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1Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität
Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, 2German Centre for Cardiovascular
Research (DZHK), Berlin, Germany, 3Department of Cardiothoracic and Vascular Surgery, German
Heart Center, Berlin, Germany, 4Charité-Universitätsmedizin Berlin, Corporate Member of Freie
Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, 5German Center for Lung
Research (DZL), Gießen, Germany, 6The Keenan Research Centre for Biomedical Science, St.
Michael’s Hospital, Toronto, ON, Canada, 7Department of Surgery and Physiology, University of
Toronto, Toronto, ON, Canada
Pulmonary hypertension (PH) is a progressive disease that arises from multiple

etiologies and ultimately leads to right heart failure as the predominant cause of

morbidity and mortality. In patients, distinct inflammatory responses are a

prominent feature in different types of PH, and various immunomodulatory

interventions have been shown to modulate disease development and

progression in animal models. Specifically, PH-associated inflammation

comprises infiltration of both innate and adaptive immune cells into the

vascular wall of the pulmonary vasculature—specifically in pulmonary

vascular lesions—as well as increased levels of cytokines and chemokines in

circulating blood and in the perivascular tissue of pulmonary arteries (PAs).

Previous studies suggest that altered hemodynamic forces cause lung

endothelial dysfunction and, in turn, adherence of immune cells and release

of inflammatory mediators, while the resulting perivascular inflammation, in

turn, promotes vascular remodeling and the progression of PH. As such, a

vicious cycle of endothelial activation, inflammation, and vascular remodeling

may develop and drive the disease process. PA stiffening constitutes an

emerging research area in PH, with relevance in PH diagnostics, prognostics,

and as a therapeutic target. With respect to its prognostic value, PA stiffness

rivals the well-established measurement of pulmonary vascular resistance as a

predictor of disease outcome. Vascular remodeling of the arterial extracellular

matrix (ECM) as well as vascular calcification, smooth muscle cell stiffening,

vascular wall thickening, and tissue fibrosis contribute to PA stiffening. While

associations between inflammation and vascular stiffening are well-established

in systemic vascular diseases such as atherosclerosis or the vascular

manifestations of systemic sclerosis, a similar connection between

inflammatory processes and PA stiffening has so far not been addressed in
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the context of PH. In this review, we discuss potential links between

inflammation and PA stiffening with a specific focus on vascular calcification

and ECM remodeling in PH.
KEYWORDS

pulmonary hypertension, inflammation, vascular stiffness, vascular calcification,
ECM remodeling
Introduction

Pulmonary hypertension (PH) comprises a group of diseases

in which the mean pulmonary artery pressure (mPAP) exceeds

25 mmHg at rest according to current guidelines (1). Recently,

the 6th World Symposium on PH has recommended to lower

this cutoff further to 20 mmHg (2). The World Health

Organization (WHO) classifies PH into five groups based on

identifiable cause and risk factors (3). Although the treatment of

pulmonary arterial hypertension (PAH) (WHO Group 1) has

entered the stage of targeted therapy, the 5-year survival rate of

patients with PAH is still only approximately 50% (4),

presumably due to the multifactorial pathophysiological

mechanisms of PAH, which evade targeting by a single

pharmacological drug, in particular at the advanced disease

stage (5). Therefore, identification and therapeutic targeting of

common upstream mechanisms that trigger multiple

downstream cellular and molecular processes governing

pulmonary vascular remodeling in different PH groups

remains the ultimate goal for an improved care of PH patients.

Lately, pulmonary perivascular inflammation has gradually

gained increased attention as an early common hallmark across

different PH groups. In the early stage of the disease, PAH

patients and corresponding animal models not only display an

accumulation of immune cells such as macrophages (6, 7) and

mast cells (8) in their lungs (9), but also have elevated levels of

inflammatory mediators in their pulmonary circulation (10, 11)

(Figure 1). In most forms of PH, this inflammatory response is

predominantly localized to the pulmonary adventitia (7). In fact,

changes in the adventitia, which consists of a complex mix of

heterogeneous cells, tend to precede those in other vascular

compartments and are required for vascular remodeling (12). In

PAH, this spatial predilection has been linked to the fact that

fibroblasts in the pulmonary adventitia exhibit a pro-

inflammatory phenotype with an increased expression of

inflammatory mediators that drive the recruitment of innate

immune cells (7, 13, 14). The resulting perivascular

inflammation is now considered to constitute a critical

pathomechanism orchestrating remodeling from the outside-in

not only in PH associated with disorders of the immune system,

such as connective tissue disease-associated pulmonary arterial
02
hypertension (CTD-PAH) (15), but also in other forms of PAH

(11, 16) as well as in PH due to left heart disease (PH-LHD) (17).

In parallel, the adventitia releases a myriad of factors that

regulate differentiation, proliferation, apoptosis, migration, and

collagen synthesis by other cells in the vessel wall, while

adventitial fibroblasts can transform to myofibroblasts and

migrate into the intima through the medial layer (12). As

such, it has been proposed that inflammatory processes alter

vascular and immune cell metabolism, ultimately enhancing

pulmonary artery (PA) remodeling and aggravating

PH (Figure 1).

Concomitantly over the past decade, PA stiffening has

emerged as an early hallmark, pathomechanism, and predictor

of morbidity and mortality in PH (18–20). Vascular stiffening,

defined as increased resistance of the arterial wall to deformation

during blood influx, is a consequence of pathological vascular

remodeling that can occur in both large proximal arteries and

small distal arteries and arterioles. The mechanical consequences

of these structural changes are decreased compliance in proximal

PAs, and increased resistance to blood flow (pulmonary vascular

resistance, PVR) in distal PAs (21). PA compliance (PAC) is

essential to transform the pulsatile blood flow that enters the

large conduit arteries via the Windkessel effect into the nearly

laminar flow at the level of the distal pulmonary vascular tree. As

such, PAC reduces right ventricular (RV) afterload and

maintains near-constant lung perfusion over the cardiac cycle.

In line with the impact of PAC for RV function, invasive or non-

invasive assessment of PAC (or capacitance) has revealed PA

stiffening in PAH patients as a sensitive predictor of pathological

RV remodeling and mortality (21–24). It has further been

proposed that stiffening of proximal PAs, through elevation of

pulse-wave velocity and the shear stress exerted by the blood,

promotes injury and remodeling in distal vessels, thus driving

the pathology of PH in a positive feed-forward loop (25). Such

interdependency between proximal and distal PA regions would

predict that pathological remodeling should occur in parallel in

large and small vessels. Indeed, work by Stuart R. Reuben first

identified a hyperbolic relationship between PAC and PVR (26).

The product of PAC × PVR yields the resistance–compliance

(RC) time, which is considered to remain almost constant in PH

patients of WHO class I (PAH), III (PH due to chronic lung
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disease), IV (chronic thrombo-embolic PH), or V (PH with

unclear multifactorial mechanisms) and independent of medical

therapy (27). Interestingly, however, for patients with WHO

class II PH (PH due to left heart disease), RC time is reduced, i.e.,

for any given PVR, the corresponding PAC is lower as compared

to PH patients from other causes. Notably, this reduction in RC

time is also associated with an increase in RV afterload (27). This

interesting finding may indicate distinct pathomechanisms and/

or a higher degree of stiffening in proximal PAs in PH patients

with underlying left heart disease as compared to other forms of

PH; yet, this notion remains to be rigorously tested and

mechanistically explored.
Frontiers in Immunology 03
Conversely, mechanical communication between proximal

PAs and the distal pulmonary vasculature may also promote

restoration of pulmonary vascular homeostasis. Evidence of such

a reverse remodeling process derives from a few clinical studies

in patients with congenital heart disease and PH due to

intracardiac left-to-right shunts causing lung overperfusion. In

these patients, surgical banding of the PA—performed with the

intent to protect the proximal PA from excessive pressure and

flow—could successfully improve PH and, in some cases, reverse

vascular remodeling in distal arteries (28, 29).

A growing number of studies reporting techniques to

estimate stiffness of proximal PAs in vivo show promise for
FIGURE 1

Proposed role of inflammation in PA stiffening; The development of PH is associated with an inflammatory response in the pulmonary
vasculature, characterized by immune cell infiltration and the secretion of immune factors. ECM stiffening, especially proximal large pulmonary
vascular sclerosis, occurs in the early stages of PH and has a prognostic value for patient outcome and later calcification, and is driven by
inflammation. Prolonged angiosclerosis, in turn, further promotes an inflammatory response that exacerbates pulmonary vascular calcification
and thickening. PH, pulmonary hypertension; ECM, extracellular matrix; PA, pulmonary artery.
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the use of PA stiffness estimates as a prognostic tool in PH. Most

commonly, PA stiffness is estimated by calculation of pulmonary

arterial capacitance as ratio of stroke volume over pulmonary

pulse pressure, assessed by either cardiac catheterization or non-

invasively by echocardiography (20, 30–37), or by calculation of

a stiffness index as change in PA pressure (again assessed by

right heart catheterization) divided by the corresponding change

in PA diameter (determined by real-time imaging modalities,

such as cardiac magnetic resonance imaging) (18, 38).

Artery stiffening in cardiovascular disease is mainly

attributed to remodeling of the extracellular matrix (ECM)

and/or calcification within the arterial wall (39–42) (Figure 1).

In particular, PAH is characterized by remodeling of the ECM

and thickening of all three layers of the PA wall (43), which

ultimately reduces arterial compliance. PAs of PAH patients

exhibit an increased deposition of interstitial collagen, including

collagen I, collagen XIV, and basement membrane-specific

collagens, especially collagen IV (43–45). Additionally,

increased expression of other ECM proteins such as elastin

and fibronectin, or the matricellular ECM protein tenascin-C

by dedifferentiated adventitial fibroblasts has been reported in

PAH patients (46). Increased production and deposition of ECM

constituents in PAs is considered to occur as an adaptive

response to increased digestion of medial and basement

membrane (BM) ECM by matrix metalloproteinases (MMPs),

which have been found to be increased in PAH (47) and IPAH

patients (45). The elevated expression of collagens by endothelial

cells (ECs), smooth muscle cells (SMCs), and adventitial

fibroblasts is associated with increased collagen-cross-linking

by lysyl oxidases (LOXs) (48). In addition, proteolytic enzymes

also induce degradation of elastic fibers, which are challenging to

rebuild despite increased elastin gene expression due to the

multicomponent complex 3D structure of these fibers (49–53).

As such, PA stiffening emerges as a progressive imbalance of

collagen over elastin fiber components in the PA wall.

Vascular stiffening has also been attributed to vascular

calcification (40), a pathological deposition of solid minerals

within the intima or media of arterial walls (54) (Figure 1).

Importantly, pulmonary vascular calcification has been

associated with transdifferentiation of SMCs into osteogenic-

like lineages, driven by the activity of the pro-osteogenic

transcription factor Runt-related transcription factor 2

(RUNX2) (55). As such, increased nuclear expression of

RUNX2 in PA SMCs not only activates expression of

calcification-related biomineralization genes (56), but also

promotes cell proliferation and resistance to apoptosis by

activating hypoxia-inducible factor-1a (HIF-1a) (55).
Stiffening of proximal PAs in PAH patients (18, 57) increases

pulse pressure and shear stress in the pulmonary vasculature. Of

relevance, these alterations in biomechanical forces acting upon

the lung vascular wall can induce pro-inflammatory responses in

ECs of distal PAs (58, 59) and promote the aggregation of

immune cells (58). This includes inflammatory cell recruitment
Frontiers in Immunology 04
and release of immune-cell-derived cytokines, such as IL-6 (60,

61) and TNF (62) and bioactive enzymes, including MMPs (46),

which may, in turn, promote vascular remodeling and stiffening

processes, thus establishing a progressive vicious cycle. Such

interplay between inflammation-triggered signaling events that,

in turn, initiate wound healing processes and ECM remodeling,

ultimately culminating in tissue fibrosis and scar formation, is

well established in cardiac and systemic vascular diseases (63–

65). In PH, however, the cause–effect relationship between

inflammatory signaling and vascular stiffening has so far

neither clinically nor experimentally been addressed. As such,

the present review aims to link known inflammatory responses

in PH to processes related to vascular stiffening, namely, ECM

remodeling and vascular calcification, identified in either PH or

other vascular diseases and vice versa. Proposed links and

relevant literature are summarized in Table 1 and will be

discussed in detail below. As such, we intend to highlight the

potential relevance of a pathophysiological axis between

inflammation and PA stiffening, and to incite mechanistic

studies to address this conceptual gap in our present

understanding of PH.
Inflammation-induced arterial wall
thickening and ECM remodeling

PA stiffening and inflammatory responses are both

paramount characteristics of PH. While inflammation is

commonly associated with PH in both animal models and

clinical scenarios, little is known about the role of

inflammation in inducing vascular remodeling in PH. Only a

limited number of studies have so far addressed the role of

inflammation in promoting the production of ECM components

(154), namely, collagens (155), fibronectin (156), and tenascin-C

(156) in PH. Yet, in other cardiovascular diseases, the

connection between inflammation and increased vascular

stiffness has been better characterized: here, inflammatory

processes have been shown to promote arterial stiffening

through a variety of mechanisms, including the induction of

endothelial dysfunction and BM stiffening, increased

proliferation of SMCs (49)—resulting in arterial wall

thickening and reduced compliance—and remodeling and

stiffening of the ECM in different segments of the arterial wall.

In PH, elevated pressure and high pulsatile flow as a

consequence of reduced vascular compliance can be sensed by

ECs of the pulmonary vascular bed. Specifically in hypoxia-

induced PH, ECs produce elevated levels of the inflammatory

cytokines IL-1b (9) and IL-6 (9, 60), and express increased levels

of immune cell adhesion molecules including vascular cell

adhesion molecule-1 (VCAM-1), intercellular adhesion

molecule-1 (ICAM-1), and P-selectin (9). Concomitantly,

other vascular resident cells, such as SMCs and fibroblasts,
frontiersin.org
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TABLE 1 Inflammatory mediators associated with vascular stiffening.

Cytokines, immune cells, and adhesion molecules in PH Regulation of vascular stiffening-related pathways

Category/name Cell/tissue type of increased
mediator abundance in PH
patients/animal models

WHO-
defined PH

group

Cytokines IL-1b Lung (66–69), Plasma (70), Fibroblasts
(71), CTEPH-EC (72)

I (68, 69, 71), III
(66, 67, 70), IV
(72)

Atherosclerosis
IL-1b is associated with calcium content and calcification of the aortic
wall (73).
Cardiovascular disease
IL-1b and TGF-b initiate the transdifferentiation of cardiac fibroblasts to
myofibroblasts that produce elevated levels of collagens after cardiac
injury (74).
Aortic calcification
IL-1b and TNF modulate EndoMT of aortic ECs and make ECs more
sensitive to osteogenic transdifferentiation by BMP-9 in vitro,
predominantly by reducing BMPR2 expression and increasing JNK
signaling (75).

IL-2 Plasma (76) I (76) Aortic stiffening
In mice, IL-2 reduces angiotensin II-mediated inflammation and aortic
stiffening via activation of CD4+CD25+Foxp3+ regulatory T cells (77).

IL-6 Plasma (70, 76, 78–80), Lung (61, 66–69,
81–83), Serum (16, 61, 84, 85), SMC
(84), Pulmonary veins (61), PA (61),
Exhaled breath condensate (85),
Fibroblast (71)

I (16, 68, 69, 71,
76, 79, 80, 83,
84), II (61, 81),
III (66, 67, 70,
78, 82, 85)

IL-6 in PH-LHD
In a rat model of PH-LHD, macrophage accumulation and increased IL-
6 production were observed in the lung (8, 81). IL-6 activates STAT3
signaling, inducing PA SMC overproliferation (81).
IL-6 and calcification in PAH
MicroRNA-204 regulates BRD4 expression, which upregulates IL-6 and
drives vascular calcification in PAH (86, 87).
Coronary artery disease (CAD)
CAD patients have increased osteoprotegerin, osteopontin, and IL-6
levels in serum (88).

Hypertension-induced aortic stiffening
Positive correlation between IL-6 and aortic stiffness (89)
Arterial stiffening in chronic kidney disease (CKD)
IL-6 levels in patient plasma are positively correlated to arterial wall
stiffness (90).
Vascular remodeling in PH
IL-6 promotes SMC proliferation and migration in PH, leading to
medial wall thickening in distal PAs (60). IL-6 upregulates MMP-
expression in PH, promoting ECM remodeling (60).
IL-6 depletion attenuates lung vascular remodeling in a rat MCT model
of PH (8).

IL-10 Plasma (79, 80, 91), Lung (69) I (69, 79, 80), IV
(91)

Aortic stiffness
IL-10 knockout mice develop aortic stiffening due to increased COX-2
activity and resulting thromboxane A2 receptor activation (92).

IL-12 Plasma (79, 93), Serum (94, 95) I (79, 93–95) Atherosclerotic cardiovascular disease
In CVD patients, IL-12 serum levels positively correlate with arterial
stiffness (96).

IL-17 Lung (83), Plasma (79), CD4+T cell (97) I (79, 83), III
(97)

Psoriasis
IL-17 increases aortic stiffness by reducing lipoprotein trafficking (98).

TNF Plasma (70, 99–101), Lung (61), Serum
(61, 102), Pulmonary veins (61), PA (61),
EC (103)

I (100, 101), II
(61), III (70),
IV (99, 102)

Aortic calcification
TNF induces osteoblast markers and enhanced osteoblast differentiation
and calcification in bovine aortic SMCs by activation of the cAMP
pathway (104).
Psoriasis
The anti-TNF monoclonal antibody adalimumab reduces carotid arterial
stiffness (105).
Estrogen deficiency in postmenopausal women
The TNF inhibitor etanercept reduces carotid arterial stiffness (106).
Inflammatory artheropathies
In a controlled clinical study, patients with rheumatoid arthritis,
ankolysing spondylitis, and psoriatic arthritis that received anti-TNF

(Continued)
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TABLE 1 Continued

Cytokines, immune cells, and adhesion molecules in PH Regulation of vascular stiffening-related pathways

Category/name Cell/tissue type of increased
mediator abundance in PH
patients/animal models

WHO-
defined PH

group

therapies (either adalimumab, ethanarcept, or infliximab) exhibited less
aortic stiffness, assessed by aortic pulse wave velocity and augmentation
index (107)

IL-4
IL-7
IL-8
IL-13
IL-18
IL-21
IL-33
IFN-g

Lung (108), Plasma (79, 109)
Plasma (79)
Exhaled breath condensate (85), Plasma
(79, 80), EC (72, 103)
Lung (108), Plasma (109)
Lung (66, 110)
Lung (82)
Lung (111, 112), Serum (113)
Plasma (76, 109)

I (79, 108), III
(109)
I (79)
I (79),
III (85),
IV (72, 80)
I (108), III
(109)
III (66, 110)
III (82)
I (111, 112),
III (113)
I (76), III
(109)

Not studied in the context of vascular stiffening

CCL2 (MCP-1)/
CCR2

Lung (114), SMC (115), Macrophage (115,
116), Fibroblast (71), CTEPH-EC (72),
Plasma (91, 99)

I (71, 115,
116), III
(114), IV (72,
91, 99)

Hypertension-induced aortic stiffness
Positive correlation between MCP-1 levels in patient plasma and aortic
stiffness estimated by echocardiography (89).
Arterial stiffening in chronic kidney disease (CKD)
Positive correlation between angiopoietin-2 in serum of CKD patients
and aortic stiffness. Angiopoietin-2 induces CCL2 in ECs (117)

CCL7/CCR7 Plasma (79), Serum (94), Fibroblast (71) I (71, 79, 94) Abdominal aortic stiffness
HIF-1a deficiency in vascular smooth muscle cells suppresses CCL7,
which increases macrophage infiltration (118).

CX3CL1/CX3CR1
CCL4
CCL5 (RANTES)/
CCR5
CCL11
CCL12 (SDF-1)
CXCR1
CXCR4/CXCL12
CXCL9
CXCL13
CD40

Lung (114), Serum (94)
Plasma (79)
PAEC (119), Plasma (79), PASMC (115,
120), Macrophages (115), Fibroblasts (71),
Lung (121), CTEPH-EC (72), PAH-EC
(122)
Plasma (79)
Fibroblasts (71), Lung (121)
Lung (121)
Fibroblasts (71), Lung (123, 124)
Plasma (80)
Plasma (80), Serum (125)
Fibroblasts (71), Serum (126), Lung (127)

I (94),
III (114)
I (79)
I (71, 79, 115,
119–122),
III (120),
IV (72, 91,
99)
I (79)
I (71, 121)
I (121)
I (71, 123), III
(123, 124)
I (80), IV (80)
I (80, 125), IV
(125)
I (71), III
(126)
I, III (127)

Not studied in the context of vascular stiffening

Immune
cells

Macrophages Bone marrow (128), Lung (81, 129, 130),
CTEPH-EC (131, 132), Alveoli (128),
Blood (133)

I (115, 128,
129, 133, 134),
II (81), III
(130), IV
(131, 132)

PAH
Infiltrated macrophages express MMP-10, resulting in ECM remodeling
and PA stiffening (47).
Thoracic aorta stiffening in CKD
ETA receptor blockade reduces macrophage infiltration, aortic stiffness
and calcification in rats (135).
Aortic stiffness in obesity
Peroxisome proliferator-activated receptor g (PPARg) activation by
pioglitazone attenuates MMP-12 in macrophages in vitro, and reduces
aortic stiffness in vivo (136).
Aortic stiffness in abdominal aortic aneurysm
Angiotensin II promotes the recruitment of M2-like macrophages in the

(Continued)
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respond to biomechanical cues by altered secretion of immune

factors including inflammatory cytokines such as monocyte

chemoattractant protein-1 (MCP-1), stromal cell-derived

factor 1, and CCR5 (71) (Table 1). These inflammatory

mediators can, in turn, induce PA remodeling and stiffening

(9, 71, 157). While the links between increased inflammation

and PA remodeling are so far little understood in PH, we will

delineate in the following existing connections between key

inflammatory signals and vascular stiffening in systemic

cardiovascular diseases, with the aim to translate this

knowledge into an advanced understanding of the potential

role of inflammation in PA stiffening in PH.

Several key inflammatory signals induce PA remodeling by

dysregulating the behavior and function of both ECs and SMCs

in PH, ultimately leading to arterial wall thickening and
Frontiers in Immunology 07
stiffening. Among these, IL-6 and TNF were found to be

increased in plasma, lung, pulmonary arteries and veins, as

well as in PA ECs in both patients and animal models of

various PH groups (Table 1). In PAH patients (60) and in PH-

LHD rat models (61, 81), IL-6 contributes to PA remodeling by

inducing medial wall thickening via SMC proliferation and

muscularization of the distal pulmonary arterial tree due to

migration of SMCs into precapillary arterioles (60, 61, 81)

(Table 2; Figure 2), potentially affecting arterial compliance by

increased wall thickening. In the pulmonary adventitia,

fibroblasts activate recruited macrophages through paracrine

IL-6 signaling, initiating a pro-inflammatory and pro-fibrotic

phenotype that is associated with an increased inflammatory

response and vascular remodeling in PH (7). Notably, IL-6 is a

sensitive marker for systemic inflammation in cardiovascular
TABLE 1 Continued

Cytokines, immune cells, and adhesion molecules in PH Regulation of vascular stiffening-related pathways

Category/name Cell/tissue type of increased
mediator abundance in PH
patients/animal models

WHO-
defined PH

group

aorta of IL12p40-deficient mice, which promote medial remodeling and
aortic stiffening through increased TGF-b production (137).

CD4+CD25+Foxp3+

regulatory T cells
Plasma (76) I (76, 138), III

(139)
Aortic stiffening
In vivo CD4+CD25+Foxp3+ regulatory T-cell stimulation in mice
reduces angiotensin-II mediated aortic remodeling and stiffening (77).

NK cells Plasma (76), CTEPH-EC (132), Blood
(140)

I (76, 140), IV
(132)

PA calcification
Granzyme B from nature killer cells increases calcification in smooth
muscle cells (SMCs) under hypoxia (141)

T cells Plasma (76)
Lung (142)

I (76), III
(142)

HIV-related arterial stiffening
CD4+ and CD8+ T-cell exhaustion is associated with arterial stiffness
(143).

Neutrophil cells Blood/bone marrow (144) I (144), III
(144)

Vasculature stiffening
Oxidized low-density lipoprotein (OxLDL) and stiffer substrates
promote neutrophil transmigration in vitro (145)

Mast cells
B cells
Dendritic cells
Eosinophils

Lung (8, 146–148), CTEPH-EC (132),
Blood (149)
Lung (8)
Lung (69)
Lung (150)

I (8, 147–
149), II (8,
146),
III (8), IV
(132)
I (8)
I (69)
I (150)

Not studied in the context of vascular stiffening

Other
mediators

C-reactive protein
(CRP)

Plasma (91, 99, 116) I (116), IV
(91, 99)

Arterial stiffening
Higher CPR levels are associated with increased arterial stiffness (151).

Intercellular
adhesion molecule-
1 (ICAM-1)

Plasma (93) I (93) Arterial stiffening in CKD
Plasma angiopoietin-2, which induces ICAM-1 in ECs (117), correlates
with arterial stiffness in CKD.
Matrix stiffness
Stiff matrices induce ICAM-1 clustering in ECs, which promotes
immune cell recruitment (152).

Vascular cell
adhesion molecule-
1 (VCAM-1)

Plasma (93), Fibroblasts (71), Lung (121),
CTEPH-EC (72)

I (71, 93,
121), IV (72)

Atherosclerosis
MicroRNA-1185 correlates with arterial stiffness and VCAM-1
expression (153).

Macrophage
inflammatory
protein-1a

Plasma (91) IV (91) Not studied in the context of vascular stiffening
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disease (60, 88). In rheumatoid arthritis (164) and acute

ischemic stroke (165), elevated levels of IL-6 in patient serum

were associated with aortic stiffening as estimated by pulse-wave

velocity, which could be significantly reduced by therapeutic

infusions of the anti-IL-6 receptor antibody tocilizumab (164).

Similarly, elevated TNF in rodent models of PAH and PH-

LHD has been shown to result in increased PA EC and SMC

proliferation and medial wall thickening (61, 166), which have

been attributed to suppressed BMPR-II signaling in PAH (166).

Due to its effects on SMC hyperplasia, TNF may also promote

PA stiffening in PH; however, direct correlations between TNF

levels and PA stiffness in PH have yet to be established. In other

cardiovascular and inflammatory diseases, e.g., arteriosclerosis,

TNF is an established key mediator of vascular remodeling (61,

62). Patients with inflammatory artheropathies, namely,

rheumatoid arthritis, ankylosing spondylitis, and psoriatic

arthritis, who received anti-TNF treatment with either

adalimumab, etanercept, or infliximab, showed a reduction in

aortic stiffness as assessed by pulse-wave velocity and

augmentation index as compared to untreated controls (107,

167). Hence, pharmacological inhibition of inflammatory

mediators such as IL-6 and TNF in PH could potentially

reduce pulmonary vascular cell proliferation and PA

thickening and may therefore present a targeted therapy for

PA stiffening.

Furthermore, pro-inflammatory mediators can induce

vascular stiffening in cardiovascular diseases by increased

production of ECM components, namely, fibrillar and non-

fibrillar collagens and fibronectin by resident vascular cells

(168). After myocardial infarction as well as in ischemic and

non-ischemic heart failure, pro-inflammatory mediators such as

TGF-b (74, 169) and IL-1b (170) induce the conversion of

fibroblasts into myofibroblasts, which can produce abundant

ECM proteins (168) (Tables 1, 2; Figure 2). In PH, adventitial

myofibroblasts contribute to PA remodeling and stiffening (46)

via the production of structural ECM components such as

collagens, elastin, fibronectin, and dynamic ECM constituents,
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including tenascin-C and osteopontin (43, 46, 74) (Table 2;

Figure 2). Tenascin-C and osteopontin, in turn, increase

fibroblas t and SMC prol i ferat ion, contr ibut ing to

myofibroblast conversion and medial thickening, and therefore

vascular stiffening (43, 46, 171) (Figure 2). Activated

macrophages recruited to the pulmonary adventitia may

express ECM proteins such as collagen type I, thereby

contributing to ECM stiffening in PH (172). In animal models

of MCT-induced PH, NADPH oxidase 4 (Nox4) has also been

found to be upregulated in the pulmonary adventitia, where it

promotes TGF-b-mediated expression of matrix collagens by

adventitial fibroblasts and, as such, ECM stiffening (172).

Similarly, collagen deposition by resident fibroblasts into the

adventitia was also found to be increased in an animal model of

chronic hypoxic PH and resulted in a thicker and stiffer arterial

wall (172–174). In order to form insoluble rigid fibers, excessive

fibrillar collagens are then further cross-linked by cross-linking

enzymes (43, 175). Specifically, elevated expression of LOX in

SMCs and lysyl oxidase-like enzyme (LOXL) expression in

adventitial fibroblasts leads to increased collagen cross-linking

and PA stiffening in PAH (176). Moreover, adventitial

fibroblasts per se exhibit a pro-inflammatory phenotype in PH,

including the recruitment and activation of adventitial

macrophages (7) and production of pro-inflammatory

markers, such as the chemokines MCP-1, SDF-1, RANTES/

CCR5, CCR7, CXCR4, and the co-stimulatory molecules CD40

and CD40L (7, 71). This secretory activity can, in turn, create

another feedback loop that triggers further inflammation and,

hence, ECM remodeling.

Apart from elevated levels of circulating inflammatory

mediators, increased mPAP in PH also induces activation of

the pro-inflammatory NF-kB signaling pathway in PA ECs and

SMCs (58, 133, 157) (Figure 2). Based on studies in systemic

cardiovascular diseases, such activation of NF-kB emerges as a

potentially important step in PA stiffening. As such, nuclear NF-

kB was shown to increase the expression of aortic collagen type I

in a murine model of type 2 diabetes, resulting in aortic stiffening
TABLE 2 Potential links between factors associated with PA stiffening and immune responses in PH.

Factors associated with PA stiffening Potential link to immune responses in PH

Caveolin-knockout mice show increased PA stiffness (158). Caveolin-1 inhibits adventitial macrophage-induced inflammation in mouse
aortic vessels (159).

5-HT inhibition prevents hypoxia-induced PH and vascular remodeling of PAs in mice
(160).

5-HT is widely expressed on immune cells such as dendritic cells, and
triggers the release of IL-1 and IL-6 (161).

SMC overproliferation causes arterial thickening and distal PA muscularization leading to
arterial stiffening in PH mice (60).

IL-6 overexpression in inflammation triggers SMC hypertrophy in PAs (60).

MMP-overexpression and activation lead to degradation of elastin fibers in the PA wall
and arterial stiffening in PAH patients (162).

Activated macrophages secrete MMP-2 (162), MMP-9 (162), MMP-10 (47),
and MMP-19 (6, 154) in PAH.
IL-6 upregulates MMP-9 expression in SMCs in PAH (60).

Myofibroblasts in PH overexpress ECM components (i.e., collagens, fibronectin, tenascin-
C, etc.) (163).

TGF-b increases collagen, fibronectin, and tenascin-C production by SMCs
and fibroblasts (43).
IL-6 and TGF-b induce differentiation of fibroblasts to myofibroblasts (21,
46, 71).
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FIGURE 2

Potential links between inflammatory mediators and mechanisms of pulmonary arterial ECM remodeling and vascular calcification in PH. As
described in detail in the manuscript text, perivascular accumulation of immune cells is a characteristic feature of PH. Inflammatory cells such as
macrophages produce MMPs that promote ECM degradation and remodeling. Inflammatory cytokines such as IL-6 and TGF-b drive the
proliferation of PA SMCs. Stimulation of fibroblasts by inflammatory mediators increases the expression of collagens, elastin, and fibronectin,
further promoting PA stiffness. Activated immune cells and inflammatory mediators promote SMC transdifferentiation and enhance the
expression of biomineralization genes, thus driving vascular calcification. BMPR2 downregulation, especially in response to the inflammatory
factor TNF, promotes endothelial cell mesenchymalization and may as such contribute to the development of pulmonary vascular calcification.
A detailed discussion of the proposed signaling pathways is provided in the manuscript text. ECM, extracellular matrix; MMPs, matrix
metalloproteinases; SMC, smooth muscle cells; PH, pulmonary hypertension; PA, pulmonary artery; BM, basement membrane.
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as measured ex vivo by pressure myography (177). Interestingly,

these effects were mediated by an NF-kB-dependent
overexpression of RUNX2, a key transcription factor relevant

not only for ECM remodeling [through increased expression of

ECM collagens by SMCs (177)], but also in the context of

vascular calcification (55, 177) (as discussed below) (Figure 2).

It may be speculated that activation of NF-kB could exhibit

similar effects in PH, thus contributing to PA stiffening through

ECM remodeling and vascular calcification.

Inflammation-induced overproduction of ECM components

in cardiovascular diseases is rivaled by elevated proteolytic ECM

degradation via a parallel increase in MMPs (46). In PH,

activated macrophages and myofibroblasts in the adventitia

secrete MMPs, specifically MMP-2 (154, 162), MMP-9 (6,

162), MMP-10 (47), and MMP-19 (6, 154), while tissue

inh ib i tor s o f meta l loprote inases (TIMPs) appear

downregulated (46, 162) (Table 2; Figure 2). MMP-2 (50) and

MMP-9 (49) degrade elastin, thereby decreasing vessel

compliance, resulting in arterial stiffening (49–52).

Furthermore, degradation of elastic fibers and other ECM

components such as BM collagens, interstitial collagens,

fibronectin, and several proteoglycans by MMPs, facilitates

migration of adventitial fibroblasts and myofibroblasts into the

media and intima, which, in turn, promotes PA stiffening and

vascular stenosis (46, 154) (Table 2). Similarly, neointimal

formation via increased proliferation and migration of SMC

from the media into the intimal regions of the arterial wall is

likewise facilitated by MMP-regulated ECM degradation (52,

178) and promotes vascular stenosis and stiffening (178).

Products of ECM proteolysis—the matrikines [recently

reviewed in detail by Mutgan et al. (179)]—can, in turn, serve

as pro-inflammatory mediators, which accentuate inflammation

and may, as such, create another positive feedback loop (43).

Furthermore, ECM degradation allows for circulating serum

factors to enter the media and stimulate serine elastase

production by SMCs (178). These serine elastases aid elastin

degradation and the release of activated growth factors, such as

fibroblast growth factor (FGF) and TGF-b that, in turn, increase

collagen, fibronectin, and tenascin-C production by SMCs and

fibroblasts (43)—again furthering PA stiffening (Table 2). In

other cardiovascular diseases such as ischemic heart failure,

immune cells like macrophages, lymphocytes, and mast cells

secrete MMPs that remodel the vascular and cardiac ECM in

response to mechanical stress (168). In arteriosclerosis, elevated

levels of both MMP-2 and MMP-9 were associated with

increased arterial stiffness and cardiovascular disease risk,

which has been attributed to their ability to degrade the elastic

laminae in arteries (180, 181). Accordingly, MMP-2 knockdown

reduces arterial stiffening of carotid arteries in mice by

decreasing elastin degradation in the tissue (182).

As such, activation of immune cells and inflammatory

pathways, and arterial wall thickening and ECM remodeling

may reciprocally stimulate each other. Targeting inflammatory
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processes in cardiovascular diseases, for example, aortic

aneurysms, has shown beneficial effects on key mechanisms of

ECM remodeling such as elastin degradation, MMP expression,

and macrophage infiltration (183). As such, a better

understanding of the specific players and molecular pathways

involved in this mutual interaction may reveal novel and

potentially personalized targets for future PH therapy.
Pulmonary arterial calcification
and inflammation

Biologically induced mineralization is an integral part of

human physiology and tissue homeostasis that involves

extracellular and intracellular mechanisms to direct the

nucleation, growth, and location of the deposited minerals. In

disease conditions, these processes may become dysbalanced due

to changes in the local or global calcium milieu, DNA damage,

endoplasmic reticulum stress, oxidative stress, or metabolic

disorders—i.e., processes that are frequently associated with

inflammatory responses—and ultimately result in pathological

tissue or blood vessel calcification (184, 185). Mechanistically,

these factors lead to (or are accompanied by) phenotypic

conversion of various cell types into osteoprogenitor cells via

de novo or increased expression, respectively, of the potent

transcription activator RUNX2, which triggers the expression

of downstream calcification-promoting proteins such as alkaline

phosphatase (186–188). In comparison to systemic arteries,

vascular calcification of the PA is scarcely addressed, yet it is

actually a common feature in patients with severe prolonged PH

(189), advanced PH, and PH with chronic renal failure (190) or

end-stage renal disease (191). In fact, detection of peripheral PA

calcification by computed tomography (CT) (192) predicts long-

term outcome in PH (193) and in patients with atrial septal

defect and Eisenmenger’s syndrome (194).

In the context of PAH, a critical role in the regulation of PA

calcification has been attributed to a microRNA-204-dependent

upregulation of RUNX2 that, in turn, activates HIF-1a, leading
to PA SMC hyperproliferation, resistance to apoptosis, and

subsequent transdifferentiation into osteoblast-like cells (55). A

second study reported that hypoxia-induced circular RNA

CDR1 promotes osteogenic transdifferentiation of human PA

SMCs by sponging microRNA-7-5p, and consequently

upregulating its downstream targets calcium/calmodulin-

dependent kinase II-delta (CAMK2D) and calponin 3 (CNN3)

(195). Third, PA calcification has been linked to hypoxia, in that

hypoxia decreases the expression of serine protease granzyme B

stored in the granules of T lymphocytes and natural killer cells,

which inhibits store-operated calcium channels (SOCCs) as the

main source of calcium mineral by attenuating non-canonical

Wnt signals in SMCs, thus increasing calcification of the PA

(141). Independent of the underlying pathway, calcification
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ultimately increases vascular stiffness and reduces the

compliance of the pulmonary arterial wall, which is a

manifestation of poor prognosis in PH (21).

In the systemic vasculature, inflammatory signals—as seen

in PH—have been shown to regulate vascular calcification

proces ses . Spec ifica l ly , TNF promotes os teogenic

differentiation and calcification of bovine aortic SMCs by

inducing the expression of osteoblast markers, such as

osteoblast-specific factor 2 (Osf2), activator protein 1 (AP1),

and cAMP-responsive element-binding protein (CREB) via

activation of cAMP signaling (104). Likewise, treatment of

aortic SMCs with IL-1b or IL-6 caused a dose-dependent

increase in alkaline phosphatase activity and increased cell

mineralization in vitro (196). Interestingly, expression of the

inflammatory cytokines IL-6, TNF, and MCP-1 is epigenetically

regulated in various tissues by bromodomain protein 4 (BRD4)

(86), which modulates the chromatin landscape and activates

gene expression by scaffolding transcription factors at gene

promoters and/or superenhancers. Notably, BRD4 is

upregulated in PA SMCs of PAH patients and in lungs or

distal PAs of rat PH models, and is posttranscriptionally

regulated by microRNA-204 (87), which is concomitantly

involved in PA calcification (55), providing for an additional

epigenetic link between inflammation and vascular calcification.

More importantly, the RUNX2 gene promoter has been shown

to be under direct control of BRD4 during osteoblast

differentiation (197) as well as in cancer (198), suggesting that

BRD4 may serve as a “master-regulator” of both inflammation

and vascular calcification in parallel. In line with this notion,

BRD4 inhibition attenuated pulmonary and coronary artery

remodeling in experimental PH, and this protective effect was

associated with reduced levels of IL-6 and MCP-1 (199, 200).

Although studies linking calcification and inflammation in

PH are scarce, cytokines have been implicated in the regulation

of calcification in the extra-pulmonary vasculature. Importantly,

vascular calcification also seems to be closely interconnected

with ECM remodeling and stiffening (201), as SMC

mineralization directly correlates with the production of

collagen I and fibronectin and elastin degradation, while the

latter forms scaffolds for calcium incorporation (201–203).

These findings suggest that upstream inflammation may also

promote vascular calcification through ECM remodeling.
Pulmonary arterial endothelial-
to-mesenchymal transition
and inflammation

While our interrogation of vascular calcification processes

has at large focused on SMCs, it is important to keep in mind

that ECs are also involved. In various cardiovascular diseases,

ECs lose their characteristic morphology and undergo a shift
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toward a mesenchymal phenotype (204), a process that is termed

endothelial-to-mesenchymal transition (EndoMT) and that is

notably modulated by inflammation. Specifically, inflammatory

cytokines such as IL-1b or TNF have been shown to induce

EndoMT in PA ECs. In turn, these EndoMT cells start to secrete

inflammatory cytokines including IL-4, IL-6, IL-8, IL-13, and

TNF at much higher concentrations as compared to normal PA

ECs (205), thus establishing a potentially vicious feed-forward

loop. In line with the notion of inflammation-driven EndoMT in

PH, activation of the pro-inflammatory NF-kB signaling

pathway in a mouse model of monocrotaline (MCT)-induced

PH was found to upregulate miR-130a, which induced loss of

bone morphogenetic protein receptor type 2 (BMPR2),

increased expression of High Mobility Group AT-hook 1

(HMGA1), and ultimately EndoMT in lung microvascular ECs

(206). It is important to highlight that although EndoMT has

been extensively documented in pulmonary and systemic ECs

exposed to inflammatory mediators in vitro, the extent and

relevance of EndoMT in vivo in recent studies using lineage

tracing technologies remains controversial: By use of double

transgenic mice stably expressing green fluorescent protein (GFP)

in all ECs, Suzuki and colleagues detected GFP in 14.3 ± 1.8% of

mesenchymal (CD144-CD45-CD326-) cells, indicating substantial

EndoMT (207). Similarly, endothelial lineage tracing using

transgenic vascular endothelial-cadherin Cre recombinase or

Tie-2 Cre mice intercrossed with mTomato/mGreen fluorescent

protein double-fluorescent Cre reporter mice revealed abundant

endothelial lineage-marked cells in the neointima where they

expressed smooth muscle a-actin and smooth muscle myosin

heavy chain following induction of PH by monocrotaline pyrrole

(208). Yet, a recent lineage tracing study in chronic hypoxia and

allergen-induced models of lung vascular remodeling showed

retention of endothelial lineage-specific marker expression

profiles without any indication of cell-type conversion (209).

Notably, the recognition of limited or partial EndoMT does not

necessarily conflict with its potential functional relevance in PA

stiffening, but simply suggests that this relevance may potentially

relate more to the release of proliferative, hypertrophic, and

profibrotic signals—i.e., mediators of processes that will

ultimately promote PA stiffness—by partial EndoMT cells rather

than to the actual generation of significant mesenchymal cell mass

via this mechanism. Indeed, a similar role is increasingly

recognized for epithelial–mesenchymal transition in tissue

fibrosis (210).

Over and above that, EndoMT may link inflammation to

vascular calcification and, thus, PA stiffening in PH. Specifically,

studies in aortic ECs show that inflammatory cytokines such as

TNF and IL-1b modulate EndoMT and downregulate the

expression of BMPR2 and JNK signaling, thereby sensitizing

ECs for BMP9-induced osteogenic differentiation that

culminates in mineralization (141). Similar regulatory

mechanisms may drive PA EC calcification in different types of

PH, and PAH patients with BMPR2 mutations or BMP signaling
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pathway impairments (104) would be expected to be specifically

vulnerable in this scenario given the association of impaired

BMPR2 signaling with EndoMT (211). Lineage tracing studies

in the systemic circulation support a role for EndoMT in vascular

calcification, showing, e.g., that a subset of endocardial cells can

undergo endocardial-to-mesenchymal transition resulting in

calcification of mouse and human cardiac valves (212) or that

vascular ECs can transition into osteogenic cells (213), which can

be prevented by inhibition of glycogen synthase kinase 3 (GSK3)

(214). The role of EndoMT (or partial EndoMT) in vascular

calcification in the pulmonary circulation and in the contact of PH

has, however, so far not been addressed.
Potential clinical relevance

While current PH therapies (i .e . , prostacyclins,

phosphodiesterase inhibitors, calcium channel blockers,

endothelin receptor antagonists, or soluble guanylate cyclase

stimulators) focus primarily on alleviating vasoconstriction as a

symptomatic approach (215), the long-term therapeutic goal is

to shift towards targeting mechanisms of disease onset and

progression, including vascular remodeling and inflammation

(215). In this regard, targeting the immune–PA stiffening axis

may present a particularly promising strategy in light of the

predictive and pathomechanistic role of PA stiffening in PH, and

the armamentarium of immunomodulatory therapies already in

clinical use or in development. In the systemic circulation, anti-

inflammatory therapies have shown promise to reduce arterial

stiffening in inflammatory artheropathies such as rheumatoid or

psoriatic arthritis (167). Specifically, TNF antagonists, such as

adalimumab, etanercept, or infliximab, represent established

anti-inflammatory therapies in (auto-)immune conditions

(216) that have explicitly lowered aortic stiffness in patients

with inflammatory artheropathies (107, 167).

As such, immunomodulatory treatments are increasingly

considered as potential therapeutic strategies for the treatment

of PH. Yet, despite promising findings in preclinical models (8,

146, 215, 217), results from clinical trials have so far shown only

modest benefit (149, 218, 219), thus stressing the need for more

personalized approaches. Given the discussed link between

immune responses, ECM remodeling, and vascular calcification,

PA stiffness may present a promising biomarker to identify and

monitor patients who may profit from immunomodulatory

therapies; yet, assessment of PA stiffness in clinical trials is

presently rare. Preclinical models, however, highlight the

potential promise of anti-inflammatory therapies to target PA

stiffness: For example, inhibition of carbonic anhydrases by

acetazolamide or ammonium chloride (NH4Cl) as a potential

treatment for inflammation in PH was able to prevent SMC

dedifferentiation and proliferation in a Sugen5416/hypoxia rat

model (220). Other anti-inflammatory therapies, such as

treatment with resveratrol, were similarly able to prevent PA
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remodeling and stiffening in chronic hypoxic rats (215), while

inhibitors of the renin–angiotensin system such as captopril or

losartan reduced the production of ECM components including

interstitial collagen and the expression of MMP-2 and MMP-9 in

PAH, thereby attenuating PA stiffening (215). Hence, targeting

inflammation with a specific focus on PA stiffness may provide for

a pathomechanism-based and individualized therapy to treat PH

—a notion that should be considered and, ideally, may be tested in

appropriate preclinical and clinical trials.
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