
MethodsX 8 (2021) 101460

Contents lists available at ScienceDirect

MethodsX

j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x

Method Article

An Alignment-Based Implementation of a Holistic

Ontology Integration Method

�

Inès Osman

a , ∗, Salvatore Flavio Pileggi b , Sadok Ben Yahia a , c ,
Gayo Diallo

d

a LIPAH - LR11ES14, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
b School of Information, Systems and Modelling, University of Technology Sydney, Australia
c Department of Software Science, Tallinn University of Technology, Estonia
d INRIA SISTM, Team ERIAS - INSERM Bordeaux Population Health Research Center, University of Bordeaux, F-330 0 0

Bordeaux, France

a b s t r a c t

Despite the intense research activity in the last two decades, ontology integration still presents a number of

challenging issues. As ontologies are continuously growing in number, complexity and size and are adopted

within open distributed systems such as the Semantic Web, integration becomes a central problem and has to be

addressed in a context of increasing scale and heterogeneity. In this paper, we describe a holistic alignment-based

method for customized ontology integration. The holistic approach proposes additional challenges as multiple

ontologies are jointly integrated at once, in contrast to most common approaches that perform an incremental

pairwise ontology integration. By applying consolidated techniques for ontology matching, we investigate the

impact on the resulting ontology. The proposed method takes multiple ontologies as well as pairwise alignments

and returns a refactored/non-refactored integrated ontology that faithfully preserves the original knowledge of

the input ontologies and alignments. We have tested the method on large biomedical ontologies from the

LargeBio OAEI track. Results show effectiveness, and overall, a decreased integration cost over multiple ontologies.

• OIAR and AROM are two implementations of the proposed method.
• OIAR creates a bridge ontology, and AROM creates a fully merged ontology.
• The implementation includes the option of ontology refactoring.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

� Co-submission with the original research paper [1] . DOI: 10.1016/j.inffus.2021.01.007

DOI of original article: 10.1016/j.inffus.2021.01.007
∗ Corresponding author.

E-mail addresses: ines.osman@fst.utm.tn , ines.osman@etudiant-fst.utm.tn (I. Osman), SalvatoreFlavio.Pileggi@uts.edu.au (S.F.

Pileggi), sadok.ben@taltech.ee (S. Ben Yahia), gayo.diallo@u-bordeaux.fr (G. Diallo).

https://doi.org/10.1016/j.mex.2021.101460

2215-0161/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.mex.2021.101460
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2021.101460&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://10.1016/j.inffus.2021.01.007
https://doi.org/10.1016/j.inffus.2021.01.007
mailto:ines.osman@fst.utm.tn
mailto:ines.osman@etudiant-fst.utm.tn
mailto:SalvatoreFlavio.Pileggi@uts.edu.au
mailto:sadok.ben@taltech.ee
mailto:gayo.diallo@u-bordeaux.fr
https://doi.org/10.1016/j.mex.2021.101460
http://creativecommons.org/licenses/by/4.0/

2 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

a r t i c l e i n f o

Method name: Holistic integration of multiple ontologies using alignments between ontology pairs (OIAR/AROM)

2010 MSC: Ontology , Ontology integration , Ontology merging , Ontology refactoring , Semantic
interoperability , Bridge ontology , Full-Merge ontology , 00-01, 99-00

Article history: Received 31 January 2021; Accepted 17 July 2021; Available online 23 July 2021

Specifications Table

Subject Area: Computer Science

More specific subject area: Knowledge Engineering

Method name: Holistic integration of multiple ontologies using alignments between ontology pairs

(OIAR/AROM)

Name and reference of

original method:

N.A.

Resource availability: OWL language + JAVA language + OWL ∼API + Alignment API + IDE (Eclipse , IntelliJ , or

NetBeans) + ELK reasoner + OAEI tracks

1 Introduction

Ontology has become a more and more popular concept in Computer Science to represent

and share knowledge within digital environments. Such a rich data model provides a common

understanding of a given domain by defining a shared vocabulary which is formally specified in a

machine-processable format [2] .

However, in open and distributed systems such as the Semantic Web [3,4] , heterogeneity still

cannot be avoided. In recent years, ontology-based approaches have been adopted in the context

of many domains, as well as across different domains according to a multi/trans-disciplinary

philosophy. Due to this disconnected development of ontologies, many ontologies in identical,

similar, complementary or interdisciplinary domains have been developed. As a result, applications or

information systems, relying on these ontologies, cannot achieve communication nor interoperability.

Ontology integration addresses this issue by creating a new ontology that groups the knowledge

contained in different existing ontologies and that can be therefore used by different heterogeneous

applications.

Nowadays, the ontology community has adopted the idea of splitting the ontology integration

problem into matching and merging sub-tasks, where matching is a necessary preceding step for

merging , and a repairing step can be included in the matching process or performed separately.

Ontology matching identifies semantic correspondences (mainly similarities) between entities from

the input ontologies, whereas ontology merging merges or links the corresponded entities to form

the integrated ontology. Current automated ontology matching tools are becoming more and more

sophisticated. They often generate a quite reliable alignment between two ontologies by finding

equivalence relations between ontological entities, especially between concepts or instances [5] . Many

ontology matching tools are publicly available such as COMA++ 1 [6,7] , Falcon-AO

2 [8,9] , LogMap 3

[10,11] , YAM++ 4 [12] , and AML 5 [13,14] , etc .

Despite the research interest in ontology integration and the intense activity within the community

during the past two decades, the topic is still challenging as fully reliable solutions are not yet

available. The practical challenge of ontology integration increases with the scale of the target system.

The latter can contain numerous ontologies with hundreds of thousands of entities and axioms,

becoming a pressing requirement. As a scalable context normally requires automated integration, the
1 https://dbs.uni-leipzig.de/Research/coma.html
2 http://ws.nju.edu.cn/falcon-ao/
3 https://github.com/ernestojimenezruiz/logmap-matcher
4 http://yamplusplus.lirmm.fr/matcher
5 https://github.com/AgreementMakerLight/AML-Project

https://www.w3.org/TR/owl2-primer/
https://github.com/owlcs/owlapi/wiki
http://alignapi.gforge.inria.fr/
https://www.eclipse.org/
https://www.jetbrains.com/idea/
https://netbeans.org/
https://www.cs.ox.ac.uk/isg/tools/ELK/
http://oaei.ontologymatching.org/
https://dbs.uni-leipzig.de/Research/coma.html
http://ws.nju.edu.cn/falcon-ao/
https://github.com/ernestojimenezruiz/logmap-matcher
http://yamplusplus.lirmm.fr/matcher
https://github.com/AgreementMakerLight/AML-Project

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 3

h

m

i

m

a

k

a

o

a

s

d

t

d

a

a

2

O

f

2

s

t

u

r

c

e

a

t

c

u

a

a

2

u

g

i

t

O

O

a
olistic approach, which performs a simultaneous integration of multiple ontologies in a single step,

ay increase the agility of the underlying methods.

In this paper, we introduce a holistic alignment-based method for integrating multiple ontologies

n a customized manner; then we investigate its impact on the resulting integrated ontology. Our

ethod takes as input two or more ontologies having overlapping domains and one or more pairwise

lignment(s) between them and returns a new refactored ontology that faithfully preserves all

nowledge of the input ontologies and alignments. This article is actually a method article that is

ssociated with a previous publication [1] . It focuses on the methodological aspects of our holistic

ntology integration approach that was briefly presented in [1] . The previously published article [1] is

 survey that reviews the relevant literature in the ontology integration area.

Structure of the paper The remainder of the paper is structured as follows. Section 2 recalls

ome background knowledge including ontology, OWL, ontology alignment and ontology refactoring

efinitions, as well as ontology integration types. Section 3 describes the ontology refactoring process

hat we use in our method. Section 4 introduces our proposed ontology integration method and

escribes in detail its two implementations OIAR and AROM, respectively. Section 5 relies on OIAR

nd AROM to perform a holistic integration of multiple real-world ontologies, discusses the results,

nd derives the main findings. Finally, Section 6 concludes the paper with a short summary.

 Preliminaries and key notions

This section provides an overview of key concepts, including Ontology, Web Ontology Language,

ntology Alignment, Refactoring and Integration . Additionally, we briefly analyze the different strategies

or ontology integration.

.1 Ontology

A largely accepted generic definition of an ontology is provided in [15] : “a formal, explicit

pecification of a shared conceptualization (of a domain of discourse) ”. Such a concept becomes central

o formally represent knowledge in a machine-processable context [2] . Additionally, ontologies are

nderstood as rich data models to support automatic reasoning and complex query.

An ontology can be viewed as a labelled directed graph whose nodes are entities, and edges are

elations. Nodes are labelled by entity names, and edges are labelled by relation names. An ontology

an also be viewed as a set of triplets <ent it y 1 , relat ion , ent it y 2 > . In general, there are four types of

ntities [16] : concepts (or classes), individuals (or instances of classes), object properties (i.e., relationships

mong individuals), and datatype properties (i.e., attributes associated with individuals). An additional

ype of entities (annotation properties) is used to add human-readable metadata (such as labels and

omments) at different levels of the ontology. Concepts and properties are organized within hierarchies

sing the built-in subsumption / is-a relation. In the abstract syntax, an ontology is a sequence of logical

nd non-logical axioms (rules or constraints) that express entities and their associated declarations

nd assertions.

.2 Web ontology language

In the modern and continuously growing technological scenario, ontologies are intrinsically

nderstood like Web Ontologies, which adopt the Web infrastructure to establish an interoperable

lobal environment, normally referred to as Semantic Web [3] . World Wide Web Consortium (W3C) 6

s very active in the definition of the Semantic Web standards. The most widely used languages

o define ontologies are RDF (Resource Definition Framework) [17,18] , RDFS (RDF Schema) [19] , and

WL (Ontology Web Language) [20,21] . In this work, we implicitly assume OWL ontologies, since

WL endows machines with a greater ability to interpret Web content thanks to its rich vocabulary

nd underlying formal semantics of Description Logics. Description Logics (DL) [22] are decidable
6 https://www.w3.org

https://www.w3.org

4 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

•

•

•

fragments of First-Order logic that are specifically designed to represent and reason on structured

knowledge. Therefore, OWL ontologies are actually logical theories.

2.3 Ontology alignment

An alignment is the result of an ontology matching process. It is a set of semantic correspondences

between two matched ontologies, denoted by A = { C 1 , C 2 , . . . , C n } . Given two matched ontologies

O 1 and O 2 , a correspondence can be viewed as a triple < e O 1 r e O 2 > . More precisely, in an RDF

alignment, a correspondence C i is a 4-tuple < e O 1 , e O 2 , r, n > [16] such that:

e O 1 and e O 2 are the members of the correspondence, where e O 1 is an entity belonging to O 1 , and

e O 2 is an entity belonging to O 2 .

r is a binary semantic relation holding or intended to hold between e O 1 and e O 2 , such as equivalence

(≡), subsumption (� / �), disjointness (⊥), instantiation, etc . In an RDF alignment, relations are flagged

by one of the following symbols: ” = ” (i.e. equivalent to), ”> ” (i.e. subsumes or is more general

than), ”< ” (i.e. is subsumed by or is more specific than), and ”% ” (i.e. incompatible with).

n is a real number, ranging between [0 , 1] , reflecting the confidence measure of the identified

relation. It indicates the degree of trust (correctness, reliability, or truth) of the correspondence.

The higher the confidence value, the more likely the relation holds [16] . In the equivalence case, n

reflects the similarity degree.

A correspondence C i asserts that the relation r links e O 1 and e O 2 with a confidence value equal to

n .

2.4 Ontology refactoring

Web ontologies adopt IRI/URI (Internationalized/Uniform Resource Identifier) to uniquely identify

an ontology or an ontology entity. An entity IRI (or full name) assumes a prefix and a suffix as follows:

Entity IRI = IRI Prefix + "#" + IRI Suffix

Entity Name = Ontology IRI + "#" + Short Name

The full IRI (or the prefixed/full name) of an entity—a class, a property, or an individual—is

composed of a prefix followed by a suffix . The IRI prefix is usually the IRI of the ontology in which

the entity appears (e.g. , the IRI of the current ontology, or the IRI of another existing ontology). The

IRI suffix is the short, local, or abbreviated name of the entity. The entity prefix and suffix are usually

separated by a ”#” sign (they can also be separated by ”/” or ”:” signs).

The uniqueness of IRIs supports Semantic Interoperability across the Web, as the same IRI

corresponds to the same semantic entity. We commonly understand ontology refactoring as a process

that changes the terminology or the structure of an ontology but preserves its semantics [23] . In

this work, we limit refactoring to IRIs. According to common standards and practices, depending

on strategy and application, an integrated ontology may assume refactoring (original IRIs are not

preserved) or not.

2.5 Ontology integration

Ontology integration implies the notion of inclusion , which refers to an enrichment/extension of an

ontology by adding external knowledge into it [16,24] . The added knowledge can be a whole ontology

or a part of an ontology. Therefore, ontology integration also implies the notion of ontology merging .

In fact, the integration of two ontologies is intuitively understood as merging them into a unique

one. In other words, the result of including an ontology into another is equivalent to the result of

merging them. Thus, ontology merging is a special case of ontology integration , and the resulting

merged ontology can also be called an integrated ontology. In general, ontology integration is often

associated with ontology merging , and, indeed, the two terms are often considered to be synonyms in

the literature [1] .

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 5

Fig. 1. Ontology integration types.

2

u

t

e

B

2

c

t

i

o

m

F

a

b

a

a

T

b

t

o

o

O

o

s

c

s

i

i

t

s
.6 Ontology integration types

De Bruijn et al. [25] distinguished two ontology integration types: (i) the simple merge which is

sed for example, where cooperative companies look for unifying their knowledge without changing

heir basic ontologies and data associated with them; and (ii) the full merge which is used, for

xample, in cases where two newly merged companies look for completely unifying their knowledge.

oth types of merging are thoroughly described in the following.

.6.1 Simple merge (bridge ontology)

The Simple Merge (a.k.a the Simple Union [26]) imports the input ontologies into a new one—

onstituting a union of input ontologies—and adds bridging axioms, called articulations , translating

he alignment between them (See Fig. 1 a). These added axioms are actually semantic correspondences

nterpreted as or transformed into ontological statements to bridge the overlapping part of the input

ntologies. In this type of integration, equivalent entities in the integrated ontology are mentioned

ore than once but considered as non-redundant since they are linked by equivalence axioms (See

ig. 1 a). The W3C best practices group [27] recommends integrating ontologies in the OWL language

nd interpreting correspondences between them as OWL axioms. The subsumption correspondences,

etween classes and properties, are expressed by built-in subClassOf and subPropertyOf OWL

xioms, respectively. The equivalence correspondences between classes, properties and individuals

re expressed by built-in equivalentClass, equivalentProperty and sameAs OWL axioms, respectively.

he disjointness correspondences between classes, properties and individuals are expressed by

uilt-in disjointWith, propertyDisjointWith and differentFrom OWL axioms, respectively. Therefore,

he correspondences of the alignment A can be perceived as an ontology O A called articulation

ntology [28] , intersection ontology [29] , or intermediate ontology [30] . In the case of two input

ntologies, the integrated ontology O 3 is viewed as the union of O 1 , O 2 and O A where O 3 =
 1 ∪ O 2 ∪ O A [31] . The resulting ontology is generally called a bridge ontology (a.k.a a merged ontology

r an integrated ontology).

To achieve ontology modularization, the OWL ontology language provides a built-in import

tatement < owl:imports > . The import statement includes the content of an entire ontology into the

urrent ontology by only referencing the URI or the local file of that ontology. Therefore, most of the

tate-of-the-art approaches get the integrated ontology O 3 by creating an empty ontology that directly

mports O 1 , O 2 and O A , after converting the RDF alignment A to an OWL ontology O A . Otherwise, the

ntegrated ontology O 3 is obtained by importing the two input ontologies O 1 and O 2 into O A ; so

hat O A becomes O 3 . The import is automatically performed by simply declaring the OWL import

tatements referencing the ontologies to be imported. This solution clearly favors modularity and

6 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

reusability in the Semantic Web; However, it is not a generic solution since we cannot customize

the imported ontologies in the integrated ontology. In some ontology development tasks, ontology

developers may need to customize the imported ontologies, e.g. , by importing only a part of them

or by refactoring their IRIs/namespaces and some of their entity names etc . Thus, this solution is

not particularly suitable for the area of ontology development, despite its huge advantage for the

Semantic Web. From all the inspected state-of-the-art ontology integration works, the only work

that includes refactoring in its integration process is the paper of Ziemba et al. [32] . However, the

major disadvantage of this work is being completely manual and thus impossible to apply for large

ontologies.

2.6.2 Full merge

The Full Merge [26] (a.k.a. the Complete Merge [25,33]) imports the input ontologies into a new

ontology—constituting a union of input ontologies—and merges each set of equivalent entities into a

single new entity that preserves all their attached description and relations (See Fig. 1 b). The resulting

merged entities will be represented only once in the merged ontology, which avoids the existence of

redundant entities. However, the multiple inheritance does exist in the merged ontology, since each

merged entity is assigned to more than one direct parent, where each parent comes from an input

ontology (See Fig. 1 b). Ontological axioms, constituting the merged ontology and originating from the

input ontologies, are updated by replacing every occurrence of the original entities with its newly

merged entity. That is each axiom, in which appears the name of one of the entities that have been

merged, must be updated by replacing the name of that original entity with the name of the newly

merged one. In the literature, authors identify the merged entities by either a unique (alphanumeric)

code or by the name of one of the original entities that have been merged—commonly, the name

of the entity that belongs to the preferred input ontology; then, they add the short names of the

original entities (that have been merged) as additional labels to the newly merged entity. Subsumption

axioms can be added to link subsuming and subsumed entities, as prescribed in the alignment(s).

With two input ontologies, the merged ontology O 3 can be viewed as the union of O 1 and O 2 where

O 3 = O 1 ∪ O 2 = (O 1 − O 2) ∪ (O 2 − O 1) ∪ (O 1 ∩ O 2) [25] . The resulting ontology can be referred to as

a unified ontology, a merged or an integrated ontology.

Many research works are not generic in terms of the number of input ontologies to integrate:

They are tailored to integrate only two ontologies because the process of matching and integrating

more than two ontologies at the same time is much more complex, e.g , in [24,31,34–47] . In

order to integrate multiple ontologies, these works had to perform an iterative incremental

process that implements a series of pairwise ontology matching and integration, e.g. , the works

of [48] , [32] and [24] , etc .

In the remainder of this paper, we introduce a generic ontology integration method. It integrates

two or more input ontologies in a non-incremental (i.e. , holistic) manner, using pairwise alignments.

It effectively includes the input ontologies in the integrated ontology and refactors the names of all

the included entities, if requested.

3 Ontology refactoring in our method

We have made two versions of our method implementation: (i) a non-refactored version, and (ii)

a refactored version. The ontology refactoring aims to customize our resulting integrated ontology.

In an ontology, we cannot have two identical IRIs for two entities of the same type, because it will

be considered as the same entity. According to the standards, we would like that all entities (of our

output integrated ontology) to have our new ontology’s IRI as a prefix. However, when we integrate

ontologies from the same domain, different entities (belonging to different ontologies) can have the

same short name. For example, ”Conference ”, ”Paper ”, ”Author ” and many other classes exist in at least

three ontologies from the Conference 7 OAEI track, namely the ontologies cmt (O), conference (O),
1 2

7 http://oaei.ontologymatching.org/2017/conference/index.html

http://oaei.ontologymatching.org/2017/conference/index.html

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 7

a

o

c

s

”

o

n

n

l

n

t

i

a

o

c

a

a

r

I

w

h

w

e

m

p

e

nd confOf (O 3). Here are the original full names/IRIs of the ”Conference ” classes belonging to each

ntology:

http://cmt#Conference
http://conference#Conference
http://confOf#Conference

They are semantically equivalent (≡) classes expressed in the three pairwise alignments between

mt, conference and confOf ontologies as follows:

http://cmt#Conference ≡ http://conference#Conference
http://cmt#Conference ≡ http://confOf#Conference
http://conference#Conference ≡ http://confOf#Conference

These classes will correctly appear in the integrated ontology resulting from a non-refactored

imple merge. However, in the refactored version, if the IRI of our output ontology is, for example,

http://integration ”, then these classes will not appear as shown below:

http://integration#Conference
http://integration#Conference
http://integration#Conference

That is impossible, since a full IRI of a class cannot be assigned to more than one class. To

vercome this problem, we have chosen to add an ID to the IRI prefix of all the entities.

Entity Name/IRI = Ontology IRI + ID + "#" + Short name

To do so, we assign a number to each input ontology. The first parsed ontology will have the

umber 1, the second parsed ontology will have the number 2, and so on. The ID represents the

umber of the ontology from which an entity originates. We have set the ID to four characters, so the

ast four characters of the IRI prefix of each entity will be reserved for the ID. That is, if the ontology

umber (N) is less than 10 (i.e. , in case we have integrated less than 10 ontologies at the same time),

hen the ID will be ”/00N”; if the ontology number (NN) is greater than 10 and less than 100 (i.e. ,

n case we have integrated more than 10 ontologies at the same time), then the ID will be ”/0NN”;

nd if the ontology number (NNN) is greater than 99 (i.e. , in case we have integrated more than 99

ntologies at the same time), then the ID will be ”/NNN”. This is how the full IRIs of the ”Conference ”

lasses will appear in the integrated ontology resulting from a refactored simple merge:

http://integration /001 #Conference
http://integration /002 #Conference
http://integration /003 #Conference

Doing so, all entities will have a unique customized IRI in the integrated ontology, and all their

ttached description will be preserved correctly. Besides, this is how we can differentiate entities

nd directly track back their origin (i.e. , discover from which ontology they are derived). In the non-

efactored simple merge, if the input ontologies contain some common entities that have the same full

RI (which generally refers to an already existing entity from another ontology), then these entities

ill be automatically merged and stated only once in our integrated ontology—like what would

appen for ”http://integration#Conference ” classes in the last example. In the full-merge ontology,

e have assigned an ID “èè/0 0 0” to the merged entities (resulting from the merge of the sets of

quivalent entities). So, this is how the full IRI of the merged class ”Conference ” will appear in the

erged ontology resulting from a refactored full merge:

http://integration /000 #Conference
In the refactored version of our implementation, the output integrated ontology will rather be

erceived as a new original ontology, as if it was not the result of an integration, since all of its

ntities have an IRI prefix specific to us.

8 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

Fig. 2. Holistic Ontology Integration using Pairwise Alignments.

Table 1

Method overview.

Algorithm Method Integration type Alignment Refactored Non-refactored

OIAR Holistic Integration Simple Merge External � �

AROM Holistic Integration Full Merge External � �

4 Method details

In this paper, we propose a holistic ontology integration method that effectively integrates several

input ontologies in a unique one and refactors entity names accordingly if requested. It integrates

multiple ontologies using pairwise alignments between all pairs of ontologies, as shown in Fig. 2 .

Holistic or N-ary ontology integration combines all the input (or source) ontologies O 1 , O 2 ,..., O n in

a single iteration, i.e. in a non-incremental manner, to constitute the output (or target) integrated

ontology O

∗. It is a scalable approach since it is suitable for a large number of input ontologies.

We should note that we do not perform any ontology matching process; Our method takes external

alignments as input. Indeed, we rather leverage the advances made in the ontology matching area

by using external alignments such as alignments generated by top-performing matching tools (e.g.,

LogMap) or reference alignments. Using these reliable pairwise alignments will help us integrate large

and complex ontologies even without having a robust matching tool.

In the following subsections, we thoroughly describe OIAR (Ontology Integration with Alignment

Reuse) and AROM (Alignment Reuse for Ontology Merging), the two proposed algorithms that

implement holistic ontology integration. Both implementations support refactored as well as non-

refactored integration, while they provide a different kind of integration. OIAR targets simple merge

integration as previously defined, and AROM aims to full merge integration. They both take as input

two or more OWL ontologies to be integrated, one or more RDF alignments between them (written

in the Alignment API format 8 [49]), a new URI or IRI as a namespace for the output integrated

ontology, and a confidence threshold ranging between [0,1] to trim correspondences of the input

alignment(s). The user selects the input ontologies and alignments; and input ontologies should cover

overlapping or complementary domains. We report a summary of the most characterizing features for

each algorithm in Table 1 .

4.1 OIAR

In this subsection, we introduce the Ontology Integration with Alignments Reuse (OIAR) algorithm.

The latter aims to automatically build a bridge ontology among several input ontologies. Fig. 3 shows

the general steps of the OIAR process. The current OIAR framework includes two different versions

which provide respectively a non-refactored output (based on original IRIs) and a refactored output

(based on modified IRIs). Both versions take into input the ontologies (in OWL) to be integrated, as

well as the alignments (in RDF) among them. OIAR source code and other associated resources are

freely available on GitHub 9 . We describe the details of the two versions of the method in the following

subsections.
8 The Alignment API format is the most consensual ontology alignment format. It represents a set of simple binary semantic

correspondences between entities coming from two ontologies.
9 https://github.com/inesosman/OIAR

https://github.com/inesosman/OIAR

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 9

Fig. 3. OIAR General steps.

4

i

O

.1.1 OIAR General process – refactored version

The refactored version of the OIAR algorithm comprises the following steps:

1. Loading two or more input ontologies (owl files) and alignment(s) between them (rdf file(s));

2. Parsing all the axioms of the input ontologies and creating exactly the same refactored axioms

corresponding to them;

3. Disambiguating the input alignments by transforming them from 1-to-N to 1-to-1 alignments

(optional);

4. Parsing the correspondences of the input alignments and creating refactored bridging axioms

corresponding to them;

5. Creating the output integrated ontology (i.e. , an owl file) by summing all the created OWL axioms

(axioms of steps 2 and 4).

In the next paragraphs, we thoroughly describe OIAR steps separately.

Step 1 : Loading Input Ontologies & Alignments

After selecting and entering the ontologies to be integrated and the alignments between them, the

nput ontologies are loaded in the OWL API Manager 10 . The latter is the central point of access in

WL API [50] since it is used to load, create, and access ontologies.

Step 2 : Creating Refactored Copies of Axioms of the Input Ontologies

First, we create four HashMaps:

1. The classes HashMap, whose ”key” contains the original IRI of a given class, and ”value” contains

its associated ID (which is the number of the ontology from which that class originates);

2. The object properties ’ HashMap, whose ”key” contains the original IRI of a given object property,

and ”value” contains its associated ID (which is the number of the ontology from which that

property originates);

3. The data properties ’ HashMap, whose ”key” contains the original IRI of a given data property, and

”value” contains its associated ID (which is the number of the ontology from which that property

originates); and finally
10 https://github.com/owlcs/owlapi/wiki/Documentation

https://github.com/owlcs/owlapi/wiki/Documentation

10 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

4. The individuals HashMap, whose ”key” contains the original IRI of a class instance, and ”value”

contains its associated ID (which is the number of the ontology from which that individual

originates).

• While parsing the classes of the input ontologies, we fill up the first HashMap (for future use)

and we extract, for each parsed class, its name and definition/description (i.e. , its super, equivalent

and disjoint class expressions, and its annotations–labels, comments , and annotation properties –, etc),

information with which we create a refactored copy of that class and its definition in our output

integrated ontology. In fact, for each parsed class, we replace its original IRI prefix and those of

all entities mentioned in its definition by the IRI of our output ontology + the number (ID) of the

currently parsed ontology.

• While parsing the object properties and data properties of the input ontologies, we fill up

the second and third HashMaps (for future use), and we extract, for each parsed property, its

name and definition (i.e. , its domains and ranges class expressions (or data ranges), its super, inverse,

equivalent and disjoint property expressions, its characteristics, and its annotations–labels, comments ,

and annotation properties –, etc), information with which we create a refactored copy of that property

in our output integrated ontology. In fact, for each parsed property, we replace its original IRI prefix

and those of all entities mentioned in its definition by the IRI of our output ontology + the number

(ID) of the currently parsed ontology.

• While parsing the individuals/instances of the input ontologies, we fill up the fourth HashMap

(for future use), and we extract, for each parsed individual, its name and definition (i.e. , its class

assertions , its negative and positive property assertions , its sameAs and different individuals, and its

annotations–labels, comments , and annotation properties –, etc), information with which we create a

refactored copy of that individual in our output integrated ontology. In fact, for each parsed individual,

we replace its original IRI prefix and those of all entities mentioned in its definition by the IRI of our

output ontology + the number (ID) of the currently parsed ontology.

Step 3 : Disambiguating the Input Alignments (Optional)

An ambiguous alignment [16] allows to match the same entity from a first ontology to

several entities from a second ontology. In other words, it contains some correspondences that

share an entity in common: either a source entity (i.e. , from O 1), or a target entity (i.e. , from

O 2). These correspondences are called ambiguous correspondences [16] , correspondences of higher-

multiplicity [24] or higher-multiplicity correspondences [24] . That is, entities composing an ambiguous

correspondence are involved in other correspondences, such that a source entity or a target

entity occurs in at least two correspondences. The following example shows three ambiguous

correspondences:

O 1 :Student ≡ O 2 :Student
O 1 :Student ≡ O 2 :Scholar
O 1 :Student ≡ O 2 :PhD_Student

In general, alignments between independently developed ontologies are many-to-many alignments

(of cardinalities n : m or ∗ : ∗), where zero or more entities from the first ontology can match with

zero or more entities from the second ontology. Therefore, many-to-many alignments are actually

ambiguous alignments. Whereas, a one-to-one alignment (of cardinalities 1 : 1) can only match an

entity from a first ontology to a single entity from a second ontology; so source entities (from O 1)

and target entities (from O 2) appear in at most one correspondence [51] .

Alignment disambiguation aims to convert a many-to-many alignment to a one-to-one alignment.

To do so, OIAR filters correspondences having the same source entity or the same target entity by

only keeping the most confident correspondence (having the highest confidence value) and removing

the remaining ones. This approach is based on the intuition assuming that among the ambiguous

equivalence correspondences, there is a single correct correspondence that reflects a true synonym,

while the remaining ones are rather similar, related, or overlapping terms [24] .

OIAR first filters out correspondences having the same source entity (as shown in Fig. 4 a);

then, it filters out correspondences having the same target entity (as shown in Fig. 4 b) by only

keeping one correspondence having the highest similarity value (See Algorithm 1). If all ambiguous

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 11

Fig. 4. Alignment disambiguation process.

c

c

i

a

c

t

e

e

O

s

i

e

o

i

t

w

i

a

a

g

c

r

t

e

a

d

a

o

r

a

a

t

o
orrespondences have the same confidence value, then OIAR keeps all of them because if it randomly

hooses one of them, then results will differ for each chosen correspondence (See Algorithm 1). OIAR

nvolves this algorithm to disambiguate not only ambiguous equivalence correspondences, but also

mbiguous subsumption and disjointness correspondences.

Step 4 : Creating Refactored Bridging Axioms Translating the Input Alignments In practice, we

annot link different types of entities by the same axioms. In OWL API [50] , there are four

ypes of methods for creating bridging axioms; each one is dedicated to a particular type of

ntities (classes, object properties, data properties, and individuals). For example, to create an

quivalence axiom between two classes class1 and class2 , we should call the following

WL API method: datafactory.getOWLEquivalentClassesAxiom(class1, class2) . The

ame goes for creating equivalence axioms between two object properties, two data properties, or two

ndividuals. However, in an RDF alignment, it is impossible to directly identify the type of the matched

ntities because they are only expressed by their original full IRIs—as they were defined in their

riginal ontology. We cannot identify whether a given entity IRI represents a class, a property, or an

ndividual. For this reason, we use the four HashMaps already filled in the second step (Section 4.1.1)

o directly identify the type and the ID of each pair of entities in a correspondence. By doing so,

e will be able to create bridging axioms for pairs of classes, object properties, data properties, or

ndividuals.

Trimming an alignment consists of removing correspondences that have a confidence value below

 given threshold, in order to ensure that only the most confident correspondences are kept. Trimming

pplies an α-cut to the alignment, such that the confidence threshold α ∈ [0 , 1] . After choosing a

iven threshold as input, OIAR automatically trims the input alignments using the predefined method

ut() of the Alignment API [49] .

While parsing the correspondences of the input alignments after being trimmed, we create

efactored bridging axioms (semantic links) that exactly translate the parsed correspondences, and add

hem to our output ontology. The refactoring is made by replacing the original IRI prefixes of the two

ntities of each correspondence with the IRI of our output ontology + the associated ID (the number

ssigned to the original ontology). The created bridging axioms can be equivalence, subsumption , or

isjointness axioms, according to the relation type of the parsed correspondence. At last, the bridging

xioms of our output integrated ontology will rather be perceived as normal axioms linking entities

f a new original ontology, as if it was not the result of an integration, since all of its entities have a

efactored IRI prefix.

Step 5 : Creating the Output Integrated Ontology

When we execute all steps except step 4, we obtain an aggregated ontology, as shown in Fig. 5 ;

nd when we execute all steps, we obtain an integrated ontology—generally called a bridge ontology ,

s shown in Fig. 1 a. Indeed, axioms of step 2 will form an OWL ontology that simply aggregates

he input ontologies without making any semantic interoperability between them. However, axioms

f step 4 are bridging axioms that will form, together with the axioms of step 2, an OWL bridge

12 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

Fig. 5. Ontology aggregation/composition.

ontology that allows the aggregated ontologies to semantically interoperate via the bridging axioms.

We will finally get an owl file corresponding to the output ontology.

4.1.2 OIAR General process – non-refactored version

The non-refactored version of the method differs from the previously described one, as it keeps the

original IRIs of the entities from the different input ontologies. The algorithm of the non-refactored

version of OIAR is structurally similar to the refactored one and can be summarized in the following

steps:

1. Loading two or more input ontologies (owl files), and alignment(s) between them (rdf file(s));

2. Automatically aggregating all the axioms of the input ontologies—using the OWLOntologyMerger()

method of OWL API;

3. Disambiguating the input alignments by transforming them from 1-to-N to 1-to-1 alignments (See

Section 4.1.1) (optional);

4. Translating the correspondences of the input alignments into OWL bridging axioms;

5. Creating the owl file of the output integrated ontology by summing all the axioms (axioms of

steps 2 and 4).

This approach consists of the automatic aggregation of the input ontologies and the ontologies

corresponding to the input alignments. Suppose that we have two input ontologies O 1 and O 2 to be

integrated, and an input alignment A between them. This approach first aggregates O 1 and O 2 to get

the ontology O 12 , then aggregates O 12 and O A to get the output integrated ontology O 3 , where O A is

an ontology generated by converting A into a set of OWL axioms. The approach can be considered as

aggregating O 1 , O 2 and O A (i.e. , O 3 = O 1 + O 2 + O A) without modifying neither the input ontologies

nor the input alignments. In the next subsections, we will detail the main steps of this OIAR version,

namely steps 2 and 4.

Step 2 : Aggregating the Axioms of the Input Ontologies

Aggregating ontologies using the OWL API is straightforward. First, we use the predefined method

OWLOntologyMerger() , which automatically aggregates all the ontologies that were loaded into

the OWLOntologyManager. Then, we just need to specify an ontology IRI to the predefined method

createMergedOntology() , which will return an aggregated OWL ontology having that specified

IRI as namespace. The returned aggregated ontology does not miss any knowledge from the input

ontologies and does not alter any axiom.

It is worth mentioning that the terms OntologyMerger and MergedOntology , used as names

for the OWL API methods, further stress the confusion associated with the term merging in the

community. Actually, these OWL API methods do not perform an ontology merge, but rather a simple

aggregation/composition/concatenation of the input ontologies (See Fig. 5). Moreover, the Protégé

[52] ontology editor makes exactly the same mistake with the option ”Merge ontologies ” of its

”refactor ” menu.

Step 4 : Creating Bridging Axioms Translating the Input Alignments

The Alignment format, a.k.a. the RDF Alignment format or the Alignment API format , is expressed

in the RDF (Resource Description Framework) language. It is a freely extensible format, therefore, any

alignment A expressed by this format can be automatically transformed into OWL bridging axioms

making up an ”intermediate” ontology O A . The OWLAxiomsRendererVisitor() method of the

Alignment API automatically transforms the alignment correspondences into equivalence, subsumption

and disjointness bridging axioms. Unfortunately, we could not complete the alignment transformation

https://protege.stanford.edu/

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 13

Fig. 6. AROM General steps.

t

o

i

•

•

•

•

s

t

w

c

o

a

a

4

l

t

w

(
ask in this way. Therefore, instead of using the Alignment API in step 4, we applied the same idea

f the refactored version of OIAR (See Section 4.1.1). It consists in parsing the correspondences of the

nput alignments and creating their associated OWL bridging axioms, as follows:

While parsing the classes of the input ontologies, we fill the classes HashSet with the original IRIs

of the parsed classes.

While parsing the object properties of the input ontologies, we fill the object properties ’ HashSet

with the original IRIs of the parsed object properties.

While parsing the data properties of the input ontologies, we fill the data properties ’ HashSet by the

original IRIs of the parsed data properties.

While parsing the individuals of the input ontologies, we fill the individuals HashSet with the

original IRIs of the parsed individuals.

Remember that in the OWL API, bridging axioms between entity pairs can only be created by using

pecific methods dedicated for each type of entities; Besides, in an alignment, it is impossible to know

he type of the matched entities since they are only expressed by their original IRIs. For this reason,

e use the four already filled HashSets to directly identify the type of each entity pair composing

orrespondences of an alignment. By doing so, we will be able to create bridging axioms for all types

f entities.

While parsing the correspondences of the input alignments after being trimmed, we create bridging

xioms that exactly translate the parsed correspondences—without altering any original IRI—and we

dd them to the initial aggregated ontology generated by the previous step.

.2 AROM

In this subsection, we introduce the Alignments Reuse for Ontology Merging (AROM) algorithm. The

atter aims to automatically build a full-merge ontology among several input ontologies. Fig. 6 shows

he general steps of the AROM process. The current AROM framework includes two different versions

hich provide respectively a non-refactored output (based on original IRIs) and a refactored output

based on modified IRIs). Both versions take into input the ontologies (in OWL) to be integrated, as

14 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

•

•

well as the alignments (in RDF) among them. AROM source code and other associated resources are

freely available on GitHub 11 .

The AROM algorithm comprises the following steps:

1. Loading two or more input ontologies (owl files) and alignment(s) between them (rdf file(s));

2. Disambiguating the input alignments by transforming them from 1-to-N to 1-to-1 alignments (See

Section 4.1.1) (optional);

3. Merging the names of each set of equivalent entities: Parsing the equivalence correspondences of

the input alignments, and generating a HashMap whose ”key” contains the entity to be merged,

and whose ”value” contains the merged new name of that entity;

4. Parsing all the axioms of the input ontologies, and creating exactly the same (refactored) axioms

corresponding to them, such that each entity appearing in the axioms is replaced by its new

merged name (whenever it is mentioned in the input alignments, therefore whenever it exists

as a key in the HashMap);

5. If there are any subsumption (� , �) or disjointness (⊥) correspondences in the input alignments,

then creating (refactored) bridging axioms corresponding to them, such that each entity appearing

in these axioms is replaced by its merged new name (whenever it exists as a key in the HashMap);

6. Creating the owl file of the output merged ontology by summing all the created OWL axioms (i.e. ,

axioms of steps 4 and 5).

Remark 1. If the input alignments only contain equivalence correspondences (i.e. , they do not contain

any subsumption nor disjointness correspondence), then it is useless to execute step 5.

In the following paragraphs, we thoroughly describe each step separately.

Step 1 : Loading Input Ontologies & Alignments

This step is the same step used in OIAR (See Section 4.1.1).

Step 2 : Disambiguating the Input Alignments (Optional)

This step is the same step used in OIAR (See Section 4.1.1).

Step 3 : Generating a New Name for each Set of Equivalent Entities to be Merged

Algorithm 2 parses the equivalence correspondences of the input alignments after being trimmed,

and returns a HashMap whose ”key” contains the original IRI of a given entity, and ”value” contains

its new name (or code) in our future merged ontology. By doing so, we associate a unique code to

each set of equivalent entities. We will use this unique code as a short name for the merged entity

resulting from the merge of a set of equivalent entities in the merged ontology. The resulting merged

entity will also have new labels that are actually the short original names of the entities that were

merged into it.

Step 4 : Creating (Refactored) Merged Entities (or Merging Equivalent Entities)

We parse the classes of the input ontologies, and we extract their IRIs and descriptions (i.e. ,

their super, equivalent and disjoint class expressions, and their annotations—labels, comments and

annotation properties —, etc). If a parsed class or one of the entities in its description exists as a

”key” in the HashMap (resulting from the previous step), then we replace it by its ”value” (i.e. , by

its new merged name). In other words, in our merged ontology, we create a (refactored) copy of

that class and its description, such that each entity occurrence is replaced by its associated new

name. If the parsed class is a merged one, then we also add its original short name as a label in its

new description.

We parse the object properties and data properties of the input ontologies, and we extract their

IRIs and descriptions (i.e. , their super, inverse, equivalent and disjoint property expressions, their

domains and ranges class expressions (or data ranges), their characteristics, and their annotations—

labels, comments , and annotation properties —, etc). If a parsed property or one of the entities in

its description does exist as a ”key” in the HashMap, then we replace it by its ”value” (i.e. , by

its new merged name). In other words, in our merged ontology, we create a (refactored) copy of

that property and its description, such that each entity occurrence is replaced by its associated new
11 https://github.com/inesosman/AROM

https://github.com/inesosman/AROM

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 15

Algorithm 2: Merging Equivalent Entities’ Names.

Input : A set of alignments Al = { al 1 , al 2 , . . . , al n } , and a threshold T ∈ [0,1]

Output : A HashMap < EntityURI, MergedName >

K ← 0 ; Name ← "" ; M ap1 , M ap2 ← ∅ ;
foreach Alignment ∈ Al do

Alignment .cut(T);

foreach Cell ∈ Alignment do

if Cell.getRelation = "=" then

Ent it y 1 ← Cel l .getSourceEntity();

Ent it y 2 ← Cel l .getTargetEntity();

K ← K + 1 ;

Name ← ” Code _ ” + K;

if !Map1.containsKey(Entity1) and !Map1.contains(Entity2)) then

Map1 .put(Ent it y 1 , Name);

Map1 .put(Ent it y 2 , Name);

Map2 .put(Name , [Ent it y 1 , Ent it y 2]);

else if Map1.containsKey(Entity1) and !Map1.contains(Entity2) then

Name ← Map1 .get(Ent it y 1);

Map1 .put(Ent it y 2 , Name);

Set ← Map2 .get(Name) ∪ Ent it y 2 ;

Map2 .put(Name , Set);

else if !Map1.containsKey(Entity1) and Map1.contains(Entity2) then

Name ← Map1 .get(Ent it y 2);

Map1 .put(Ent it y 1 , Name);

Set ← Map2 .get(Name) ∪ Ent it y 1 ;

Map2 .put(Name , Set);

else

/* if Map1 .containsKey (Ent it y 1) and Map1 .containsKey (Ent it y 2) then */

Name 1 ← Map1 .get(Ent it y 1);

Name 2 ← Map1 .get(Ent it y 2);

Set ← Map2 .get(Name 1) ∪ Map2 .get(Name 2);

Map2 .put(Name , Set);

Map2 .remove(Name 1);

Map2 .remove(Name 2);

foreach Entity ∈ Set do

Map1 .put(Ent it y , Name);

return Map1 /* containing the equivalent entities to be merged, and their
corresponding new merged names. */

•

name. If the parsed property is a merged one, then we also add its original short name as a label

in its new description.

We parse the individuals/instances of the input ontologies, and we extract their IRIs and

descriptions (i.e. , their class assertions , their negative and positive property assertions , their sameAs

and different individuals, and their annotations—labels, comments , and annotation properties —, etc). If

16 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

a parsed individual or one of the entities in its description exists as a ”key” in the HashMap, then

we replace it by its ”value” (i.e. , by its new merged name). In other words, in our merged ontology,

we create a (refactored) copy of that individual and its description such that each entity occurrence

is replaced by its associated new name. If it is a merged individual, then we also add its original

short name as a label in its new description.

Step 5 : Creating (Refactored) Bridging Axioms Translating the Input Alignments We parse the

subsumption and disjointness correspondences of the input alignments after being trimmed. If one of

the entities (of the parsed entity pairs) exists as a ”key” in the HashMap, then we replace it by its

”value” (i.e. , by its newly merged name). Then, we create bridging subsumption or disjointness axioms

that exactly translate the parsed (refactored) correspondences, and add them to our output merged

ontology.

Step 6 : Creating the Output Merged Ontology When we execute all steps except steps 3 and 5, we

obtain an aggregated ontology that will simply compose/concatenate/associate the input ontologies

without making any semantic interoperability between them, as shown in Fig. 5 ; and when we

execute all steps, we obtain an integrated ontology—generally called a fully merged ontology or a full-

merge ontology , as shown in Fig. 1 b. Indeed, if and only if step 3 is executed, then axioms of the

step 4 will form an OWL aggregated ontology where equivalent entities are fully merged into merged

entities. After that, step 5 will add subsumption and disjointness bridging axioms (if there are any

subsumption and disjointness correspondences in the input alignments). We will finally get an owl
file corresponding to the merged output ontology.

5 Experimentation

In this section, we provide an in-depth presentation and analysis of the experiments conducted.

5.1 Ontology integration evaluation

On the one hand, it is difficult to make a comparison between ontology integration approaches

because there are no agreed quality measures/metrics for assessing them, such as Precision and

Recall for assessing ontology alignments. To the best of our knowledge, there are no references

or benchmarks or gold standard metrics within the ontology integration community to objectively

evaluate the quality of integration methods. Besides, it is impossible to manually obtain an ideal

integration result for large ontologies, and there could be more than just one ideal result [26] . On the

other hand, the related work approaches use different input ontologies, different ontology integration

types, different input parameters and different evaluation metrics [1] . Therefore, it is impossible

to compare our obtained results with other ontology integration methods. In conclusion, assessing

ontology integration approaches is still an open issue.

It should be noted that we are not going to assess the matching results (i.e. , the quality of the

alignments) since we will be using the OAEI reference alignments which are considered as the best

possible alignments. In this work, we aim to assess the quality of the resulting integrated ontology.

To do so, we will be using the following measures [1] :

1. Entities completeness/coverage : Number of preserved entities from the input ontologies;

2. Axioms completeness/coverage : Number of preserved axioms from the input ontologies;

3. Correspondences completeness : Number of preserved correspondences from the input alignment(s);

4. Ontology consistency : Is the integrated ontology consistent? (True or False);

5. Ontology coherence : Number of unsatisfiable classes in the integrated ontology;

6. Entities redundancy : Number of duplicated/redundant entities in the integrated ontology.

The three first measures assess the degree of information preservation or completeness to ensure

that there is no information loss from the input ontologies and alignments. The two first metrics

reflect the knowledge preservation from the input ontologies, while the third metric reflects the

knowledge preservation from the input alignments. The metric of entities coverage measures the

number (or the percentage) of preserved entities in the integrated ontology compared to an expected

number of entities:

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 17

•

•

i

p

p

T

c

o

i

t

o

t

i

o

e

o

b

i

s

r

i

t

t

t

e

m

5

A

•

•

For the simple merge case, the number of entities of the integrated ontology should be ideally equal

to the sum of the entities of the input ontologies.

For the full merge case, the number of entities of the integrated ontology cannot be easily

determined. However, in the case of two ontologies, the number of entities of the integrated

ontology should be ideally equal to the sum of entities of the two input ontologies, minus the

number of merged entities (i.e. , minus the number of equivalence correspondences of the 1-to-1

alignment).

The metric of axioms coverage [24] measures the number (or the percentage) of preserved axioms

n the integrated ontology. Entities and axioms of the input ontologies should ideally be completely

reserved. The metric of correspondences coverage [45] reflects the number (or the percentage) of

reserved correspondences in the integrated ontology.

The fourth and fifth metrics reflect the consistency and the coherence of the integrated ontology.

he consistency metric evaluates the logical/semantic consistency of the integrated ontology, while the

oherence metric measures the number (or the percentage) of unsatisfiable classes in the integrated

ntology. An unsatisfiable class [53] , a.k.a. a coherence violation , is a class containing a contradiction

n its description, thus no individual/instance can meet all the requirements to be a member of

hat class. Unsatisfiable classes are called coherence violations because they cause the incoherence

f the integrated ontology. Indeed, if there is at least one unsatisfiable entity in an ontology,

hen the latter becomes incoherent. Similarly, if an unsatisfiable class is instantiated (i.e. , have

ndividuals as instances/members), then the integrated ontology becomes inconsistent. An inconsistent

ntology [54] is an ontology that has no satisfying interpretation. Ontology inconsistency is a fatal

rror because we cannot infer any useful knowledge from the ontology by ontology reasoning. Overall,

ntology inconsistency and incoherence are logical errors reflecting semantic conflicts/contradictions

etween distinct classes in the integrated ontology.

The metric of entities redundancy measures the number (or the percentage) of redundant entities

n the integrated ontology. Redundant entities are distinct but equivalent entities, having the

ame meaning and representing the same entity in the integrated ontology. These entities become

edundant because they are neither merged with each other, nor linked by equivalence axioms in the

ntegrated ontology. Redundant entities complicate text annotation tasks due to ambiguity, increase

he size of the integrated ontology, and decrease the interoperability between applications that use

hese entities [24] .

We will also be using the following performance evaluation criteria:

1. Runtime : The execution time performance;

2. Scalability : Are runtimes scalable when using heavyweight input ontologies?;

3. Human Intervention : Is the user involved in the ontology integration process?

The ontology integration algorithm should have a competitive runtime compared to runtimes of

he related work algorithms. In addition, it should still have an acceptable runtime and a good result,

ven for large and rich ontologies. Finally, the intervention of the user or the expert should be

inimal; It is better to have a fully automatic algorithm without any manual effort.

.2 Experimental environment

We performed all tests on a standard laptop with 4 Gb of RAM. We have implemented OIAR and

ROM in Java, and we have used the following external tools:

OWL API 12 [50,55] (Version 4.1.4), a Java programming interface for developing, manipulating, and

serializing OWL ontologies.

Alignment API 13 [49,56] (Version 4.9), a Java programming interface for expressing, accessing, and

manipulating ontology alignments in the Alignment format.
12 https://github.com/owlcs/owlapi/wiki
13 http://alignapi.gforge.inria.fr/

https://github.com/owlcs/owlapi/wiki
http://alignapi.gforge.inria.fr/

18 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

Table 2

Number of Entities in the LargeBio Ontologies.

LargeBio Classes Object Prop. Data Prop. Instances Logical Axioms

FMA 78,988 0 54 0 79,218

NCI 66,724 123 67 0 96,046

SNOMED-CT 122,464 55 0 0 191,203

Total 268,176 178 121 0 366,467

Table 3

Number of correspondences in the LargeBio reference alignments.

Alignment

Original Disambiguated

≡ ? � Total ≡ ? � Total

FMA-NCI 2,686 338 3,024 2,369 190 2,559

FMA-SNOMED 6,026 2,982 9,008 5,209 2,579 7,788

SNOMED-NCI 17,210 1,634 18,844 13,606 790 14,396

Total Correspondences 25,922 †† 4,954 30,876 † 21,184 ‡‡ 3,559 24,743 ‡

� When these incoherence-causing correspondences are deleted, the alignment becomes

repaired. † The original reference alignments contain 30,876 correspondences. †† The

repaired reference alignments contain 25,922 correspondences. ‡ The disambiguated reference

alignments contain 24,743 correspondences. ‡‡ The disambiguated & repaired reference

alignments contain 21,184 correspondences.

•

•

HermiT 14 [57,58] (Version 1.3.8), a DL reasoner for inferring implicit knowledge, interrogating and

classifying ontologies, and verifying the consistency and coherence of ontologies.

ELK

15 [59] , an EL reasoner dedicated for efficiently reasoning on large ontologies. EL

++ [60,61] is

a fragment and a lightweight version of DL. Since HermiT cannot scale when reasoning over large

OWL ontologies, we use ELK instead.

HermiT or ELK ontology reasoners are used to check the consistency of the resulting integrated

ontology and to compute the number of its unsatisfiable classes.

5.3 Experiments

We have carried out the experiments on the Large Biomedical Ontologies (LargeBio) track provided

by the Ontology Alignment Evaluation Initiative (OAEI) campaign for the year 2020. LargeBio is

composed of three independently developed large and semantically rich ontologies (See Table 2),

namely FMA (Foundational Model of Anatomy), NCI (National Cancer Institute Thesaurus), and

SNOMED-CT (Clinical Terms). OAEI provides reference alignments between each pair of the LargeBio

ontologies based on the UMLS metathesaurus [62] , namely FMA-NCI, FMA-SNOMED and SNOMED-NCI

(See Table 3). LargeBio ontologies and reference alignments are downloadable from the OAEI 16 website.

In the OAEI reference alignments (See Table 3), correspondences having a relation flagged by the

symbol ”≡” are correct equivalence correspondences; However, correspondences having a relation

flagged by the symbol ”? ” are correct equivalence correspondences involved in the introduction of

unsatisfiable classes in the future integrated ontology.

We have integrated the three LargeBio ontologies FMA (O 1), NCI (O 2) and SNOMED-CT (O 3) using

their three pairwise reference alignments FMA-NCI, FMA-SNOMED and SNOMED-NCI . The IRI of our

output ontology is ”http://integration ” for OIAR and ”http://merging ” for AROM. All tests have been
14 http://www.hermit-reasoner.com/
15 https://www.cs.ox.ac.uk/isg/tools/ELK/
16 http://oaei.ontologymatching.org/

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
https://www.nlm.nih.gov/research/umls/index.html
http://www.hermit-reasoner.com/
https://www.cs.ox.ac.uk/isg/tools/ELK/
http://oaei.ontologymatching.org/

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 19

p

i

5

5

a

t

t

c

”

i

f

s

o

t

F

r

o

5

a

r

t

w

b

erformed with a confidence threshold equal to 0.0, which means that we have not trimmed the

nput alignments; so, the input alignments still contain high and low confidence correspondences.

.4 Examples of ontology integration cases using OIAR

.4.1 General case example

In this example, there are three equivalence correspondences extracted from FMA-NCI, SNOMED-NCI

nd FMA-SNOMED reference alignments, respectively, as follows (See Figure A.1):

O 1 #Skin_of_head ≡ O 2 #Head_Skin
O 3 #Skin_structure_of_head ≡ O 2 #Head_Skin
O 1 #Skin_of_head ≡ O 3 #Skin_structure_of_head

The first correspondence (shown in Figure A.1a) matches the class ”Skin_of_head ” from FMA

o the class ”Head_Skin ” from NCI . The second correspondence (shown in Figure A.1b) matches

he class ”Skin_structure_of_head ” from SNOMED to the class ”Head_Skin ” from NCI . And the third

orrespondence (shown in Figure A.1c) matches the class ”Skin_of_head ” from FMA to the class

Skin_structure_of_head ” from SNOMED .

The definition/description of the class ”Skin_of_head ” in its original ontology and in the output

ntegrated ontology can be expressed in DL as follows:

Definition of the " Skin_of_head" class

in FMA :

Skin_of_head � Segment_of_skin

in the bridge ontology :

Skin_of_head � Segment_of_skin

Skin_of_head ≡ Head_Skin

Skin_of_head ≡ Skin_structure_of_head

In Appendix A, we provide definitions written in RDF/XML 17 which is the standard format/syntax

or expressing ontologies. The definition of the class ”Skin_of_head ” in its original ontology FMA is

hown in Figure A .2. Figure A .3 shows an excerpt from the ontology that resulted from the integration

f the LargeBio ontologies using OIAR. The framed axioms are the added bridging axioms translating

he equivalence correspondences of the input alignments. In the non-refactored version of OIAR (See

igure A.3a), axioms of the integrated ontology are exactly like the original ones. However, in the

efactored version of OIAR (See Figure A.3b), axioms of the integrated ontology are exactly like the

riginal ones, except that the IRIs of all the mentioned entities are customized.

.4.2 Alignment disambiguation example

In this example, we focus on the case where there are ambiguous correspondences in the input

lignments. There are three equivalence correspondences extracted from FMA-NCI and FMA-SNOMED

eference alignments (See Figure A.4). They match the class ”Abdominal_lymph_node ” (from FMA) with

hree other classes (from NCI and SNOMED) as follows:

Abdominal_lymph_node (from FMA) is equivalent to:

≡ Intra-abdominal_Lymph_Node (NCI) [0.50]

≡ Abdominal_lymph_node_structure (SNOMED) [0.61]

≡ Abdominal_lymph_node_group (SNOMED) [0.55]

here ”Abdominal_lymph_node_group ” is a subclass of ”Abdominal_lymph_node_structure ”. Values into

rackets are the confidence/similarity values of these correspondences.
17 https://www.w3.org/TR/rdf- syntax- grammar/

https://www.w3.org/TR/rdf-syntax-grammar/

20 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

The first correspondence that matches ”Abdominal_lymph_node ” with ”Intra-

abdominal_Lymph_Node ” has a similarity measure of 0.5 (See Figure A.4a). The second

correspondence that matches ”Abdominal_lymph_node ” with ”Abdominal_lymph_node_structure ”

has a similarity measure of 0.61 (See Figure A.4b). And the third correspondence that matches

”Abdominal_lymph_node ” to ”Abdominal_lymph_node_group ” has a similarity measure equal to 0.55

(See Figure A.4c). Notice that the second and third correspondences are ambiguous correspondences

because the same source class ”Abdominal_lymph_node ” coming from FMA is matched to two target

classes coming from SNOMED-CT . The second correspondence is more reliable than the third one

because it has a higher similarity value. Notice that if the alignment disambiguation step is executed,

then the third correspondence will be removed. The disambiguation algorithm only keeps the highest

ambiguous correspondence, which is in our case the second correspondence, in order to obtain a

1-to-1 input alignment.

The definition of the class ”Abdominal_lymph_node ” in its original ontology and in the output

integrated ontology can be expressed in DL as follows:

Definition of the " Abdominal_lymph_node " class

in FMA :

Abdominal_lymph_node � Deep_lymph_node

in the bridge ontology (using the original alignments) :

Abdominal_lymph_node � Deep_lymph_node

Abdominal_lymph_node ≡ Intra-abdominal_Lymph_Node

Abdominal_lymph_node ≡ Abdominal_lymph_node_group

Abdominal_lymph_node ≡ Abdominal_lymph_node_structure

in the bridge ontology (using the disambiguated alignments) :

Abdominal_lymph_node � Deep_lymph_node

Abdominal_lymph_node ≡ Intra-abdominal_Lymph_Node

Abdominal_lymph_node ≡ Abdominal_lymph_node_structure

In Appendix A, we provide definitions written in the RDF/XML syntax. The definition of the

class ”Abdominal_lymph_node ” in its original ontology FMA is shown in Figure A.5. Figure A.6 shows

the definition of the class ”Abdominal_lymph_node ” in the bridge ontology that resulted from the

integration of the LargeBio ontologies using the original reference alignments. Whereas, Figure A.7

shows the definition of the class ”Abdominal_lymph_node ” in the resulting bridge ontology using

the disambiguated reference alignments (i.e. , after disambiguating the input alignments). Therefore,

Figure A.6 contains three equivalence bridging axioms, while Figure A.7 only contains two equivalence

bridging axioms, because the third correspondence was removed during the disambiguation step.

5.4.3 Incoherence example

Integrating the LargeBio ontologies introduces many unsatisfiable classes in the resulting integrated

ontology. In OWL, an equivalence axiom linking two classes is formally and implicitly equal to two

subsumption axioms in both directions, as stated in Eq. 1 where C 1 and C 2 are two classes.

〈 C 1 , C 2 , ≡〉 = 〈 C 1 , C 2 , �〉 + 〈 C 2 , C 1 , �〉 (1)

The addition of these implicit subsumption (<) relations will alter the structure of the input ontologies

and will infer new knowledge that may be contradictory, mainly because of the existence of disjoint

axioms coming from the input ontologies.

Example 1 (Coherence Violation) . Fig. 7 shows an example of two unsatisfiable classes in the

integrated ontology, which are ”001#Plane_suture ” and ”003#Plane_suture_structure ” originating from

FMA (O 1) and SNOMED (O 3), respectively. In Fig. 7 , we omit IRI prefixes of the entities for

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 21

Fig. 7. Unsatisfiable class formation in a bridge ontology.

r

”

e

t

c

f

d

s

l

r

a

a

t

5

5

f

o

a

m

(

eadability reasons. When adding the two equivalence axioms linking ”001#Plane_suture ” and

003#Plane_suture_structure ” and linking ”001#Anatomical_structure ” and ”003#Anatomical_structure ”,

ach of these equivalence axioms becomes a set of two reciprocal subsumption axioms. By inference,

he two classes ”001#Plane_suture ” and ”003#Plane_suture_structure ” (circled in red) become sub-

lasses of ”001#Material_anatomical_entity ” and ”001#Anatomical_line ” which are two disjoint classes

rom FMA . These two classes are unsatisfiable because a class can never be a subclass of two

isjoint classes. To ensure the coherence of the integrated ontology, we will face a dilemma between

acrificing an equivalence correspondence from the alignment (by removing the correspondence

inking ”001#Plane_suture ” and ”003#Plane_suture_structure ” in our case), which will introduce

edundant entities and reduce interoperability between input ontologies, or sacrificing the disjointness

xiom from the input ontology FMA , which will be a knowledge loss. Ontology matching and

lignment repair are beyond the scope of this paper. An alignment repair process would remove all

he correspondences that cause unsatisfiable entities in the integrated ontology.

.5 Examples of ontology integration cases using AROM

.5.1 General case example

We take the same example that we have done for OIAR (See Example 5.4.1), but we perform a

ull merge instead of a simple merge. The correspondences (of Figure A.1) will lead to the merging

f the three matched classes: ”Skin_of_head ”, ”Head_Skin ” and ”Skin_structure _of_head ” because they

re mentioned as equivalent classes in the input alignments. The definition/description of these three

atched classes (in their original ontologies FMA, NCI and SNOMED) can be expressed in DL as follows

 See Figure B.1):

22 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

•

•

•

Definition of " Skin_of_head" in FMA :

Skin_of_head � Segment_of_skin

Definition of " Head_Skin " in NCI :

Head_Skin � ∃ Anatomic_Structure_Is_Physical_Part_Of. Head

Head_Skin � Skin

Definition of " Skin_structure_of_head" in SNOMED :

Skin_structure_of_head � Skin_AND_subcutaneous_tissue_structure_of_head

Skin_structure_of_head � Skin_of_part_of_head_and_neck

The three equivalent classes have been fully merged into a single class in our output merged

ontology. The merged class:

is identified by the short name ”Code_19351 ”;

has three added labels (framed in red), which are actually the short names of the classes that have

been merged into it (We attach each short name to its ontology number (ID) to directly see from

which ontology it originates);

and captures all the knowledge of the three equivalent classes that have been merged.

The definition of the merged class ”Code_19351 ” in the output merged ontology can be expressed

in DL as follows:

Description of " Code_19351 " in our merged ontology :

Code_19351 � ∃ Anatomic_Structure_Is_Physical_Part_Of. Code_17698

Code_19351 � Code_3840

Code_19351 � Skin_AND_subcutaneous_tissue_structure_of_head

Code_19351 � Skin_of_part_of_head_and_neck

Code_19351 � Code_24805

Notice that all the axioms describing the equivalent entities were preserved in the merged entity

”Code_19351 ”; and all the merged entities, mentioned in the description of ”Code_19351 ”, are also

identified by their corresponding unique codes (as short names). That is, the class ”Segment_of_skin ”

(from FMA) was merged with its equivalent classes (from NCI and SNOMED) to form the class

”0 0 0#Code_3840 ”; The class ”Skin ” (from NCI) was merged with its equivalent classes to form the

class ”0 0 0#Code_24805 ”; And the class ”Head ” (from NCI) was merged with its equivalent classes to

form the class ”0 0 0#Code_17698 ”.

In Appendix B, we provide definitions written in RDF/XML. Figure B.2 shows an excerpt from the

ontology that results from merging the three LargeBio ontologies using AROM. In the non-refactored

version of AROM (See Figure B.2a), axioms of the merged ontology are exactly like the original ones.

However, in the refactored version of AROM (See Figure B.2b), axioms of the merged ontology are

exactly like the original ones, except that the IRIs of all the mentioned entities are customized.

5.5.2 Incoherence examples

Example 2 (Coherence Violation) . In Fig. 8 a, we take the same incoherence example that we have

done for OIAR (See Example 1), but we perform a full merge instead of a simple merge. Figs. 8 a

and B.3 show an unsatisfiable class in the merged ontology, which is the class ”0 0 0#Code_7845 ”

circled in red. In Fig. 8 a, we omit IRI prefixes of the entities for readability reasons. After merging

the equivalent classes ”Plane_suture ” belonging to FMA (O 1) and ”Plane_suture_structure ” belonging

to SNOMED (O 3), we get the merged class ”0 0 0#Code_7845 ”. After merging the equivalent classes

”Anatomical_structure ” belonging to FMA (O 1) and ”Anatomical_structure ” belonging to SNOMED (O 3),

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 23

Fig. 8. Examples of an Unsatisfiable Class Formation in a Full-Merge Ontology.

w

a

c

e

a

c

E

i

p

b

b

”

t

c

e get the merged class ”0 0 0#Code_11134 ”. By inference, the merged class ”0 0 0#Code_7845 ” becomes

 subclass of ”001#Material_anatomical_entity ” and ”001#Anatomical_line ”, which are two disjoint

lasses coming from FMA (O 1). After the merge, ”001#Anatomical_line ” is merged with its equivalent

ntities to form the class ”0 0 0#Code_4280 ”. Similarly, ”0 03#Suture_structure ”, ”0 03#Joint_structure ”

nd ”003#Body_organ_structure ” were merged with their corresponding equivalent classes to form the

lasses ”0 0 0#Code_5734 ”, ”0 0 0#Code_22586 ” and ”0 0 0#Code_8460 ”, respectively.

xample 3 (Coherence Violation) . Figs. 8 b and B.4 show another example of an unsatisfiable class

n the merged ontology, which is the class ”0 0 0#Code_20 098 ” circled in red. In Fig. 8 b, we omit IRI

refixes of the entities for readability reasons. After merging the equivalent classes ”Apex_of_heart ”

elonging to FMA (O 1), ”Apex_of_the_Heart ” belonging to NCI (O 2), and ”Structure_of_apex_of_heart ”

elonging to SNOMED (O 3), the merged class ”0 0 0#Code_20 098 ” becomes, by inference, a subclass of

0 01#Organ ” and ”0 01#Anatomical_point ” which are two disjoint classes coming from FMA (O 1). After

he merge, ”001#Organ ” was merged with its equivalent class ”002#Organ ” (from NCI) to form the

lass ”0 0 0#Code_910 ”.

24 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

Algorithm 1: Alignment Disambiguation.

Input : A set of alignments Al = { al 1 , al 2 , . . . , al n } , and a threshold T ∈ [0,1]

Output : A HashMap < Entity1URI, Entity2URI >

M ap1 , M apCon f 1 , M ap2 , M apCon f 2 ← ∅ ;
// Step 1 (See Figure~4a):

foreach Alignment ∈ Al do

Alignment .cut(T)~~~// Alignment trimming

foreach Cell ∈ Alignment do

// In Alignment API, a correspondence is called a "cell".

if (Cell.getRelation = "=") then

Ent it y 1 ← Cel l .getSourceEntity();

Ent it y 2 ← Cel l .getTargetEntity();

C on f ← C el l .getStrength(); /* In Alignment API, confidence measure is called
"strength". */

if (!Map1.containsKey(Entity1) or Conf > MapConf1.get(entity1)) then

Map1 .put(Ent it y 1 , [Ent it y 2]);

MapCon f 1 .put(Ent it y 1 , Con f);

else if (Conf == MapConf1.get(Entity1)) then

Set ← Map1 .get(Ent it y 1) ∪ ent it y 2 ;

Map1 .put(Ent it y 1 , Set);

// Step 2 (See Figure~4b):

foreach Entry ∈ Map1 do

Ent it y 1 ← Entry .getKey();

foreach Ent it y 2 ∈ Entry.getValue() do

if (!Map2.containsKey(Entity2) or MapConf1.get(Entity1) > MapConf2.get(Entity2)) then

Map2 .put(Ent it y 2 , [Ent it y 1]) ;

MapCon f 2 .put(Ent it y 2 ,~MapCon f 1 .get(Ent it y 1));

else if (MapConf1.get(Entity1) == MapConf2.get(Entity2)) then

Set ← Map2 .get(Ent it y 2) ∪ Ent it y 1 ;

Map2 .put(Ent it y 2 , Set);

return Map2 /* as a disambiguated alignment in which each entry forms a
correspondence. */

5.6 Results

Tables 4 and 5 sketch the characteristics of ontologies resulting from the integration of LargeBio

ontologies using OIAR and AROM, respectively. We have performed four runs using OIAR, and four

runs using AROM. In each run, we change the type of the input alignments; Alignments can be original

(unaltered), disambiguated, repaired, or disambiguated and repaired. In Tables 4 and 5 :

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 25

Table 4

Characteristics of the ontology resulting from the integration of LargeBio ontologies using OIAR.

Simple-Merge

Integrated Ontology

Features

Input Alignments

Original Repaired Disambiguated

Disambiguated

& Repaired

Classes 268,176

Object Properties 178

Datatype Properties 121

Instances 0

Logical Axioms a 397,343

(366,467

+ 30 , 876)

392,389

(366,467

+ 25 , 922)

391,210

(366,467

+ 24 , 743)

387,651

(366,467

+ 21 , 184)

Consistency b � � � �

Unsatisfiable Classes b 203,675 49,046 155,775 43,078

Redundant Classes 0 8,498 4,501 10,540

Runtime c (min) 0.70 0.68 0.71 0.70

a In parentheses, 366,467 is the total number of axioms of all input ontologies, and the value after the sum operator is the

total number of correspondences of all input alignments.
b Computed using the ELK ontology reasoner [59] .
c Runtimes do not include matching times, since we take pre-established alignments as input.

Table 5

Characteristics of the ontology resulting from the integration of LargeBio ontologies using AROM.

Full-Merge Integrated

Ontology Features

Input Alignments

Original Repaired Disambiguated

Disambiguated

& Repaired

Classes 240,634 244,173 245,334 248,097

Object Properties 178

Datatype Properties 121

Instances 0

Logical Axioms 359,600 360,577 362,404 363,135

Consistency a � � � �

Unsatisfiable Classes a 177,975 42,450 138,523 38,067

Redundant Classes 0 8,498 4,501 10,540

Runtime b (min) 0.76 0.75 0.72 0.77

a Computed using the ELK ontology reasoner [59] .
b Runtimes do not include matching times nor alignment repair times.

5

f

q
1. The Original column means that we have used all correspondences from the input alignments (i.e. ,

we have kept the input alignments ambiguous and unrepaired);

2. The Disambiguated column means that we have used all correspondences from the disambiguated

input alignments (i.e. , we have performed the alignments’ disambiguation step that only keeps one

correspondence from each set of ambiguous correspondences);

3. The Repaired column means that we have only used correspondences having relations ”≡” from the

input alignments (i.e. , we have repaired the input alignments by removing their correspondences

that have a relation ”? ”), and;

4. The Disambiguated & Repaired column means that we have only used the correspondences having

relations ”≡” from the disambiguated input alignments (i.e. , we have disambiguated and repaired

the input alignments).

.7 Observations and discussion

OIAR and AROM results are complete in the sense that they conserve all entities and axioms

rom the input ontologies. By observing the four columns of Tables 4 and 5 , we notice that the

uality of the integrated ontology depends on the quality of the input alignments (i.e. , it depends

https://www.cs.ox.ac.uk/isg/tools/ELK/
https://www.cs.ox.ac.uk/isg/tools/ELK/

26 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

on the performance of the ontology matching module and whether or not an alignment repair step is

included in the matching process).

Unsatisfiable entities, identified by the ELK reasoner, are formed because of the heterogeneous

conceptualizations of the input ontologies. Indeed, the input ontologies may be in disagreement with

each other because they have incompatible organizations/structuring or contradictory descriptions

of the same entities. This leads to the incoherence of the integrated ontology. Unsatisfiable classes

are often repaired by removing the incoherence-causing correspondences. However, removing correct

correspondences generates redundant (or duplicated) classes. The latter are distinct but actually

equivalent classes coming from different input ontologies. We conclude that the requirements of

ontology coherence and minimality (i.e., entity non-redundancy) can never be both fulfilled at the same

time.

Although the alignment disambiguation removes more correspondences than does the alignment

repair (as shown in Table 3), the use of the disambiguated alignments generates much less

redundant classes in the integrated ontology than the use of the repaired alignments. This is because

the ambiguous correspondences have so many entities in common (i.e. , where the same entities

appear in many correspondences). Thus, after removing these ambiguous correspondences by the

disambiguation process, the number of redundant classes will be much less than expected, because

classes composing the removed correspondences have a high overlap.

It is important to mention that if we integrate the three LargeBio ontologies using all

correspondences from the original (unrepaired and ambiguous) alignments and without conserving

any DisjointWith axiom from the input ontologies, we do not get any unsatisfiable class in our

integrated ontology. In this case, our integrated ontology is coherent but incomplete, i.e. , lacking

valuable disjoint knowledge. This proves that disjointness axioms are the major cause of semantic

conflicts in the integration of LargeBio ontologies. Therefore, in case we wish to conserve the

disjointness axioms of the input ontologies (like in our case here), our integrated ontology needs to be

repaired. We conclude that the requirements of ontology coherence and ontology knowledge preservation

can never be both fulfilled at the same time.

It should be noted that the full merge ontology always generates fewer unsatisfiable entities than

does the simple merge ontology because it naturally contains fewer entities after they have been

fully merged. Nevertheless, performing a full merge or a simple merge is exactly the same from a

semantic/logical point of view. In fact, if one leads to unsatisfiable entities, then the other will do so;

and if one does not lead to unsatisfiable entities, the other will do so.

We also notice that if we integrate two LargeBio ontologies using the repaired reference alignment

between them, then we get a consistent and coherent ontology (i.e. , that has no unsatisfiable classes).

However, if we integrate the three LargeBio ontologies using the three repaired pairwise alignments

(between ontology pairs), then we get an incoherent ontology that has considerable unsatisfiable

classes. We conclude that in an integration of multiple ontologies using pairwise alignments, we

cannot escape unsatisfiability even though we use repaired alignments. These unsatisfiable classes are

beyond the abilities of the current alignment repair systems. Actually, alignment repair systems are

dedicated to only integrating two ontologies using a pairwise alignment between them; they do not

deal with the simultaneous integration of multiple ontologies. This underscores the compelling need

for alignment repair systems that could deal with the holistic ontology integration using pairwise

alignments.

Still, OIAR and AROM can considerably help ontology developers in making initial ontology

integration steps, since they reduce the time and cost required for conceptualizing the ontology

domain from scratch. Runtimes of the complete process of both algorithms do not exceed one

minute for integrating the LargeBio ontologies. Remember that OIAR and AROM take as input external

alignments—that can be repaired or not; Thus, runtimes do not include neither ontology matching

times nor alignment repairing times.

Finally, as shown in Table 3 , the disambiguation step removed more correspondences from the

original alignments than did the repair step. Therefore, we expect that the integration of the LargeBio

ontologies using the disambiguated alignments will generate less unsatisfiable classes than the one

using the repaired alignments. However, contrary to our expectations, when comparing the two

columns ”Disambiguated alignments” and ”Repaired alignments” from Tables 4 and 5 , we observe

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 27

t

u

a

i

c

r

c

t

c

r

o

u

i

6

m

f

d

m

A

b

a

o

c

t

i

D

r

A

S

1

R

hat the use of the disambiguated alignments generates much more unsatisfiable classes than the

se of the repaired alignments. We deduce that the alignment disambiguation is an ”aggressive”

pproach that removes unnecessary correspondences without being able to guarantee coherence

n the integrated ontology. We should note that the repaired alignments do contain ambiguous

orrespondences (as shown in Table 3). Despite being ambiguous, when we use the LargeBio repaired

eference alignments to integrate each ontology pair separately, we do not get any unsatisfiable

lasses in the integrated ontology. In other terms, when we integrate two LargeBio ontologies using

he repaired reference alignment between them, the integrated ontology is always consistent and

oherent. Here, disambiguating the repaired alignment is useless and will indeed generate many

edundant classes (that should have been merged or linked by an equivalence axiom) in the integrated

ntology. To sum up, bear in mind that not all ambiguous equivalence correspondences generate

nsatisfiable entities in the integrated ontology. However, the alignment repair approaches may

nclude an alignment disambiguation step in some cases whenever needed.

 Conclusion

We have proposed a holistic method to support the simultaneous and customized integration of

ultiple ontologies by relying on external alignments. As a result, we have generated a comprehensive

reely-available software framework that includes the different implementations. As extensively

iscussed in the paper, such implementations reflect different integration strategies (i.e. , simple/full

erge) to provide different kinds of outcome (e.g. , refactored/non-refactored integrated ontology).

dditionally, we have validated and tested the proposed framework by running several experiments

ased on well-known ontologies, and we have discussed the results in context and against our initial

ssumptions. At a theoretical level, results are in line with expectations, as major limitations—i.e. ,

ntology inconsistency or unsatisfiabilities generated by contradictory specifications—are commonly

onsidered as open research issues within the community [63] .

Overall, we believe that the holistic approach does not introduce specific inconveniences along

he integration process, while it may significantly contribute to create a more usable and practical

ntegration environment.

eclaration of Competing Interest

The authors declare that they have no known competing financial interests or personal

elationships that could have appeared to influence the work reported in this paper.

cknowledgment

Sadok Ben Yahia is supported by the Astra funding program Grant 2014-2020.4.01.16-032.

upplementary material

Supplementary material associated with this article can be found, in the online version, at doi: 10.

016/j.mex.2021.101460 .

eferences

[1] I. Osman, S. Ben Yahia, G. Diallo, Ontology integration: approaches and challenging issues, Inf. Fusion (2021), doi: 10.1016/

j.inffus.2021.01.007 .
[2] N. Guarino, Formal ontology, conceptual analysis and knowledge representation, Int. J. Hum. Comput. Stud. 43 (5–6) (1995)

625–640, doi: 10.1006/ijhc.1995.1066 .
[3] T. Berners-Lee , J. Hendler , O. Lassila , The semantic web, Sci. Am. 284 (5) (2001) 34–43 .

[4] N. Shadbolt, T. Berners-Lee, W. Hall, The semantic web revisited, IEEE Intell. Syst. 21 (3) (2006) 96–101, doi: 10.1109/MIS.
2006.62 .

[5] M. Cheatham, C. Pesquita, Semantic Data Integration, in: Handbook of Big Data Technologies, Springer, 2017, pp. 263–305,

doi: 10.1007/978- 3- 319- 49340- 4 _ 8 .
[6] D. Aumueller, H.H. Do, S. Massmann, E. Rahm, Schema and ontology matching with COMA++, in: Proceedings of the ACM

SIGMOD International Conference on Management of Data, ACM, 2005, pp. 906–908, doi: 10.1145/1066157.1066283 .

https://doi.org/10.1016/j.mex.2021.101460
https://doi.org/10.1016/j.inffus.2021.01.007
https://doi.org/10.1006/ijhc.1995.1066
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0003
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0003
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0003
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0003
https://doi.org/10.1109/MIS.2006.62
https://doi.org/10.1007/978-3-319-49340-4_8
https://doi.org/10.1145/1066157.1066283

28 I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460

[7] S. Maßmann , S. Raunich , D. Aumüller , P. Arnold , E. Rahm , Evolution of the COMA match system, in: Proceedings of the 6th

International Workshop on Ontology Matching, 814, CEUR-WS.org, 2011 .
[8] N. Jian , W. Hu , G. Cheng , Y. Qu , FalconAO: aligning ontologies with falcon, in: Proceedings of the K-CAP Workshop on

Integrating Ontologies, 156, CEUR-WS.org, 2005 .
[9] W. Hu, Y. Qu, Falcon-AO: a practical ontology matching system, J. Web Semant. 6 (3) (2008) 237–239, doi: 10.1016/j.

websem.20 08.02.0 06 .
[10] E. Jiménez-Ruiz, B.C. Grau, LogMap: Logic-based and scalable ontology matching, in: the 10th International Semantic Web

Conference (ISWC), 7031, 2011, pp. 273–288, doi: 10.1007/978- 3- 642- 25073- 6 _ 18 .

[11] E. Jiménez-Ruiz, B.C. Grau, Y. Zhou, I. Horrocks, Large-scale interactive ontology matching: Algorithms and implementation,
in: the 20th European Conference on Artificial Intelligence ECAI, 242, IOS Press, 2012, pp. 4 4 4–4 49, doi: 10.3233/

978- 1- 61499- 098- 7- 4 4 4 .
[12] D. Ngo, Z. Bellahsene, YAM++: a multi-strategy based approach for ontology matching task, in: Proceedings of the

International Conference on Knowledge Engineering and Knowledge Management, Springer, 2012, pp. 421–425, doi: 10.
1007/978- 3- 642- 33876- 2 _ 38 .

[13] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I.F. Cruz, F.M. Couto, The AgreementMakerLight ontology matching system,

in: Proc. of the OTM 2013 Conferences - Confederated International Conferences, Springer, 2013, pp. 527–541, doi: 10.1007/
978- 3- 642- 41030- 7 _ 38 .

[14] E. Santos, D. Faria, C. Pesquita, F.M. Couto, Ontology alignment repair through modularization and confidence-based
heuristics, PLoS ONE 10 (12) (2015) e0144807, doi: 10.1371/journal.pone.0144807 .

[15] R. Studer, V.R. Benjamins, D. Fensel, et al., Knowledge engineering: principles and methods, Data Knowl. Eng. 25 (1) (1998)
161–198, doi: 10.1016/S0169-023X(97)0 0 056-6 .

[16] J. Euzenat , P. Shvaiko , Ontology Matching, Second Ed., Springer, 2013 .

[17] O. Lassila, R.R. Swick, W. Wide, W. Consortium, Resource description framework (RDF) model and syntax specification,
1998,

[18] E. Miller, An introduction to the resource description framework, Bull. Am. Soc. Inf.Sci. Technol. 25 (1) (1998) 15–19,
doi: 10.1002/bult.105 .

[19] D. Brickley , R.V. Guha , A. Layman , Resource Description Framework (RDF) Schema Specification, 1999 .
[20] D.L. McGuinness , F. Van Harmelen , et al. , OWL Web ontology language overview, W3C Recommend. 10 (10) (2004) 2004 .

[21] B. Motik , P.F. Patel-Schneider , B. Parsia , C. Bock , A. Fokoue , P. Haase , R. Hoekstra , I. Horrocks , A. Ruttenberg , U. Sattler , et al. ,
OWL 2 Web ontology language: structural specification and functional-style syntax, W3C Recommend. 27 (65) (2009) 159 .

[22] F. Baader , D. Calvanese , D. McGuinness , P. Patel-Schneider , D. Nardi , The Description Logic handbook: Theory,

Implementation and Applications, Cambridge University Press, 2003 .
[23] J. Conesa, A. Olivé, S. Caballé, Refactoring and its application to ontologies, in: Semantic Web Personalization and

Context Awareness: Management of Personal Identities and Social Networking, IGI Global, 2011, pp. 107–136, doi: 10.4018/
978- 1- 61520- 921- 7.ch010 .

[24] G. Stoilos, D. Geleta, J. Shamdasani, M. Khodadadi, A novel approach and practical algorithms for ontology integration, in:
Proc. of ISWC, Springer, 2018, pp. 458–476, doi: 10.1007/978- 3- 030- 00671- 6 _ 27 .

[25] J. De Bruijn, M. Ehrig, C. Feier, F. Martín-Recuerda, F. Scharffe, M. Weiten, Ontology mediation, merging and aligning,

Semant. Web Technol. (2006) 95–113, doi: 10.1002/047003033X.ch6 .
[26] S. Raunich, E. Rahm, Towards a benchmark for ontology merging, in: Proceedings of the OTM Confederated

International Workshops: On the Move to Meaningful Internet Systems, 7567, Springer, 2012, pp. 124–133, doi: 10.1007/
978- 3- 642- 33618- 8 _ 20 .

[27] M. Uschold, Achieving semantic interoperability using RDF and OWL-v10, 2005, 2005, Last accessed 29 July 2020.
[28] P. Mitra, G. Wiederhold, M. Kersten, A graph-oriented model for articulation of ontology interdependencies, in: Proc. of the

International Conference on Extending Database Technology, Springer, 20 0 0, pp. 86–100, doi: 10.1007/3- 540- 46439- 5 _ 6 .

[29] J. Heflin , J. Hendler , Dynamic Ontologies on the Web, in: Proc. of AAAI/IAAI, AAAI Press / The MIT Press, 20 0 0, pp. 4 43–4 49 .
[30] Y. Kalfoglou, W.M. Schorlemmer, Ontology mapping: the state of the art, Knowl. Eng. Rev. 18 (1) (2003) 1–31, doi: 10.1017/

S02698889030 0 0651 .
[31] E. Jiménez-Ruiz, B.C. Grau, I. Horrocks, R.B. Llavori, Ontology integration using mappings: towards getting the right logical

consequences, in: Proc. of the 6th European Semantic Web Conference (ESWC), Springer, 2009, pp. 173–187, doi: 10.1007/
978- 3- 642- 02121-3 _ 16 .

[32] P. Ziemba, J. Jankowski, J. Watrobski, W. Wolski, J. Becker, Integration of domain ontologies in the repository of website

evaluation methods, in: Proc. of the Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE,
2015, pp. 1585–1595, doi: 10.15439/2015F297 .

[33] L. Predoiu , C. Feier , F. Scharffe , J. de Bruijn , F. Martín-Recuerda , D. Manov , M. Ehrig , State-of-the-art survey on ontology
merging and aligning V2, in: EU-IST Integrated Project IST-2003-506826 SEKT, 2005, p. 79 .

[34] N.F. Noy , M.A. Musen , PROMPT: algorithm and tool for automated ontology merging and alignment, in: Proc. of AAAI/IAAI,
AAAI Press / The MIT Press, 20 0 0, pp. 450–455 .

[35] D.L. McGuinness , R. Fikes , J. Rice , S. Wilder , The chimaera ontology environment, in: Proc. of AAAI/IAAI, 20 0 0, AAAI Press

/ The MIT Press, 20 0 0, pp. 1123–1124 .
[36] G. Stumme , A. Maedche , FCA-MERGE: bottom-up merging of ontologies, in: Proceedings of the Seventeenth International

Joint Conference on Artificial Intelligence (IJCAI), Morgan Kaufmann, 2001, pp. 225–234 .
[37] N.F. Noy, M.A. Musen, The PROMPT suite: interactive tools for ontology merging and mapping, Int. J. Hum. Comput. Stud.

59 (6) (2003) 983–1024, doi: 10.1016/j.ijhcs.20 03.08.0 02 .
[38] D. Dou, D.V. McDermott, P. Qi, Ontology translation on the semantic web, in: Proc. of the OTM Confederated International

Conferences, CoopIS, DOA, and ODBASE: On the Move to Meaningful Internet Systems, Springer, 2003, pp. 952–969, doi: 10.

1007/978- 3- 540- 39964- 3 _ 60 .
[39] K. Kotis, G.A. Vouros, K. Stergiou, Towards automatic merging of domain ontologies: the HCONE-merge approach, J. Web

Semant. 4 (1) (2006) 60–79, doi: 10.1016/j.websem.2005.09.004 .

http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0007
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0007
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0007
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0007
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0007
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0007
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0008
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0008
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0008
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0008
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0008
https://doi.org/10.1016/j.websem.2008.02.006
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.3233/978-1-61499-098-7-444
https://doi.org/10.1007/978-3-642-33876-2_38
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1371/journal.pone.0144807
https://doi.org/10.1016/S0169-023X(97)00056-6
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0016
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0016
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0016
https://doi.org/10.1002/bult.105
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0019
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0019
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0019
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0019
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0020
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0020
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0020
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0020
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0021
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0022
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0022
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0022
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0022
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0022
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0022
https://doi.org/10.4018/978-1-61520-921-7.ch010
https://doi.org/10.1007/978-3-030-00671-6_27
https://doi.org/10.1002/047003033X.ch6
https://doi.org/10.1007/978-3-642-33618-8_20
https://doi.org/10.1007/3-540-46439-5_6
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0029
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0029
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0029
https://doi.org/10.1017/S0269888903000651
https://doi.org/10.1007/978-3-642-02121-3_16
https://doi.org/10.15439/2015F297
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0033
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0033
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0033
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0033
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0033
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0033
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0033
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0033
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0034
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0034
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0034
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0035
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0035
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0035
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0035
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0035
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0036
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0036
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0036
https://doi.org/10.1016/j.ijhcs.2003.08.002
https://doi.org/10.1007/978-3-540-39964-3_60
https://doi.org/10.1016/j.websem.2005.09.004

I. Osman, S.F. Pileggi and S. Ben Yahia et al. / MethodsX 8 (2021) 101460 29

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

40] P. Lambrix, H. Tan, SAMBO - A system for aligning and merging biomedical ontologies, J. Web Semant. 4 (3) (2006) 196–

206, doi: 10.1016/j.websem.20 06.05.0 03 .
[41] O. Udrea, L. Getoor, R.J. Miller, Leveraging data and structure in ontology integration, in: the SIGMOD International

Conference on Management of Data, ACM, 2007, pp. 449–460, doi: 10.1145/1247480.1247531 .
42] M. Maree, M. Belkhatir, A coupled statistical/semantic framework for merging heterogeneous domain-specific ontologies,

in: Proc. of the 22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2010, 2, IEEE, 2010, pp. 159–
166, doi: 10.1109/ICTAI.2010.138 .

43] S. Raunich, E. Rahm, Atom: automatic target-driven ontology merging, in: Proc. of the 27th International Conference on

Data Engineering, ICDE 2011, IEEE, 2011, pp. 1276–1279, doi: 10.1109/ICDE.2011.5767871 .
44] M. Fahad, N. Moalla, A. Bouras, Detection and resolution of semantic inconsistency and redundancy in an automatic

ontology merging system, J. Intell. Inf. Syst. 39 (2) (2012) 535–557, doi: 10.1007/s10844- 012- 0202- y .
45] S. Raunich, E. Rahm, Target-driven merging of taxonomies with ATOM, Inf. Syst. 42 (2014) 1–14, doi: 10.1016/j.is.2013.11.

001 .
46] M. Maree, M. Belkhatir, Addressing semantic heterogeneity through multiple knowledge base assisted merging of domain-

specific ontologies, Knowl. Based Syst. 73 (2015) 199–211, doi: 10.1016/j.knosys.2014.10.001 .

[47] W. Lou, R. Pi, H. Wang, Y. Ju, Low-cost similarity calculation on ontology fusion in knowledge bases, J. Inf. Sci. (2019) 14,
doi: 10.1177/0165551519870456 .

48] P. Mitra , G. Wiederhold , S. Decker , A scalable framework for the interoperation of information sources, in: Proceedings of
SWWS’01, The first Semantic Web Working Symposium, 2001, pp. 317–329 .

49] J. David, J. Euzenat, F. Scharffe, C.T. dos Santos, The alignment API 4.0, Semant. Web 2 (1) (2011) 3–10, doi: 10.3233/
SW- 2011- 0028 .

50] M. Horridge, S. Bechhofer, The OWL API: a java API for OWL ontologies, Semant. Web 2 (1) (2011) 11–21, doi: 10.3233/

SW- 2011- 0025 .
[51] G. Flouris , D. Plexousakis , G. Antoniou , A classification of ontology change, in: Proc. of the Semantic Web Applications and

Perspectives (SWAP), 201, CEUR-WS.org, 2006 .
52] N.F. Noy, M. Sintek, S. Decker, M. Crubézy, R.W. Fergerson, M.A. Musen, Creating semantic web contents with protégé-20 0 0,

IEEE Intell. Syst. 16 (2) (2001) 60–71, doi: 10.1109/5254.920601 .
53] U. Sattler, R. Stevens, P. Lord, (I Can’t Get No) Satisfiability, 2013. Last accessed 29 July 2020, URL http://ontogenesis.

knowledgeblog.org/1329
54] S. Bail, Common Reasons for Ontology Inconsistency, 2013. Last accessed 29 July 2020, URL http://ontogenesis.

knowledgeblog.org/1343

55] M. Horridge , S. Bechhofer , O. Noppens , Igniting the OWL 1.1 touch paper: The OWL API, in: Proceedings of the OWLED
2007 Workshop on OWL: Experiences and Directions, 258, CEUR-WS.org, 2007 .

56] J. Euzenat, An API for ontology alignment, in: Proceedings of the third International Semantic Web Conference, ISWC 2004,
3298, Springer, 2004, pp. 698–712, doi: 10.1007/978- 3- 540- 30475- 3 _ 48 .

[57] R. Shearer , B. Motik , I. Horrocks , HermiT: a highly-efficient OWL reasoner, in: Proceedings of the Fifth OWLED Workshop
on OWL: Experiences and Directions, collocated with the 7th International Semantic Web Conference (ISWC-2008), 432,

CEUR-WS.org, 2008 .

58] B. Glimm, I. Horrocks, B. Motik, G. Stoilos, Z. Wang, Hermit: an OWL 2 reasoner, J. Autom. Reason. 53 (3) (2014) 245–269,
doi: 10.1007/s10817- 014- 9305- 1 .

59] Y. Kazakov , M. Krötzsch , F. Simancik , ELK reasoner: architecture and evaluation., in: Proceedings of the 1st International
Workshop on OWL Reasoner Evaluation (ORE), 858, CEUR-WS.org, 2012, p. 12 .

60] F. Baader , S. Brandt , C. Lutz , Pushing the EL envelope, in: Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence IJCAI-05, Professional Book Center, 2005, pp. 364–369 .

[61] F. Baader , C. Lutz , S. Brandt , Pushing the EL envelope further, in: Proceedings of the Fourth OWLED Workshop on OWL:

Experiences and Directions, in: CEUR Workshop Proceedings, 496, 2008, pp. 1–10 .
62] O. Bodenreider, The unified medical language system (UMLS): integrating biomedical terminology, Nucleic Acids Res. 32

(Database-Issue) (2004) 267–270, doi: 10.1093/nar/gkh061 .
63] C. Pesquita , D. Faria , E. Santos , F.M. Couto , To repair or not to repair: reconciling correctness and coherence in ontology

reference alignments, in: the Ontology Matching Workshop (OM) co-located with the International Semantic Web
Conference (ISWC), CEUR-WS.org, 2013, pp. 13–24 .

https://doi.org/10.1016/j.websem.2006.05.003
https://doi.org/10.1145/1247480.1247531
https://doi.org/10.1109/ICTAI.2010.138
https://doi.org/10.1109/ICDE.2011.5767871
https://doi.org/10.1007/s10844-012-0202-y
https://doi.org/10.1016/j.is.2013.11.001
https://doi.org/10.1016/j.knosys.2014.10.001
https://doi.org/10.1177/0165551519870456
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0048
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0048
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0048
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0048
https://doi.org/10.3233/SW-2011-0028
https://doi.org/10.3233/SW-2011-0025
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0051
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0051
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0051
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0051
https://doi.org/10.1109/5254.920601
http://ontogenesis.knowledgeblog.org/1329
http://ontogenesis.knowledgeblog.org/1343
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0055
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0055
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0055
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0055
https://doi.org/10.1007/978-3-540-30475-3_48
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0057
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0057
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0057
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0057
https://doi.org/10.1007/s10817-014-9305-1
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0059
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0059
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0059
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0059
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0060
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0060
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0060
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0060
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0061
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0061
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0061
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0061
https://doi.org/10.1093/nar/gkh061
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0063
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0063
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0063
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0063
http://refhub.elsevier.com/S2215-0161(21)00253-3/sbref0063

	An Alignment-Based Implementation of a Holistic Ontology Integration Method
	1 Introduction
	2 Preliminaries and key notions
	2.1 Ontology
	2.2 Web ontology language
	2.3 Ontology alignment
	2.4 Ontology refactoring
	2.5 Ontology integration
	2.6 Ontology integration types
	2.6.1 Simple merge (bridge ontology)
	2.6.2 Full merge

	3 Ontology refactoring in our method
	4 Method details
	4.1 OIAR
	4.1.1 OIAR General process - refactored version
	4.1.2 OIAR General process - non-refactored version

	4.2 AROM

	5 Experimentation
	5.1 Ontology integration evaluation
	5.2 Experimental environment
	5.3 Experiments
	5.4 Examples of ontology integration cases using OIAR
	5.4.1 General case example
	5.4.2 Alignment disambiguation example
	5.4.3 Incoherence example

	5.5 Examples of ontology integration cases using AROM
	5.5.1 General case example
	5.5.2 Incoherence examples

	5.6 Results
	5.7 Observations and discussion

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Supplementary material
	References

