applies. The eccentricity damps to zero, and Ls no longer
declines substantially.

Lz Constraint on Resonant Scenarios
The evection resonance and the evection-limit cycle involve a
resonance between the precession of the lunar pericenter and
the motion of the Earth around the Sun. Substantial AM can be
lost in the form of a decrease in Lz (1, 10–12). However, Lz is
conserved in the postresonance evolution. The late-accretional
impacts can only modify Lz by up to 8× 10−3Lr (either increase
or decrease). Even the presence of solar tides and planetary
perturbations can only decrease Lz as much as 0.01Lr . There-
fore, for a scenario of evection resonance or evection limit cycle
to be a possible representation of the Earth–Moon history, the
postresonance state should have its Lz close to Lp

z (0.339Lr ):
0.331Lr <Lz < 0.357Lr .

The evection resonance (1) and the near-resonance described
in ref. 11 both involve high lunar eccentricities (> 0.5). Such high
eccentricities will lead to severe heating in the Moon and cause
these mechanisms to quickly exit with little AM decreased (12).
The evection limit cycle (near-resonance) described in refs. 10
and 12 leads to lower eccentricities and is thermally stable (12).
However, the post-limit cycle minimum Lz is 0.393Lr in ref. 10

and 0.404Lz in ref. 12, both with Qe = 400. It was then thought
that the subsequent evolution would decrease Lz , but the Lz

constraint rules out this possibility.
It was found in ref. 12 that a smaller Lz can be produced with a

larger Qe (0.436, 0.404, and 0.389 Lr for Qe = 300, 400, and 500).
With a large Qe (103 to 104) in the early history of the Earth (31),
the evection limit cycle remains a possible mechanism to drain
the excess AM from a fast-spinning Earth.

Code Availability
The computer codes we used for the simulations in this paper are
available at GitHub, https://github.com/zhenliangtian/em3d.

Conclusion
The Lz constraint places limits on the possible orbital histories of
the Earth–Moon system and thus limits the details of the Moon-
forming giant impact. For a high-AM impact (1–3), which is able
to produce a Moon with an Earth-like composition, the impact
geometry is constrained to cases where the postimpact Earth has
a small to medium obliquity.
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