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Abstract
The field of herpes simplex virus (HSV) latency and reactivation has been
marked by controversy, which is not unexpected considering the complexities
of the biology involved. While controversy is an important tool for digging to the
bottom of difficult issues, we propose that unproductive conflict in the field
arises in part from poorly defined terminology and the need for a collective
framework. The uses of advanced global molecular and next-generation
sequencing approaches and an increasing array of  model systems havein vitro
provided new molecular-level insights into HSV latency and reactivation, with
the promise of expanding our concepts of these processes. However, our
current framework and language are inadequate to effectively integrate new
data streams into the established theories. In this brief perspective, we look
back into the past to examine when and how the lexicon of HSV latency and
reactivation arose in the literature and its evolution. We propose to open a
dialogue among investigators for the purpose of updating and clearly defining
terms used to describe these processes and to build a collective integrated
framework to move our field forward.
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Introduction
The intricately balanced relationship between humans and herpes 
simplex virus (HSV) type 1 has been honed over 6 million years of 
coevolution1, the complex interactions of this lifelong partnership 
refined as hominids evolved into Homo sapiens. At its core, this 
relationship hinges on the ability of the virus to aggressively repli-
cate in the epithelial cells at the site of infection, transport into the 
nervous system through the axons innervating the infection site, and 
enter a repressed state called latency. Periodically, the latent viral 
program in rare neurons is switched to the lytic cycle and infec-
tious progeny are transported back to the body surface followed 
by rounds of replication in mucosal epithelium and virus shedding 
with the potential for transmission to new hosts. While significant 
progress in understanding these processes has been made, there 
remains much to discover and in this discovering, controversy has 
and will continue to arise.

Partitioning the “process of reactivation” into a series of subevents 
may ultimately allow the development of improved models that 
can lead to testable hypotheses across the array of distinct model  
systems. This approach may prove particularly useful as we  
traverse the bridge between classic technology and the rapidly 
advancing ‘omic’ approaches. The following scenario of reac-
tivation is drawn from the mouse ocular model and in this sense 
represents one facet but is used here for illustrative purposes. The  
application of advanced global molecular surveys has provided sig-
nificant insights, including signature histone tail post-translational  
modifications associated with key regions of the latent viral genome 
and transcriptional activity from the viral genome during latency,  

including potential regulatory noncoding viral and host RNAs 
(reviewed in 2–5). Changes detected by these global readouts occur 
rapidly post-reactivation stimulus, emphasizing that many latent 
viral genomes are linked to neuronal physiology and altered at this 
level from the pre-stimulus state. However, at the other end of this 
“reactivation process” is the production of infectious virus, which is 
generated at extremely low levels in the ganglion. The significance 
of this becomes apparent when we move from global to single cell 
analyses, as shown schematically in Figure 1. While infectious 
virus is measured as a global outcome, i.e. from the homogenized 
cell culture or tissue on permissive cell monolayers, the number of 
neurons expressing viral proteins (shown to correlate with infec-
tious virus production6,7) is extremely rare. In the mouse trigemi-
nal ganglion (TG) model following a reactivation stimulus in vivo, 
at the peak, 0.04% of latently infected neurons progress to viral 
protein expression (average of 2–4 neurons/TG)8,9 (note: while this 
number varies modestly with viral and mouse strain, the remarkable 
restriction is a common feature).

This outcome implies that events that negatively influence the proc-
ess dominate and/or that downstream positive events occur rarely. 
Importantly, in between the derepression of the genome and asso-
ciated increased transcriptional activity are likely to be multiple 
regulatory tiers. These regulatory tiers would function to transform 
a broad response (the “relaxing” of many latent viral genomes 
and associated “generalized” transcriptional activity) into the very 
rare neuron entering the lytic cycle and generating low levels of 
infectious virus. From this model, viewing the “reactivation proc-
ess” as a complex event stream culminating in the rare reactivating 

Figure 1. The process of herpes simplex virus (HSV) reactivation from latency. Some sensory neurons in the trigeminal ganglion (TG) of 
latently infected mice contain the viral genome, and the number of copies per neuron varies from 1 to more than 100057,58. A subset of these 
neurons express the latency-associated transcript locus that expresses a primary transcript processed into small and long non-coding RNAs 
as well as very low-level transcription from most or all of the viral genome52,54,59–61. Following stresses that can induce viral reactivation from 
latency, changes in the post-translational modification (PTM) of histone tails on the viral genome can be rapidly detected and processed 
viral RNAs (e.g. spliced) become more abundant within the first few hours, but viral proteins are not detectable (reviewed in 2–5). Viral 
protein becomes detectable about six hours post-stress in very rare neurons, and we employ the term “initiation” to describe this event57. By 
twenty-two hours post-stress, infectious virus can be detected in 50–70% of the TG. Photomicrograph shows rare neuron in the process of 
reactivating.
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neuron is useful. Further, we can consider the rare event “reac-
tivation” as the intersection of a nested sequence of events. The  
possibility opens up that by comparing and contrasting increas-
ingly refined “events” within this stream from diverse model  
systems, a picture of the components of the “reactivation process” 
will emerge.

Below we consider how language has evolved to describe the com-
plex processes of latency and reactivation and how inadequate it 
seems to support our current understanding. There is controversy 
over the molecular events that “initiate” the “reactivation” of HSV 
from “latency”. Current hypotheses include the simultaneous induc-
tion of transcription of all viral genes of all kinetic classes10, a wave 
of this simultaneous HSV transcription followed by transcription 
dependent on the potent virally encoded transactivator viral pro-
tein 16 (VP16)11, the de novo expression of the immediate early 
ubiquitin E3 ligase infected cell protein 0 (ICP0), which dere-
presses or reactivates viral genomes12, or alternately the de novo 
expression of VP16 followed by the familiar lytic cascade of VP16-
induced viral gene transcription13. The three words in quotes in the 
second sentence will be used to explore the idea that some of the  
current controversy in the literature is due to the way various groups 
employ the language of viral latency and reactivation to describe 
their results and draw their conclusions. Standardization of opera-
tional definitions of such terms might go far to eliminate confusion 
and controversy. This is not a new idea, and so a review of how the 
lexicon surrounding the interesting natural history of HSV disease 
developed and evolved through time is instructive (“history holds 
wisdom, despite the notion that the history of science bores most 
scientists stiff”, Sir Peter Medawar). Our goal is to begin a dialog 
with all scientists interested in these phenomena to develop a con-
sensus of language to describe our collective findings across diverse 
model systems.

Early definitions of viruses and viral latency
Studies in the 1930’s demonstrated that herpetic disease was 
caused by a “living agent” thought to be a filterable agent (e.g. not a 
bacterium). Grüter first showed transmission of human herpetic 
stromal keratitis to rabbit corneas14,15 and Loewenstein also dem-
onstrated transmission to rabbits and subsequently transmission 
back to a human16,17 (reviewed in 18). In the 1950’s, the nature of  
filterable agents, also known as viruses, was still debated19. Mem-
bers of this class of pathogens were known to share common  
characteristics including the ability to replicate, cause disease, and 
in animals to engender immunity to subsequent infection. How-
ever, it was recognized that there were circumstances in which a 
host could be infected by a virus that replicated and yet show no  
signs of disease. Individual scientists used different terms to describe 
this, including “masked infection”, “occult infection”, “inappar-
ent infection”, and “latent infection”. An attempt was made to  
clarify these terms at the Wisconsin meeting on Latency and 
Masking in Viral and Rickettsial Infections in 195720. Six types of  
“latent” infection were described, including herpes virus infec-
tion in which “latency” was defined as the period of time in which  
skin was negative between outbreaks.

At this time, herpesvirus was considered to be a unique type of 
agent. It was noted that herpes lesions were restricted to individuals 

with pre-existing neutralizing antibodies and thus it was concluded 
that the affected individuals must have been previously infected. 
This was the only known example where a virus persisted in defina-
ble cells (thought then to be skin) without indication of its existence 
between occasional outbreaks of clinical activity. Interestingly, this 
coincided with the time that the concept of lysogeny in bacteria was 
occupying the minds of microbiologists and much focus centered 
on the fact that lysogenized bacteria were refractory to subsequent 
superinfection. Indeed, it was thought that HSV infection in humans 
might be similar to lysogeny of bacteria21,22. Clearly HSV was not 
a classic lysogen because during “recrudescence”, many thousands 
of presumably herpes “lysogenized” cells became infected, forming 
the visible lesion of “recurrent disease” and thus these infected cells 
must not be refractory to superinfection.

Animal models of HSV and the evolution of the terms 
“latency” and “reactivation” (1918–1972)
The natural history of herpesvirus infection was well recognized 
at this time as a primary aphthous stomatitis occurring sometime 
before puberty followed by repeated attacks of “fever blisters” 
precipitated by a variety of known and unknown stimuli that 
“reinitiates” infection. The terms “recrudescence” and “recurrent 
disease” were employed to define these lesions in humans from 
which infectious virus could be isolated. The understanding of 
this inexplicable infection was hampered, as asserted by Burnet in 
1960 in that “No laboratory model of herpes in man has yet been 
described”22. Although the concept that latent virus in the skin was 
the source of recurrent lesions was prevalent at this time, elegant 
early studies by Goodpasture, largely ignored, had suggested 
twenty years earlier a link between sensory ganglionic neurons 
and recurrent herpes infection23. Good and Campbell employed  
Perdrau’s model of herpetic encephalitis in pre-immunized  
rabbits24,25 to demonstrate the “precipitation” of herpesvirus 
encephalitis in rabbits following anaphylactic shock26. Schmidt 
and Rasmussen sought to follow up on their work by exploring  
alternate methods to “precipitate” herpes27. They employed the  
pyrogen pyromen to induce moderate to high fever for 36 hours  
as well as cortisone, acetate, and glutathione to no effect. However, 
encephalomyelitis was “precipitated” in 60% of the rabbits given 
intramuscular injections of adrenalin. Herpesvirus was detected in 
all six of these rabbit brains.

Early herpes virologists stored their stocks of virus as bits of infected 
rabbit brain tissue in glycerin solutions in an icebox. Perdrau noted 
that exclusion of air greatly increased the length of time such solu-
tions maintained their “activity” as defined by the capacity to cause 
disease in rabbits. Oxidation destroyed herpesvirus “activity”, but 
the herpes stock could be “reactivated” by subsequent reduction28. 
Rasmussen speculated “that temporary vasoconstriction result-
ing from increased adrenalin output, could produce a local anoxia 
and consequent “reactivation” of residual herpes virus”27. Thus, 
Rasmussen changed “precipitation” to “reactivation”. This was quite 
an astounding change from a term implying some form of regen-
eration of infectious virus to one that implies (re)-activation of a 
pre-existing viral agent. The following year, Kilbourne and col-
leagues showed that an Arthus type reaction to horse serum could 
induce recurrent corneal disease in rabbits from which active 
virus could be obtained29. While the authors gave credit to Good 
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and Campbell for the first demonstrations of what they now called 
“reactivation”, this ocular model fulfilled most of the criteria for 
a true laboratory model of herpes infection in humans. Note that 
the term “reactivation” was already in use in the clinical litera-
ture, but this is the earliest herpesvirus basic science manuscript 
we have found with “reactivation” in the title. At this time (1961),  
“reactivation” meant a recurrent lesion from which viable herpesvi-
rus could be isolated. A great deal of indirect evidence was mount-
ing to support that the sensory ganglion was the site of herpesvirus 
latency. About a decade later, Stevens and Cook demonstrated that 
latent HSV-1 could be “reactivated” out of “quiescently” infected 
mouse dorsal root ganglia, confirming this possibility30. Thus, in 
1971, Stevens modified the term “reactivation” to include virus 
recovered from axotomized sensory ganglia explanted into cul-
ture. His most important control was to show that infectious virus 
or complete virions (by electron microscopic examination) were 
not already present in the ganglia but “reactivated” upon explant.  
Stevens reasserted the idea that reactivation from latency was the  
de novo production of infectious virus in a tissue in which pre- 
existing virus did not exist. This use of “reactivation” was  
considered to be controversial by some.

Tissue culture models of latency
During the 1950s, there was a significant interest and study of 
various latent infections in tissue cultures. Some thought these to 
be important models of latent human infections and the possible 
origin of human cancer, while others regarded the phenomenon as 
a laboratory artifact (reviewed by Ginsberg in 31). Herpes virolo-
gists of the time weighed in heavily on the latter idea. This debate 
still continues today to some extent, but a more scientifically sound 
approach is to recognize that all models have intrinsic differences. 
Consideration of the advantages and disadvantages of each model 
allows findings to be placed in the proper context and thus inte-
grated with outcomes from other models. In 1972, O’Neill and 
colleagues infected human cells with HSV-2 in the presence of 
cytosine arabinoside (ara-c) and established cultures that could be 
maintained without apparent virus-induced cytopathic effect (CPE) 
for five days. Upon removal of the drug, CPE was detected after a 
lag of five to six days and they defined this period of time as “latent” 
and the re-emergence of replicating virus as “reactivation”32. Many 
leaders in the field of HSV latency objected quite strongly to this 
redefinition of these terms. While one may argue about terminol-
ogy, there can be no doubt that such cultures have provided an 
abundance of information on the biochemical roles played by key 
viral proteins and how they might function during the processes of 
latency and reactivation.

The types of cell cultures employed to model latency have also 
evolved. In 1987, Wilcox promoted the use of primary neuronal 
cultures in the presence of nerve growth factor (NGF) as a culture- 
based model of latency and demonstrated that removal of NGF 
resulted in “reactivation” of virus in these cultures33. Resistance 
to the use of these terms in cultured cells ran high, even after 
Wilcox and colleagues demonstrated certain latent-like character-
istics such as the expression of the latency-associated transcripts 
in some neurons34. At the end of the 80’s, Leib, Schaffer, and 

colleagues employed a hybrid system in which the mouse corneal 
model was used and TG from mice latently infected with diverse 
mutant or wild-type viruses were removed, dissociated, and dis-
persed in culture plates. They extended the term “reactivation” to the 
recovery of virus following superinfection with wild-type or mutant 
viral isolates. One conclusion of this study was that the immediate 
early gene protein ICP0 was required for efficient “reactivation”35. 
In a parallel set of experiments, Cai and Schaffer employed DNA 
from ICP0 mutants in transfection studies and found that “ICP0 
plays a critical role in the de novo synthesis of infectious virus fol-
lowing transfection”36. These and certain other manuscripts from 
this group are often cited by others as demonstrating that ICP0 
plays an important role in the “initiation” of reactivation. It should 
be noted that Schaffer and co-workers did not claim this, consistent 
with the meticulous use of language in these manuscripts.

VP16 and ICP0 and their roles during acute infection 
of cultured cells and reactivation from latency
HSV lytic viral replication is “initiated” in an unusual way. This 
virus carries its own transcription factor within the virion and 
this protein cooperates with host cell proteins to initiate the tran-
scription of the five viral immediate early genes. There is nearly 
universal acceptance of the term “initiation” of lytic infection for 
this process. In the early 1980’s, Preston and colleagues identified 
the viral gene that encodes the protein that “initiates” HSV lytic 
infection37. They later made viral mutants in which this transacti-
vation function was disrupted. One of these mutants, in1814, was  
replication competent in tissue cultures infected at a high multiplic-
ity of infection (MOI) but very defective for inducing virus plaques 
at low MOI38. This protein, termed VP16, was thought to be an  
obvious possible mechanism for the “initiation” of reactivation. With 
alacrity, Fraser and colleagues tested Preston’s mutant in the mouse 
model of latency using the axotomy/explant reactivation model 
of Stevens39. Surprisingly, the mutant reactivated in explant quite 
well. Roizman’s group attempted to express VP16 in TG neurons 
in transgenic mice or with an inducible promoter in the virus and 
concluded that VP16 expression did not perturb the establishment 
of latency or induce reactivation from latency40. These results led 
the field to abandon the idea that VP16 initiates reactivation and to 
refocus on other potential mechanisms including the work discussed 
above on the immediate early gene protein ICP0. We now know that 
de novo expression of VP16 (expression of VP16 in the absence 
of other viral proteins) is a requisite, precipitating event that can 
initiate reactivation in TG neurons in vivo following stress13,41. VP16 
is not required for “reactivation” following axotomy and explant of 
ganglia into culture, one difference between these models8. It is not 
clear why the experiments of Sears et al. failed to demonstrate this 
activity, but it may be that the VP16 protein was not expressed in 
the appropriate neurons.

Understanding how HSV reactivation from latency is initiated is an 
important goal, but it is clear that there is not a general agreement 
on what “initiation of reactivation” means. One fading contro-
versy we address here for illustrative purposes is about the roles 
that VP16 and ICP0 play in the process of the “initiation” of HSV 
reactivation from latency. The hypothesis that ICP0 might “initiate” 
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reactivation from latency comes largely from the work performed in 
“quiescently” or “in vitro latently” infected cultures. Many groups 
have made valuable contributions and it is not possible to cite them 
all here, but this important work has been recently reviewed42,43.  
Utilizing quiescently infected fibroblast cultures, which Preston 
termed “in vitro latency”, it was concluded in 1997 that the latent 
genomes failed to respond to VP16 but did respond to ICP044. 
However, ten years later, Preston revisited this approach and dem-
onstrated that ICP0 was not required in this system45, thereby 
showing the quiescent genomes were actually responding to VP16.

What is clear is that the ectopic expression of ICP0 can modify 
the chromatin marks present on quiescent/latent viral genomes in 
tissue culture systems and can derepress these genomes such that 
the silenced promoters are expressed46–49. It turns out that ICP0 
is not a “promiscuous transactivator” but rather a E3 ubiquitin 
ligase with many targets that mediate its functions through its 
interactions with these targets50. These activities lend credence to 
the idea that the de novo expression of ICP0 might initiate viral 
reactivation from latency51. However, de novo expression of ICP0 
has not yet been demonstrated, and viral mutants in which ICP0 is 
deleted do exit the latent state and initiate reactivation (as defined 
by the production of viral proteins) in vivo following hyperther-
mic stress52. Importantly, in the absence of ICP0, neurons in which 
latency is exited in vivo do not progress to produce infectious 
virus52. As concluded by Everett in 2011, “It is likely that the initial 
events of reactivation leading to viral gene expression are not ICP0 
dependent, but that ICP0 is required to allow progression from this 
early stage of reactivation to a productive infection …”53. There 
is no argument that these two “nonessential” viral protein func-
tions (VP16 transactivation and ICP0 E3 ubiquitin ligase) are both 
extremely important very early during reactivation from latency; 
indeed, they are seemingly absolutely essential in vivo. The only 
argument is whether one or the other initiates HSV reactivation, 
and this depends in part on how one defines the term “initiate”  
reactivation.

An obvious candidate for the earliest events during reactivation is 
transcription of viral lytic phase genes. However, during latency, 
the transcription of most, if not all, of the HSV-1 genome occurs 
at low levels52,54. Attempts to examine the earliest events in reacti-
vation using sensitive methods like semi-quantitative reverse tran-
scription polymerase chain reaction were not successful because 
subtle changes at early times post-induction of reactivation were 
hard to parse out from this background. More recent findings show 
that a wave of transcription from many or all regions of the genome 
occurs under conditions that result in viral reactivation in several 
systems10,11. This transcription is likely the result of the “relaxing” 
of the chromatin structure on the latent viral genomes in response 
to stressors2–5. These changes must be occurring in the majority of 
latent genomes to be observable, but they are reversible and not 

sufficient of themselves to cause progression to virus production. 
We propose that a term like “pre-initiation” could encompass such 
reversible changes (Figure 1). We chose to use the term “initiation” 
for the expression of detectable viral protein in neurons in latently 
infected ganglia, either spontaneously or following a stressor that 
induces viral reactivation. Detectable viral protein production (ini-
tiation) occurs in only one or very few neurons in a TG in vivo 
following hyperthermic stress55,56. It seems likely that there is a 
threshold of viral protein production that leads to progression 
through the lytic cycle. The relationship between detectable viral 
protein expression and “progression” (see Figure 1) to virus produc-
tion remains unknown, but they are highly correlated6,56. Progres-
sion to the production of infectious virus is dependent on most viral 
genes, and it is likely that all viral genes (and non-coding RNAs) 
play important roles in this process. We do not yet know the point 
of no return during progression to virus production, and it may be 
that some initiation events are abortive. Of special interest will be 
the discovery and characterization of novel viral or host functions 
that specifically modulate the process of viral reactivation because 
these may serve as therapeutic targets.

As common terms are developed and defined in diverse models, 
it will be important to consider context. Common models include 
intact human hosts, perturbed human host (i.e. diseased, damaged, 
surgical patients, dead hosts), intact animal host (and those simi-
larly perturbed such as axotomized and explanted latently infected 
sensory ganglia, various invasive and non-invasive triggers that 
induce viral reactivation from latency), and human and animal 
cell cultures in their diversity (transformed and highly mutated 
like HeLa cells, primary or secondary cell lines, primary neurons,  
neuronal-like cells that are or are not “differentiated”, etc.). It is our 
hope that collectively we can begin to define a lexicon of latency 
and an integrated framework that allows us to argue about the  
science, and not the language or the model. Toward this goal, we  
propose a forum where interested scientists and students can  
discuss such issues. Join us on the moderated Facebook page at 
“virtual herpesvirus workshops”.
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