
J Clin Lab Anal. 2021;35:e24038.	 		 	 | 1 of 8
https://doi.org/10.1002/jcla.24038

wileyonlinelibrary.com/journal/jcla

1  |  INTRODUC TION

In 2021, an estimated 12,620 laryngeal carcinoma (LC) cases, the 
most common type is laryngeal squamous cell carcinoma (LSCC), will 
be diagnosed, including 9940 males and 2680 females in the United 
States. Approximately 3770 patients will die from the disease, in-
cluding 3020 males and 750 females. Despite the reduction of over-
all incidence, the 5- year survival rate has decreased from 66% to 
63%.1 Several risk factors contributed to the pathogenesis of laryn-
geal cancer including tobacco and alcohol consumption, asbestos, 
polycyclic aromatic hydrocarbons, textile dust, and HPV infection.2 
The most significant of these are tobacco and alcohol consumption. 
A linear association between tobacco and alcohol use with the de-
velopment of laryngeal cancer has been reported. A large number 
of patients were diagnosed at advanced stage due to lack of early 

efficient diagnostic methods. Patients diagnosed at early stage 
benefit from the success of organ preservation- based surgical ap-
proaches, which preserves the basic function of the larynx, breath-
ing and speech.3 Therefore, it is particularly important to explore 
new biomarkers for the early diagnosis to prolong the 5- year survival 
rate and improve the quality of life for LC patients.

Circular RNA (circRNA), containing highly conserved loop struc-
ture	 and	 without	 5′-	cap	 and	 3′-	poly	 (A)	 structures,	 enable	 their	
resistance to exonuclease degradation.4 In recent years, with the 
development of high- throughput RNA sequencing (RNA- seq) and 
circRNA- specific bioinformatics algorithms, thousands of circRNAs 
with tissue- specific expression pattern have been identified in eu-
karyotes.5,6 Recent study found that circRNAs control mRNA sta-
bility and transcription by forming a regulatory axis with microRNA 
(miRNA),7 raising the possibility of their potential as biomarkers in 
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Abstract
Laryngeal carcinoma (LC) is a common head and neck cancer, which is the result of 
mutational changes due to gene dysregulation and etiological factors such as tobacco 
and smoking. A large number of patients received a poor prognosis due to diagno-
sis at an advanced stage. This highlights the need for definitive, early, and efficient 
diagnoses. With rapid development of high- throughput sequencing, circular RNA 
(circRNA) has been reported to play a pivotal role in cancer. CircRNA functions as a 
microRNA (miRNA) sponge in the regulation of mRNA expression, forming circRNA- 
miRNA regulatory axis. In this review, we described the axis in LC. The result indicated 
that CDR1as, hsa_circ_0042823, hsa_circ_0023028, circPARD3, hsa_circ_103862, 
hsa_circ_0000218, circMYLK, circCORO1C, hsa_circ_100290, circ- CCND1, hsa_
circ_0057481, circFLAN, and circRASSF2 expressed higher in LC, whereas, hsa_
circ_0036722 and hsa_circ_0042666 expressed lower. The circRNAs regulated the 
target genes by sponging miRNAs and contributed to the pathogenesis of LC.
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cancer. This review discusses the prospects of the circRNA- miRNA 
axis as a potential biomarker for LC.

2  |  circRNA BIOGENESIS AND miRNA 
SPONGING

The three main ways of biogenesis of CircRNAs are described below.
First,back- splicing mechanism, looping of the intron sequences 
flanking the downstream splice- donor site, and the upstream splice- 
acceptor site bring these sites into close proximity (Figure 1). This 
looping can be mediated by base pairing between inverted repeat 
elements such as Alu elements,8,9 or by the dimerization of RNA- 
binding proteins (RBPs)10 or RNA binding protein that bind to specific 
motifs in the flanking introns.11 Double- stranded RNA (dsRNA)- 
specific adenosine deaminase (ADAR) enzymes, and ATP- dependent 
RNA helicase A (also known as DHX9) were reported to suppress the 
biogenesis circRNAs by preventing base pairing between inverted 
repeats.12 NF90/ NF110, products of interleukin enhancer- binding 
factor 3 (ILF3) promote the production of circRNA by stabilizing in-
tronic RNA pairs.13

Additionally, alternative splicing (exon skipping) is another cir-
cRNA biogenesis method. Exons were removed from mRNA and 
contained in the lariats, which form circRNA by internal splicing.8,14 
Finally, intronic lariats, when escaping from debranching, can lead to 
the formation of ciRNAs.15 According to their structures, circRNAs 
are classified into three types: exonic circRNAs (ecircRNAs), circular 
intronic RNAs (ciRNAs), and exon- intronic circRNAs (EIciRNAs).

CircRNAs have been identified to act as sponges of miR-
NAs, which are 25 nucleotides long and play a role in the stabil-
ity of mRNA. CircRNAs have the potential to act as oncogenes or 
tumor suppressors by sponging different miRNAs.16,17 This review 

discusses the prospects of the miRNA- circRNA axis as a potential 
biomarker for LC.

3  |  THE miRNA- circRNA A XIS REPORTED 
IN LC

This review will describe only circRNAs that form the circRNA- 
miRNA regulatory axis in LC and their roles in other cancers. Table 1 
briefly describes the regulatory network and expression levels in LC 
tissues.

3.1  |  CDR1as

CDR1as (also known as ciRS- 7), one of the earliest and best char-
acterized circRNAs, containing about 70 binding sites for miR- 7 per 
molecule and can affect the activity of miR- 7 markedly.4,18 Several 
studies have analyzed the expression of CDR1as in Hepatocellular 
Carcinoma and Cholangiocarcinoma (HCC). The result showed that 
CDR1as promoted the proliferation and invasion of HCC cells by in-
hibiting the expression of miR- 7 and its downstream target genes 
CCNE1, PIK3CD, KLF4, and p70S6K.19- 22 Su et al.23 demonstrated 
that CDR1as was upregulated in nonsmall cell lung cancer (NSCLC) 
and increased the proliferation, metastasis, and invasion ability of 
NSCLC cells by the CDR1as/miR- 7/NF- kB axis. It is reported that 
CDR1as is highly expressed in LSCC patients with high TNM stage, 
poor tumor differentiation, lymph node metastasis and poor prog-
nosis, while the expression level of miR- 7 is low. In vitro study dem-
onstrated that CDR1as molecules could upregulate the key targets 
of miR- 7, CCNE1, and PIK3CD in LSCC cells by acting as a sponge of 
miR- 7.24

F I G U R E  1 The	biogenesis	of	circRNAs.	
Base repairing inverted repeat elements 
(such as Alu elements) bring a downstream 
splice- donor site into close proximity 
with an upstream splice- acceptor site, 
and this association may lead to back- 
splicing. circRNAs can also be generated 
from splicing intermediates known as 
lariat precursors that are created by an 
exon- skipping event during linear splicing 
or from intronic lariat precursors that 
escape from the debranching step of 
canonical linear splicing. miRNA sponged 
by circRNA in the cytoplasm
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3.2  |  hsa_circ_0042823

MiR- 877- 5p was reported to implicated in various cancers such as 
colorectal cancer (CRC)25 and HCC.26 Another study found miR- 877 
could combine with the specific fork- head box protein M1(FOXM1) 
mRNA	3′UTR-	binding	sites	and	play	a	role	in	inhibiting	the	expres-
sion of FOXM1 gene,27 which is associated with cellular prolif-
eration, cell cycle progression, tissue repair, and carcinogenesis.28 
Recently, hsa_circ_0042823 was found expressed high in the LSCC 
cell lines (AMC- HN- 8 and TU686), and could promote proliferation, 
migration, and invasion of AMC- HN- 8 cells by upregulating the ex-
pression of FOXM1 via sponging miR- 877- 5p.29

3.3  |  circABCB10

CircABCB10 was increased in NSCLC and promoted proliferation and 
invasion of NSCLC cell lines by forming circABCB10/miR- 584- 5p/ 
E2F5 axis.30 Sun et al.31 observed high expression of circ- ABCB10 
and fatty acid binding protein 5 (FABP5) in glioma tissues, whereas 
lower expression of miR- 620. Further assays demonstrated silenc-
ing of circ- ABCB10 significantly inhibited the proliferation, migra-
tion, and invasion of glioma cells by sponging toward miR- 620 whose 
target gene was FABP5, which could upregulate vascular endothelial 
growth factor (VEGF) and matrix metalloproteinases (MMPs) that 
related to angiogenesis and metastasis.32,33 Zhao et al.34 found de-
letion or knockdown of circABCB10 significantly reduce the prolif-
eration, invasion, and migration of LSCC cells. The mechanism was 
circABCB10 down- regulated chemokine receptor 4 (CXCR4) that 
play a vital role in human cancers35 by severing as a sponge for 

miR- 588. Nevertheless, the author did not describe the expression 
level of circABCB10 in LSCC tissues or cells, the expression of cir-
cABCB10 in LSCC tissues needs to be further explored.

3.4  |  has_circ_0023028

Chen et al. first observed has_circ_0023028 up- regulated in LC, that 
inhibiting the proliferation, migration, and invasion, and could act 
as miR- 194- 5p sponge.36 MiR- 194- 5p has been reported to promote 
the growth of HCC by miR- 194- 5p/fork- head box A1(FOXA1) axis37 
and inhibit cell migration and invasion in bladder cancer by targeting 
E2F3.38 Zheng et al.39 found has_circ_0023028 expressed high in 
LSCC tissues and cells could promote cell proliferation, metastasis, 
and cell cycle process. Mechanism analysis showed circ_0023028 
could sponge miR- 486- 3p, that suppressed LSCC cell progression 
via binding to Lin- Isl- Mec (LIM) and SH3 domain protein1 (LASP1), 
which was found implicated in several human cancers and could be 
targeted by miRNAs.40,41

3.5  |  circPARD3

Gao et al. observed circPARD3 expressed high in LSCC tissues and 
was associated with LSCC progression. Functional analysis demon-
strated that circPARD3 inhibited autophagy and promoted LSCC 
cell proliferation, migration, invasion, and chemoresistance. Further 
study revealed that circPARD3 inhibited autophagy by PRKCI- Akt- 
mTOR pathway through sponging miR- 145- 5p.42 The role of circ-
PARD3 played in other cancers has not been reported.

TA B L E  1 A	brief	summarization	circRNA-	miRNA	pathway	regulatory	axis	in	Laryngeal	carcinoma

CircRNA
Expression 
in LC Sponged MiRNA Regulatory axis Reference

CDR1as Up miR- 7 CDR1as /miR- 7/ CCNE1/PIK3CD 26

hsa_circ_0042823 Up miR- 877- 5p hsa_circ_0042823/ miR- 877- 5p/ FOXM1 31

circABCB10 / miR- 588 circABCB10/miR- 588/ CXCR4 36

hsa_circ_0023028 Up miR- 486- 3p circ_0023028/miR- 486- 3p/LASP1 41

circPARD3 Up miR- 145- 5p circPARD3/miR- 145- 5p/PRKCI- Akt- mTOR 44

hsa_circ_103862 Up miR- 493- 5p circ- 103862/ miR- 493- 5p/GOLM1 45

hsa_circ_0000218 Up miR- 139- 3p Circ_0000218/ miR- 139- 3p/Smad3 49

hsa_circ_0036722 Down miR- 1248 circ_0036722/ miR- 1248/RHCG 54

circMYLK Up miR- 195 circMYLK/ miR- 195/cyclinD1 58

Up miR- 145- 5p circMYLK/miR- 145- 5p/MEK/ERK and NF- κB 59

circCORO1C Up let- 7c- 5p CircCORO1C /let- 7c- 5p/PBX3 60

hsa_circ_100290 Up miR- 136- 5p circRNA_100290/ miR- 136- 5p /RAP2C 65

circ- CCND1 Up miR- 646 Circ- CCND1/ miR- 646 and HuR/ CCND1 70

hsa_circ_0057481 Up miR- 200c Hsa_circ_0057481/ miR- 200c/ZEB1 72

hsa_circ_0042666 Down miR- 223 Hsa_circ_0042666/ miR- 223/TGFBR3 73

circFLAN Up miR- 486- 3p CircFLAN/ miR- 486- 3p/ FLNA 78

circRASSF2 Up miR- 302b- 3p CircRASSF2/ miR- 302b- 3p/IGF- 1R 86
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3.6  |  has_circ_103862

Researchers found that has_circ_103862 was upregulated in LSCC 
tissues and was related to metastasis and prognosis of LSCC pa-
tients. Knock down of circ_103862 reduce proliferation, migra-
tion, and invasion ability of LSCC cells. Mechanically, exploration 
showed that miR- 493- 5p, sponged by has_circ_103862, could target 
Golgi membrane protein 1 (GOLM1). Thus, has_circ_103862/ miR- 
493- 5p/ GOLM1 regulatory axis was formed.43 GOLM1, a type II 
transmembrane protein of the Golgi cisternae, highly expressed in 
tumor cells and is regarded as a potential cancer cell marker.44 Zhang 
et al. reported GOLM1 act as an oncogene in NSCLC and promoted 
the proliferation and invasion.45

3.7  |  has_circ_0000218

Pei et al.46 found that has_circ_0000218 was upregulated in CRC 
tissues and cell lines, which significantly related to clinical stage and 
overexpression promoted the proliferation and metastasis of CRC 
cells by forming has_circ_0000218/miR- 139- 3p/RAB1A axis. Bai 
et al.47 reported that circ_0000218 silencing inhibited the LSCC cell 
viability,	growth	and	promoted	apoptosis	by	regulating	miR-	139−3p	
which can bind to smad family member3 (Smad3). Smad3, could 
regulate canonical transforming growth factor- β(TGF- β) which plays 
a key role in angiogenesis and has been demonstrated to related to 
several cancers including colon cancer,48 CRC,49 bladder cancer,50 
and prostate cancer.51

3.8  |  has_circ_0036722

Has_circ_0036722 was observed decreased in LSCC tissues, and 
the expression level was associated with poor differentiation. ROC 
curve analysis indicated that hsa_circ_0036722 could act as a diag-
nostic biomarker for LSCC with AUC of 0.838. Luciferase reporter 
assays showed that hsa_circ_0036722 regulate the expression of 
RHCG in LSCC by sponging miR- 1248.52 RHCG, the parental gene 
of has_circ_0036722, were downregulated in LSCC tissues and has 
been proved as a cancer suppressor gene in several cancers includ-
ing tongue squamous cell carcinoma (TSCC)53 and esophageal squa-
mous cell carcinoma (ESCC).54

3.9  |  circMYLK

Chen et al. found circMYLK was upregulated in bladder cancer, 
which could promote the progression of bladder cancer in mecha-
nism that circMYLK could relieve the suppression on VEGFA by 
binding to miR- 29a. When knockdown, circMYLK inhibited cell pro-
liferation and induced apoptosis. The progression of bladder can-
cer xenografts was promoted by circMYLK high expression.55 Duan 

et al.56 found that the circMYLK promoted LSCC cell proliferation 
may partly by accelerating cell cycle progression by sponging to miR- 
195 which can target cyclin D1, a regulator of the G1/S transition. 
Another study found that circMYLK was highly expressed in laryn-
geal cancer and could sponge miR- 145- 5p, thereby blocking MEK/
ERK and NF- κB pathway.57

3.10  |  circCORO1C

CircCORO1C, composed of exons 7 and 8 of CORO1C, has been 
demonstrated as highly expressed in LSCC tissues and cells. 
Suppression of circCORO1C inhibited the activity LSCC cells. 
Mechanism research found that circCORO1C could competitively 
bind to let- 7c- 5p and relieve the repression of Pre- B- cell leukemia 
homeobox transcription factor 3 (PBX3), which promoted the EMT 
and finally the malignant progression of LSCC.58 PBX3 was reported 
to express high in cancer tissues such as prostate cancer59 and cervi-
cal cancer.60

3.11  |  circRNA_100290

Chen et al. reported that circRNA_100290 was upregulated in oral 
squamous cell carcinoma (OSCC) and promoted the cancer progres-
sion by relieving the repression on Glucose transporter 1(GLUT1) via 
acting as a ceRNA of miR- 378a.61 Fang et al.62 found circRNA_100290 
taking part in the progression of CRC by circRNA_100290/miR- 
516b/FZD4/Wnt/b- catenin axis. CircRNA_100290 was found ex-
pressed remarkably high in LSCC tissues and cell lines compared 
with the normal controls and positively related to advanced TNM 
stage and lymph node metastasis in LSCC patients. Functional anal-
ysis demonstrated upregulated circRNA_100290 promoted LSCC 
cell proliferation, migration, and invasion, while the effect on cell 
apoptosis was opposite. CircRNA_100290 display sponge activity 
to miR- 136- 5p, whose target gene was RAP2C, a family member of 
RAS,63 which was validated to function as an oncogene in various 
cancers.64,65

3.12  |  circ- CCND1 (hsa_circ_0023303)

Circ- CCND1 is derived from Cyclin D1 (CCND1), which is one num-
ber of highly conserved cyclin family protein and has been demon-
strated to be necessary for the transition of cell cycle from G1 phase 
into S phase66 and the dysregulation can lead to uncontrolled cell 
proliferation and malignancy.67 Circ- CCND1 was found significantly 
up- regulated in LSCC and correlated to aggressive clinical features 
and prognosis of LSCC patients. It interacts with human antigen R 
(HuR) protein and acts as the sponge for miR- 646, thereby enhances 
CCND1 mRNA stability and increases CCND1 expression, and finally 
facilitates LSCC growth. 68
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3.13  |  hsa_circ_0057481

Gao et al. reported that hsa_circ_0057481 was significantly upreg-
ulated in LC tissues, silencing of which restrained the cell activity, 
and caused cell apoptosis in LC cells. Hsa_circ_0057481 showed 
sponging activity toward miR- 200c, which targeted ZEB1, forming 
hsa_circ_0057481/ miR- 200c/ ZEB1.69 ZEB1/ miR- 200 feedback 
loop was demonstrated to play a role in human cancers via Notch 
pathway.70

3.14  |  hsa_circ_0042666

Fan et al. reported that hsa_circ_0042666 expression was signifi-
cantly decreased in LSCC tissues, which associated with advanced 
tumor stage, lymph- node metastasis, and poor prognosis of LSCC 
patients and cloud reduce the proliferation and invasion abili-
ties in LSCC cells by sponging to miR- 223, whose target gene was 
TGFBR371 that was a common tumor suppressor gene72- 74 and the 
inhibition of miR- 223/TGFBR3 axis on lung cancer progression has 
been demonstrated.75

3.15  |  circFLAN

Shan et al. reported high expression of circFLAN in LSCC, that was 
correlated with lymph node metastasis and showed sponge ac-
tivity to miR- 486- 3p in LSCC cells, relieved miR- 486- 3p- induced 
repression of flamin A(FLNA) which promotes LSCC cell migra-
tion.76 FLNA has the ability of actin- binding properties,77 which 
is involved in multiple cell functions, such as migration and adhe-
sion.78 FLNA was demonstrated to be a tumor- promoting protein 
and involved in several human cancers, including bladder cancer,79 
lung cancer,80 and breast cancer.81 CircFLAN has also been ob-
served to promote progression of gastric cancer (GC) by targeting 
6- phosphofructo- 2- kinase (PFKFB2) through showing sponging 
activity to miR- 646.82 Lately, another study demonstrated that 
circFLNA acted as a sponge of miR- 486- 3p to promote the prolif-
eration, migration, and invasion of lung cancer cells via regulating 
XRCC1 and CYP1A1.83

3.16  |  circRASSF2

circRASSF2 was upregulated in LSCC and higher expression of 
circRASSF2 was positively correlated with LSCC metastasis. cir-
cRASSF2, when knockdown, inhibited cell proliferation and 
markedly decreased cell colony formation, whereas circRASSF2 
overexpression has the opposite effect. Further study declared that 
circRASSF2 displayed sponge activity toward miR- 302b- 3p, which 
targets insulin- like growth factor 1 receptor (IGF- 1R).84 CircRASSF2/
miR- 1178/TLR4 axis was reported to regulate papillary thyroid car-
cinoma progression and may be a promising therapeutic target for 

therapy.85 Zhong et al.86 revealed that CircRASSF2 promoted breast 
cancer progression through regulating Homeobox gene A1(HOXA1) 
by sponging to miR- 1205.

4  |  CONCLUSIONS AND PERSPEC TIVES

The discovery of circRNAs has opened a new chapter of cancer 
progression. The unique features of circRNAs including high con-
servative, stability, expression abundance, and tissue and disease 
expression- specificity enable them to act as biomarkers for can-
cer diagnosis and progression. With the development of sequenc-
ing technologies, the exploration of circRNAs has made a big step 
forward. Increasing evidences have revealed the important role of 
circRNAs in the development of LC. They can act as biomarkers for 
LC diagnosis and prognosis. Most circRNAs implicated in LC are 
reported to function by sponging miRNAs to cause a substantial 
change in the downstream miRNA activity via circRNAs- miRNAs- 
mRNAs axis. CircRNAs have been demonstrated to affect cancer- 
related signaling pathways in LC, such as PI3K/Akt/mTOR axis, and 
might play a role in the chemo- sensitivity and radio- sensitivity of LC.

The field of studying circRNAs still faced lots of challenges. First, 
the present studies focus predominantly on the ceRNA function of 
circRNAs. Research on their protein sponges' or protein scaffolds' 
capabilities is blank; this review does not cover it either. Additionally, 
the study of circRNAs is limited to function as potential biomark-
ers. The application on clinical is lacking, and present conclusions 
are based on a small part of LC patients, which need further ver-
ification that is necessary for use in clinical use. Finally, circRNAs 
are reported to participate in intercellular communication and tumor 
micro- environment, whereas the study of circRNAs exomes lacks 
LC, and future research in this field will be of great significance to 
the diagnosis and pathogenesis of LSCC.

Nevertheless, inspiring findings are emerging. Hg19_
circ_0005033 was demonstrated to affect LSCC stem cells and pro-
mote tumor occurrence and chemotherapy resistance, which may 
help clinician make therapy design.87 CircRNA was constructed to 
treat cardiac hypertrophy in vitro and cardiac function was pre-
served in treated mice.88 All these findings are inspiring and clarify 
the significance of further study of circRNA, which will contribute 
to a better understanding of cancer pathology and personalized 
treatment.
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